|
@@ -0,0 +1,696 @@
|
|
|
+/*
|
|
|
+ * RSA, a suite of routines for performing RSA public-key computations in JavaScript.
|
|
|
+ * Copyright 1998-2005 David Shapiro.
|
|
|
+ * Dave Shapiro
|
|
|
+ * dave@ohdave.com
|
|
|
+ * changed by Fuchun, 2010-05-06
|
|
|
+ * fcrpg2005@gmail.com
|
|
|
+ */
|
|
|
+/*
|
|
|
+ * Modified by +v then, 2018-03-28
|
|
|
+ */
|
|
|
+
|
|
|
+var RSAUtils = {}
|
|
|
+
|
|
|
+// var biRadixBase = 2
|
|
|
+var biRadixBits = 16
|
|
|
+var bitsPerDigit = biRadixBits
|
|
|
+var biRadix = 1 << 16 // = 2^16 = 65536
|
|
|
+var biHalfRadix = biRadix >>> 1
|
|
|
+var biRadixSquared = biRadix * biRadix
|
|
|
+var maxDigitVal = biRadix - 1
|
|
|
+// var maxInteger = 9999999999999998
|
|
|
+
|
|
|
+// maxDigits:
|
|
|
+// Change this to accommodate your largest number size. Use setMaxDigits()
|
|
|
+// to change it!
|
|
|
+//
|
|
|
+// In general, if you're working with numbers of size N bits, you'll need 2*N
|
|
|
+// bits of storage. Each digit holds 16 bits. So, a 1024-bit key will need
|
|
|
+//
|
|
|
+// 1024 * 2 / 16 = 128 digits of storage.
|
|
|
+//
|
|
|
+var maxDigits
|
|
|
+var ZERO_ARRAY
|
|
|
+var bigZero, bigOne
|
|
|
+
|
|
|
+var BigInt = function (flag) {
|
|
|
+ if (typeof flag === 'boolean' && flag === true) {
|
|
|
+ this.digits = null
|
|
|
+ } else {
|
|
|
+ this.digits = ZERO_ARRAY.slice(0)
|
|
|
+ }
|
|
|
+ this.isNeg = false
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.setMaxDigits = function (value) {
|
|
|
+ maxDigits = value
|
|
|
+ ZERO_ARRAY = new Array(maxDigits)
|
|
|
+ for (var iza = 0; iza < ZERO_ARRAY.length; iza++) {
|
|
|
+ ZERO_ARRAY[iza] = 0
|
|
|
+ }
|
|
|
+ bigZero = new BigInt()
|
|
|
+ bigOne = new BigInt()
|
|
|
+ bigOne.digits[0] = 1
|
|
|
+}
|
|
|
+RSAUtils.setMaxDigits(20)
|
|
|
+
|
|
|
+// The maximum number of digits in base 10 you can convert to an
|
|
|
+// integer without JavaScript throwing up on you.
|
|
|
+var dpl10 = 15
|
|
|
+
|
|
|
+RSAUtils.biFromNumber = function (i) {
|
|
|
+ var result = new BigInt()
|
|
|
+ result.isNeg = i < 0
|
|
|
+ i = Math.abs(i)
|
|
|
+ var j = 0
|
|
|
+ while (i > 0) {
|
|
|
+ result.digits[j++] = i & maxDigitVal
|
|
|
+ i = Math.floor(i / biRadix)
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+// lr10 = 10 ^ dpl10
|
|
|
+var lr10 = RSAUtils.biFromNumber(1000000000000000)
|
|
|
+
|
|
|
+RSAUtils.biFromDecimal = function (s) {
|
|
|
+ var isNeg = s.charAt(0) === '-'
|
|
|
+ var i = isNeg ? 1 : 0
|
|
|
+ var result
|
|
|
+ // Skip leading zeros.
|
|
|
+ while (i < s.length && s.charAt(i) === '0') ++i
|
|
|
+ if (i === s.length) {
|
|
|
+ result = new BigInt()
|
|
|
+ } else {
|
|
|
+ var digitCount = s.length - i
|
|
|
+ var fgl = digitCount % dpl10
|
|
|
+ if (fgl === 0) fgl = dpl10
|
|
|
+ result = RSAUtils.biFromNumber(Number(s.substr(i, fgl)))
|
|
|
+ i += fgl
|
|
|
+ while (i < s.length) {
|
|
|
+ result = RSAUtils.biAdd(RSAUtils.biMultiply(result, lr10),
|
|
|
+ RSAUtils.biFromNumber(Number(s.substr(i, dpl10))))
|
|
|
+ i += dpl10
|
|
|
+ }
|
|
|
+ result.isNeg = isNeg
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biCopy = function (bi) {
|
|
|
+ var result = new BigInt(true)
|
|
|
+ result.digits = bi.digits.slice(0)
|
|
|
+ result.isNeg = bi.isNeg
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.reverseStr = function (s) {
|
|
|
+ var result = ''
|
|
|
+ for (var i = s.length - 1; i > -1; --i) {
|
|
|
+ result += s.charAt(i)
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+var hexatrigesimalToChar = [
|
|
|
+ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
|
|
+ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
|
|
|
+ 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
|
|
|
+ 'u', 'v', 'w', 'x', 'y', 'z'
|
|
|
+]
|
|
|
+
|
|
|
+RSAUtils.biToString = function (x, radix) { // 2 <= radix <= 36
|
|
|
+ var b = new BigInt()
|
|
|
+ b.digits[0] = radix
|
|
|
+ var qr = RSAUtils.biDivideModulo(x, b)
|
|
|
+ var result = hexatrigesimalToChar[qr[1].digits[0]]
|
|
|
+ while (RSAUtils.biCompare(qr[0], bigZero) === 1) {
|
|
|
+ qr = RSAUtils.biDivideModulo(qr[0], b)
|
|
|
+ // digit = qr[1].digits[0]
|
|
|
+ result += hexatrigesimalToChar[qr[1].digits[0]]
|
|
|
+ }
|
|
|
+ return (x.isNeg ? '-' : '') + RSAUtils.reverseStr(result)
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biToDecimal = function (x) {
|
|
|
+ var b = new BigInt()
|
|
|
+ b.digits[0] = 10
|
|
|
+ var qr = RSAUtils.biDivideModulo(x, b)
|
|
|
+ var result = String(qr[1].digits[0])
|
|
|
+ while (RSAUtils.biCompare(qr[0], bigZero) === 1) {
|
|
|
+ qr = RSAUtils.biDivideModulo(qr[0], b)
|
|
|
+ result += String(qr[1].digits[0])
|
|
|
+ }
|
|
|
+ return (x.isNeg ? '-' : '') + RSAUtils.reverseStr(result)
|
|
|
+}
|
|
|
+
|
|
|
+var hexToChar = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
|
|
|
+ 'a', 'b', 'c', 'd', 'e', 'f']
|
|
|
+
|
|
|
+RSAUtils.digitToHex = function (n) {
|
|
|
+ var mask = 0xf
|
|
|
+ var result = ''
|
|
|
+ for (var i = 0; i < 4; ++i) {
|
|
|
+ result += hexToChar[n & mask]
|
|
|
+ n >>>= 4
|
|
|
+ }
|
|
|
+ return RSAUtils.reverseStr(result)
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biToHex = function (x) {
|
|
|
+ var result = ''
|
|
|
+ // var n = RSAUtils.biHighIndex(x)
|
|
|
+ for (var i = RSAUtils.biHighIndex(x); i > -1; --i) {
|
|
|
+ result += RSAUtils.digitToHex(x.digits[i])
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.charToHex = function (c) {
|
|
|
+ var ZERO = 48
|
|
|
+ var NINE = ZERO + 9
|
|
|
+ var littleA = 97
|
|
|
+ var littleZ = littleA + 25
|
|
|
+ var bigA = 65
|
|
|
+ var bigZ = 65 + 25
|
|
|
+ var result
|
|
|
+
|
|
|
+ if (c >= ZERO && c <= NINE) {
|
|
|
+ result = c - ZERO
|
|
|
+ } else if (c >= bigA && c <= bigZ) {
|
|
|
+ result = 10 + c - bigA
|
|
|
+ } else if (c >= littleA && c <= littleZ) {
|
|
|
+ result = 10 + c - littleA
|
|
|
+ } else {
|
|
|
+ result = 0
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.hexToDigit = function (s) {
|
|
|
+ var result = 0
|
|
|
+ var sl = Math.min(s.length, 4)
|
|
|
+ for (var i = 0; i < sl; ++i) {
|
|
|
+ result <<= 4
|
|
|
+ result |= RSAUtils.charToHex(s.charCodeAt(i))
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biFromHex = function (s) {
|
|
|
+ var result = new BigInt()
|
|
|
+ var sl = s.length
|
|
|
+ for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
|
|
|
+ result.digits[j] = RSAUtils.hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)))
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biFromString = function (s, radix) {
|
|
|
+ var isNeg = s.charAt(0) === '-'
|
|
|
+ var istop = isNeg ? 1 : 0
|
|
|
+ var result = new BigInt()
|
|
|
+ var place = new BigInt()
|
|
|
+ place.digits[0] = 1 // radix^0
|
|
|
+ for (var i = s.length - 1; i >= istop; i--) {
|
|
|
+ var c = s.charCodeAt(i)
|
|
|
+ var digit = RSAUtils.charToHex(c)
|
|
|
+ var biDigit = RSAUtils.biMultiplyDigit(place, digit)
|
|
|
+ result = RSAUtils.biAdd(result, biDigit)
|
|
|
+ place = RSAUtils.biMultiplyDigit(place, radix)
|
|
|
+ }
|
|
|
+ result.isNeg = isNeg
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biDump = function (b) {
|
|
|
+ return (b.isNeg ? '-' : '') + b.digits.join(' ')
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biAdd = function (x, y) {
|
|
|
+ var result
|
|
|
+
|
|
|
+ if (x.isNeg !== y.isNeg) {
|
|
|
+ y.isNeg = !y.isNeg
|
|
|
+ result = RSAUtils.biSubtract(x, y)
|
|
|
+ y.isNeg = !y.isNeg
|
|
|
+ } else {
|
|
|
+ result = new BigInt()
|
|
|
+ var c = 0
|
|
|
+ var n
|
|
|
+ for (var i = 0; i < x.digits.length; ++i) {
|
|
|
+ n = x.digits[i] + y.digits[i] + c
|
|
|
+ result.digits[i] = n % biRadix
|
|
|
+ c = Number(n >= biRadix)
|
|
|
+ }
|
|
|
+ result.isNeg = x.isNeg
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biSubtract = function (x, y) {
|
|
|
+ var result
|
|
|
+ if (x.isNeg !== y.isNeg) {
|
|
|
+ y.isNeg = !y.isNeg
|
|
|
+ result = RSAUtils.biAdd(x, y)
|
|
|
+ y.isNeg = !y.isNeg
|
|
|
+ } else {
|
|
|
+ result = new BigInt()
|
|
|
+ var n, c
|
|
|
+ c = 0
|
|
|
+ for (var i = 0; i < x.digits.length; ++i) {
|
|
|
+ n = x.digits[i] - y.digits[i] + c
|
|
|
+ result.digits[i] = n % biRadix
|
|
|
+ // Stupid non-conforming modulus operation.
|
|
|
+ if (result.digits[i] < 0) result.digits[i] += biRadix
|
|
|
+ c = 0 - Number(n < 0)
|
|
|
+ }
|
|
|
+ // Fix up the negative sign, if any.
|
|
|
+ if (c === -1) {
|
|
|
+ c = 0
|
|
|
+ for (i = 0; i < x.digits.length; ++i) {
|
|
|
+ n = 0 - result.digits[i] + c
|
|
|
+ result.digits[i] = n % biRadix
|
|
|
+ // Stupid non-conforming modulus operation.
|
|
|
+ if (result.digits[i] < 0) result.digits[i] += biRadix
|
|
|
+ c = 0 - Number(n < 0)
|
|
|
+ }
|
|
|
+ // Result is opposite sign of arguments.
|
|
|
+ result.isNeg = !x.isNeg
|
|
|
+ } else {
|
|
|
+ // Result is same sign.
|
|
|
+ result.isNeg = x.isNeg
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biHighIndex = function (x) {
|
|
|
+ var result = x.digits.length - 1
|
|
|
+ while (result > 0 && x.digits[result] === 0) --result
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biNumBits = function (x) {
|
|
|
+ var n = RSAUtils.biHighIndex(x)
|
|
|
+ var d = x.digits[n]
|
|
|
+ var m = (n + 1) * bitsPerDigit
|
|
|
+ var result
|
|
|
+ for (result = m; result > m - bitsPerDigit; --result) {
|
|
|
+ if ((d & 0x8000) !== 0) break
|
|
|
+ d <<= 1
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biMultiply = function (x, y) {
|
|
|
+ var result = new BigInt()
|
|
|
+ var c
|
|
|
+ var n = RSAUtils.biHighIndex(x)
|
|
|
+ var t = RSAUtils.biHighIndex(y)
|
|
|
+ // var u, uv, k
|
|
|
+ var uv, k
|
|
|
+
|
|
|
+ for (var i = 0; i <= t; ++i) {
|
|
|
+ c = 0
|
|
|
+ k = i
|
|
|
+ for (var j = 0; j <= n; ++j, ++k) {
|
|
|
+ uv = result.digits[k] + x.digits[j] * y.digits[i] + c
|
|
|
+ result.digits[k] = uv & maxDigitVal
|
|
|
+ c = uv >>> biRadixBits
|
|
|
+ // c = Math.floor(uv / biRadix);
|
|
|
+ }
|
|
|
+ result.digits[i + n + 1] = c
|
|
|
+ }
|
|
|
+ // Someone give me a logical xor, please.
|
|
|
+ result.isNeg = x.isNeg !== y.isNeg
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biMultiplyDigit = function (x, y) {
|
|
|
+ var n, c, uv, result
|
|
|
+
|
|
|
+ result = new BigInt()
|
|
|
+ n = RSAUtils.biHighIndex(x)
|
|
|
+ c = 0
|
|
|
+ for (var j = 0; j <= n; ++j) {
|
|
|
+ uv = result.digits[j] + x.digits[j] * y + c
|
|
|
+ result.digits[j] = uv & maxDigitVal
|
|
|
+ c = uv >>> biRadixBits
|
|
|
+ // c = Math.floor(uv / biRadix);
|
|
|
+ }
|
|
|
+ result.digits[1 + n] = c
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.arrayCopy = function (src, srcStart, dest, destStart, n) {
|
|
|
+ var m = Math.min(srcStart + n, src.length)
|
|
|
+ for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
|
|
|
+ dest[j] = src[i]
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+var highBitMasks = [0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
|
|
|
+ 0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
|
|
|
+ 0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF]
|
|
|
+
|
|
|
+RSAUtils.biShiftLeft = function (x, n) {
|
|
|
+ var digitCount = Math.floor(n / bitsPerDigit)
|
|
|
+ var result = new BigInt()
|
|
|
+ RSAUtils.arrayCopy(x.digits, 0, result.digits, digitCount,
|
|
|
+ result.digits.length - digitCount)
|
|
|
+ var bits = n % bitsPerDigit
|
|
|
+ var rightBits = bitsPerDigit - bits
|
|
|
+ for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
|
|
|
+ result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
|
|
|
+ ((result.digits[i1] & highBitMasks[bits]) >>>
|
|
|
+ (rightBits))
|
|
|
+ }
|
|
|
+ result.digits[0] = ((result.digits[i] << bits) & maxDigitVal)
|
|
|
+ result.isNeg = x.isNeg
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+var lowBitMasks = [0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
|
|
|
+ 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
|
|
|
+ 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF]
|
|
|
+
|
|
|
+RSAUtils.biShiftRight = function (x, n) {
|
|
|
+ var digitCount = Math.floor(n / bitsPerDigit)
|
|
|
+ var result = new BigInt()
|
|
|
+ RSAUtils.arrayCopy(x.digits, digitCount, result.digits, 0,
|
|
|
+ x.digits.length - digitCount)
|
|
|
+ var bits = n % bitsPerDigit
|
|
|
+ var leftBits = bitsPerDigit - bits
|
|
|
+ for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
|
|
|
+ result.digits[i] = (result.digits[i] >>> bits) |
|
|
|
+ ((result.digits[i1] & lowBitMasks[bits]) << leftBits)
|
|
|
+ }
|
|
|
+ result.digits[result.digits.length - 1] >>>= bits
|
|
|
+ result.isNeg = x.isNeg
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biMultiplyByRadixPower = function (x, n) {
|
|
|
+ var result = new BigInt()
|
|
|
+ RSAUtils.arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n)
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biDivideByRadixPower = function (x, n) {
|
|
|
+ var result = new BigInt()
|
|
|
+ RSAUtils.arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n)
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biModuloByRadixPower = function (x, n) {
|
|
|
+ var result = new BigInt()
|
|
|
+ RSAUtils.arrayCopy(x.digits, 0, result.digits, 0, n)
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biCompare = function (x, y) {
|
|
|
+ if (x.isNeg !== y.isNeg) {
|
|
|
+ return 1 - 2 * Number(x.isNeg)
|
|
|
+ }
|
|
|
+ for (var i = x.digits.length - 1; i >= 0; --i) {
|
|
|
+ if (x.digits[i] !== y.digits[i]) {
|
|
|
+ if (x.isNeg) {
|
|
|
+ return 1 - 2 * Number(x.digits[i] > y.digits[i])
|
|
|
+ } else {
|
|
|
+ return 1 - 2 * Number(x.digits[i] < y.digits[i])
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return 0
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biDivideModulo = function (x, y) {
|
|
|
+ var nb = RSAUtils.biNumBits(x)
|
|
|
+ var tb = RSAUtils.biNumBits(y)
|
|
|
+ var origYIsNeg = y.isNeg
|
|
|
+ var q, r
|
|
|
+ if (nb < tb) {
|
|
|
+ // |x| < |y|
|
|
|
+ if (x.isNeg) {
|
|
|
+ q = RSAUtils.biCopy(bigOne)
|
|
|
+ q.isNeg = !y.isNeg
|
|
|
+ x.isNeg = false
|
|
|
+ y.isNeg = false
|
|
|
+ r = RSAUtils.biSubtract(y, x)
|
|
|
+ // Restore signs, 'cause they're references.
|
|
|
+ x.isNeg = true
|
|
|
+ y.isNeg = origYIsNeg
|
|
|
+ } else {
|
|
|
+ q = new BigInt()
|
|
|
+ r = RSAUtils.biCopy(x)
|
|
|
+ }
|
|
|
+ return [q, r]
|
|
|
+ }
|
|
|
+
|
|
|
+ q = new BigInt()
|
|
|
+ r = x
|
|
|
+
|
|
|
+ // Normalize Y.
|
|
|
+ var t = Math.ceil(tb / bitsPerDigit) - 1
|
|
|
+ var lambda = 0
|
|
|
+ while (y.digits[t] < biHalfRadix) {
|
|
|
+ y = RSAUtils.biShiftLeft(y, 1)
|
|
|
+ ++lambda
|
|
|
+ ++tb
|
|
|
+ t = Math.ceil(tb / bitsPerDigit) - 1
|
|
|
+ }
|
|
|
+ // Shift r over to keep the quotient constant. We'll shift the
|
|
|
+ // remainder back at the end.
|
|
|
+ r = RSAUtils.biShiftLeft(r, lambda)
|
|
|
+ nb += lambda // Update the bit count for x.
|
|
|
+ var n = Math.ceil(nb / bitsPerDigit) - 1
|
|
|
+
|
|
|
+ var b = RSAUtils.biMultiplyByRadixPower(y, n - t)
|
|
|
+ while (RSAUtils.biCompare(r, b) !== -1) {
|
|
|
+ ++q.digits[n - t]
|
|
|
+ r = RSAUtils.biSubtract(r, b)
|
|
|
+ }
|
|
|
+ for (var i = n; i > t; --i) {
|
|
|
+ var ri = (i >= r.digits.length) ? 0 : r.digits[i]
|
|
|
+ var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1]
|
|
|
+ var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2]
|
|
|
+ var yt = (t >= y.digits.length) ? 0 : y.digits[t]
|
|
|
+ var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1]
|
|
|
+ if (ri === yt) {
|
|
|
+ q.digits[i - t - 1] = maxDigitVal
|
|
|
+ } else {
|
|
|
+ q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt)
|
|
|
+ }
|
|
|
+
|
|
|
+ var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1)
|
|
|
+ var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2)
|
|
|
+ while (c1 > c2) {
|
|
|
+ --q.digits[i - t - 1]
|
|
|
+ c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1)
|
|
|
+ c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2)
|
|
|
+ }
|
|
|
+
|
|
|
+ b = RSAUtils.biMultiplyByRadixPower(y, i - t - 1)
|
|
|
+ r = RSAUtils.biSubtract(r, RSAUtils.biMultiplyDigit(b, q.digits[i - t - 1]))
|
|
|
+ if (r.isNeg) {
|
|
|
+ r = RSAUtils.biAdd(r, b)
|
|
|
+ --q.digits[i - t - 1]
|
|
|
+ }
|
|
|
+ }
|
|
|
+ r = RSAUtils.biShiftRight(r, lambda)
|
|
|
+ // Fiddle with the signs and stuff to make sure that 0 <= r < y.
|
|
|
+ q.isNeg = x.isNeg !== origYIsNeg
|
|
|
+ if (x.isNeg) {
|
|
|
+ if (origYIsNeg) {
|
|
|
+ q = RSAUtils.biAdd(q, bigOne)
|
|
|
+ } else {
|
|
|
+ q = RSAUtils.biSubtract(q, bigOne)
|
|
|
+ }
|
|
|
+ y = RSAUtils.biShiftRight(y, lambda)
|
|
|
+ r = RSAUtils.biSubtract(y, r)
|
|
|
+ }
|
|
|
+ // Check for the unbelievably stupid degenerate case of r === -0.
|
|
|
+ if (r.digits[0] === 0 && RSAUtils.biHighIndex(r) === 0) r.isNeg = false
|
|
|
+
|
|
|
+ return [q, r]
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biDivide = function (x, y) {
|
|
|
+ return RSAUtils.biDivideModulo(x, y)[0]
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biModulo = function (x, y) {
|
|
|
+ return RSAUtils.biDivideModulo(x, y)[1]
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biMultiplyMod = function (x, y, m) {
|
|
|
+ return RSAUtils.biModulo(RSAUtils.biMultiply(x, y), m)
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biPow = function (x, y) {
|
|
|
+ var result = bigOne
|
|
|
+ var a = x
|
|
|
+ while (true) {
|
|
|
+ if ((y & 1) !== 0) result = RSAUtils.biMultiply(result, a)
|
|
|
+ y >>= 1
|
|
|
+ if (y === 0) break
|
|
|
+ a = RSAUtils.biMultiply(a, a)
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.biPowMod = function (x, y, m) {
|
|
|
+ var result = bigOne
|
|
|
+ var a = x
|
|
|
+ var k = y
|
|
|
+ while (true) {
|
|
|
+ if ((k.digits[0] & 1) !== 0) result = RSAUtils.biMultiplyMod(result, a, m)
|
|
|
+ k = RSAUtils.biShiftRight(k, 1)
|
|
|
+ if (k.digits[0] === 0 && RSAUtils.biHighIndex(k) === 0) break
|
|
|
+ a = RSAUtils.biMultiplyMod(a, a, m)
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+var BarrettMu = function (m) {
|
|
|
+ this.modulus = RSAUtils.biCopy(m)
|
|
|
+ this.k = RSAUtils.biHighIndex(this.modulus) + 1
|
|
|
+ var b2k = new BigInt()
|
|
|
+ b2k.digits[2 * this.k] = 1 // b2k = b^(2k)
|
|
|
+ this.mu = RSAUtils.biDivide(b2k, this.modulus)
|
|
|
+ this.bkplus1 = new BigInt()
|
|
|
+ this.bkplus1.digits[this.k + 1] = 1 // bkplus1 = b^(k+1)
|
|
|
+ this.modulo = BarrettMuModulo
|
|
|
+ this.multiplyMod = BarrettMuMultiplyMod
|
|
|
+ this.powMod = BarrettMuPowMod
|
|
|
+}
|
|
|
+
|
|
|
+function BarrettMuModulo(x) {
|
|
|
+ var $dmath = RSAUtils
|
|
|
+ var q1 = $dmath.biDivideByRadixPower(x, this.k - 1)
|
|
|
+ var q2 = $dmath.biMultiply(q1, this.mu)
|
|
|
+ var q3 = $dmath.biDivideByRadixPower(q2, this.k + 1)
|
|
|
+ var r1 = $dmath.biModuloByRadixPower(x, this.k + 1)
|
|
|
+ var r2term = $dmath.biMultiply(q3, this.modulus)
|
|
|
+ var r2 = $dmath.biModuloByRadixPower(r2term, this.k + 1)
|
|
|
+ var r = $dmath.biSubtract(r1, r2)
|
|
|
+ if (r.isNeg) {
|
|
|
+ r = $dmath.biAdd(r, this.bkplus1)
|
|
|
+ }
|
|
|
+ var rgtem = $dmath.biCompare(r, this.modulus) >= 0
|
|
|
+ while (rgtem) {
|
|
|
+ r = $dmath.biSubtract(r, this.modulus)
|
|
|
+ rgtem = $dmath.biCompare(r, this.modulus) >= 0
|
|
|
+ }
|
|
|
+ return r
|
|
|
+}
|
|
|
+
|
|
|
+function BarrettMuMultiplyMod(x, y) {
|
|
|
+ /*
|
|
|
+ x = this.modulo(x);
|
|
|
+ y = this.modulo(y);
|
|
|
+ */
|
|
|
+ var xy = RSAUtils.biMultiply(x, y)
|
|
|
+ return this.modulo(xy)
|
|
|
+}
|
|
|
+
|
|
|
+function BarrettMuPowMod(x, y) {
|
|
|
+ var result = new BigInt()
|
|
|
+ result.digits[0] = 1
|
|
|
+ var a = x
|
|
|
+ var k = y
|
|
|
+ while (true) {
|
|
|
+ if ((k.digits[0] & 1) !== 0) result = this.multiplyMod(result, a)
|
|
|
+ k = RSAUtils.biShiftRight(k, 1)
|
|
|
+ if (k.digits[0] === 0 && RSAUtils.biHighIndex(k) === 0) break
|
|
|
+ a = this.multiplyMod(a, a)
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+var RSAKeyPair = function (encryptionExponent, decryptionExponent, modulus) {
|
|
|
+ var $dmath = RSAUtils
|
|
|
+ this.e = $dmath.biFromHex(encryptionExponent)
|
|
|
+ this.d = $dmath.biFromHex(decryptionExponent)
|
|
|
+ this.m = $dmath.biFromHex(modulus)
|
|
|
+ // We can do two bytes per digit, so
|
|
|
+ // chunkSize = 2 * (number of digits in modulus - 1).
|
|
|
+ // Since biHighIndex returns the high index, not the number of digits, 1 has
|
|
|
+ // already been subtracted.
|
|
|
+ this.chunkSize = 2 * $dmath.biHighIndex(this.m)
|
|
|
+ this.radix = 16
|
|
|
+ this.barrett = new BarrettMu(this.m)
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.getKeyPair = function (encryptionExponent, decryptionExponent, modulus) {
|
|
|
+ return new RSAKeyPair(encryptionExponent, decryptionExponent, modulus)
|
|
|
+}
|
|
|
+
|
|
|
+// var twoDigit = function (n) {
|
|
|
+// return (n < 10 ? '0' : '') + String(n)
|
|
|
+// }
|
|
|
+
|
|
|
+// Altered by Rob Saunders (rob@robsaunders.net). New routine pads the
|
|
|
+// string after it has been converted to an array. This fixes an
|
|
|
+// incompatibility with Flash MX's ActionScript.
|
|
|
+RSAUtils.encryptedString = function (key, s) {
|
|
|
+ var a = []
|
|
|
+ var sl = s.length
|
|
|
+ var i = 0
|
|
|
+ while (i < sl) {
|
|
|
+ a[i] = s.charCodeAt(i)
|
|
|
+ i++
|
|
|
+ }
|
|
|
+
|
|
|
+ while (a.length % key.chunkSize !== 0) {
|
|
|
+ a[i++] = 0
|
|
|
+ }
|
|
|
+
|
|
|
+ var al = a.length
|
|
|
+ var result = ''
|
|
|
+ var j, k, block
|
|
|
+ for (i = 0; i < al; i += key.chunkSize) {
|
|
|
+ block = new BigInt()
|
|
|
+ j = 0
|
|
|
+ for (k = i; k < i + key.chunkSize; ++j) {
|
|
|
+ block.digits[j] = a[k++]
|
|
|
+ block.digits[j] += a[k++] << 8
|
|
|
+ }
|
|
|
+ var crypt = key.barrett.powMod(block, key.e)
|
|
|
+ var text = key.radix === 16 ? RSAUtils.biToHex(crypt) : RSAUtils.biToString(crypt, key.radix)
|
|
|
+ result += text + ' '
|
|
|
+ }
|
|
|
+ return result.substring(0, result.length - 1) // Remove last space.
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.decryptedString = function (key, s) {
|
|
|
+ var blocks = s.split(' ')
|
|
|
+ var result = ''
|
|
|
+ var i, j, block
|
|
|
+ for (i = 0; i < blocks.length; ++i) {
|
|
|
+ var bi
|
|
|
+ if (key.radix === 16) {
|
|
|
+ bi = RSAUtils.biFromHex(blocks[i])
|
|
|
+ } else {
|
|
|
+ bi = RSAUtils.biFromString(blocks[i], key.radix)
|
|
|
+ }
|
|
|
+ block = key.barrett.powMod(bi, key.d)
|
|
|
+ for (j = 0; j <= RSAUtils.biHighIndex(block); ++j) {
|
|
|
+ result += String.fromCharCode(block.digits[j] & 255,
|
|
|
+ block.digits[j] >> 8)
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // Remove trailing null, if any.
|
|
|
+ if (result.charCodeAt(result.length - 1) === 0) {
|
|
|
+ result = result.substring(0, result.length - 1)
|
|
|
+ }
|
|
|
+ return result
|
|
|
+}
|
|
|
+
|
|
|
+RSAUtils.setMaxDigits(130)
|
|
|
+
|
|
|
+module.exports = {
|
|
|
+ RSAUtils
|
|
|
+};
|