|
|
@@ -0,0 +1,430 @@
|
|
|
+/* Polynomial ADT
|
|
|
+** A polynomial module with
|
|
|
+** ability to add,sub,mul derivate/integrate, compose ... polynomials
|
|
|
+** ..expansion in progress ...
|
|
|
+ * Copyright (c) 2009 I. Soule
|
|
|
+ * All rights reserved.
|
|
|
+ *
|
|
|
+ * Redistribution and use in source and binary forms, with or without
|
|
|
+ * modification, are permitted provided that the following conditions
|
|
|
+ * are met:
|
|
|
+ * 1. Redistributions of source code must retain the above copyright
|
|
|
+ * notice, this list of conditions and the following disclaimer.
|
|
|
+ * 2. Redistributions in binary form must reproduce the above copyright
|
|
|
+ * notice, this list of conditions and the following disclaimer in the
|
|
|
+ * documentation and/or other materials provided with the distribution.
|
|
|
+ *
|
|
|
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
|
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
+ * SUCH DAMAGE.
|
|
|
+ *
|
|
|
+** iasoule32@gmail.com
|
|
|
+*/
|
|
|
+
|
|
|
+#ifndef __POLYNOMIAL_ADT
|
|
|
+#define __POLYNOMIAL_ADT
|
|
|
+
|
|
|
+#include <assert.h>
|
|
|
+#include <stdlib.h>
|
|
|
+#include <stdbool.h> //C99 compliance
|
|
|
+#include <math.h>
|
|
|
+
|
|
|
+#define max(a, b) (a) > (b) ? (a) : (b)
|
|
|
+#define sgn(a) (a) < 0 ? '+' : '-' //for quadratic factored form
|
|
|
+
|
|
|
+typedef struct node {
|
|
|
+ int exp;
|
|
|
+ float coeff;
|
|
|
+ struct node *next;
|
|
|
+}Node;
|
|
|
+
|
|
|
+typedef struct polynomial_adt {
|
|
|
+ Node *head;
|
|
|
+ int terms, hp; //hp highest power
|
|
|
+}PolyAdt;
|
|
|
+
|
|
|
+void display_poly(const PolyAdt *a);
|
|
|
+/**
|
|
|
+* create_adt - create a polynomial on the heap
|
|
|
+* @hp: the highest power in the polynomial
|
|
|
+*/
|
|
|
+PolyAdt *create_adt(int hp)
|
|
|
+{
|
|
|
+ PolyAdt *pAdt = malloc(sizeof(PolyAdt));
|
|
|
+ assert(pAdt != NULL);
|
|
|
+
|
|
|
+ pAdt->head = NULL;
|
|
|
+ pAdt->terms = 0;
|
|
|
+ pAdt->hp = hp;
|
|
|
+
|
|
|
+ return pAdt;
|
|
|
+}
|
|
|
+/**
|
|
|
+* create_node - creates a Node (exponent, constant and next pointer) on the heap
|
|
|
+* @constant: the contant in the term
|
|
|
+* @exp: the exponent on the term
|
|
|
+* @next: the next pointer to another term in the polynomial
|
|
|
+*
|
|
|
+* This should not be called by client code (hence marked static)
|
|
|
+* used to assist insert_term()
|
|
|
+*/
|
|
|
+static Node *create_node(float constant, int exp, Node *next)
|
|
|
+{
|
|
|
+ Node *nNode = malloc(sizeof(Node));
|
|
|
+ assert(nNode != NULL);
|
|
|
+
|
|
|
+ nNode->exp = exp;
|
|
|
+ nNode->coeff = constant;
|
|
|
+ nNode->next = next;
|
|
|
+ return nNode;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+* insert_term - inserts a term into the polynomial
|
|
|
+* @pAdt: the polynomial
|
|
|
+* @c: constant value on the term
|
|
|
+* @e: the exponent on the term
|
|
|
+*/
|
|
|
+void insert_term(PolyAdt *pAdt, float c, int e)
|
|
|
+{
|
|
|
+ assert(pAdt != NULL); //assume client code didnt call create_adt()
|
|
|
+ Node *n = malloc(sizeof(Node));
|
|
|
+
|
|
|
+ if(pAdt->head == NULL)
|
|
|
+ pAdt->head = create_node(c, e, pAdt->head);
|
|
|
+ else
|
|
|
+ for(n = pAdt->head; n->next != NULL; n = n->next); //go to the end of list
|
|
|
+ n->next = create_node(c, e, NULL);
|
|
|
+
|
|
|
+ pAdt->terms++;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+* polyImage - returns an image (direct) copy of the polynomial
|
|
|
+* @orig: the polynomial to be duplicated
|
|
|
+*/
|
|
|
+PolyAdt *polyImage(const PolyAdt *orig)
|
|
|
+{
|
|
|
+ PolyAdt *img = create_adt(orig->hp);
|
|
|
+ Node *origHead = orig->head;
|
|
|
+
|
|
|
+ for(; origHead; origHead = origHead->next)
|
|
|
+ insert_term(img, origHead->coeff, origHead->exp);
|
|
|
+ return img;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/**
|
|
|
+* add - adds two polynomials together, and returns their sum (as a polynomial)
|
|
|
+* @a: the 1st polynomial
|
|
|
+* @b: the 2nd polynomial
|
|
|
+*/
|
|
|
+PolyAdt *add(const PolyAdt *a, const PolyAdt *b)
|
|
|
+{
|
|
|
+ PolyAdt *sum;
|
|
|
+ Node *n, *np;
|
|
|
+ _Bool state = true;
|
|
|
+
|
|
|
+ assert(a != NULL && b != NULL);
|
|
|
+
|
|
|
+ int hpow = max(a->hp, b->hp);
|
|
|
+ sum = create_adt(hpow); //create space for it
|
|
|
+
|
|
|
+ /* using state machine to compare the poly with the most terms to
|
|
|
+ ** the poly with fewer, round robin type of effect comparison of
|
|
|
+ ** exponents => 3 Cases: Equal, Less, Greater
|
|
|
+ */
|
|
|
+ n = a->head; np = b->head;
|
|
|
+ while(state) {
|
|
|
+ /* compare the exponents */
|
|
|
+ if(n->exp == np->exp){
|
|
|
+ insert_term(sum, n->coeff + np->coeff, n->exp);
|
|
|
+ n = n->next;
|
|
|
+ np = np->next;
|
|
|
+ }
|
|
|
+
|
|
|
+ else if(n->exp < np->exp){
|
|
|
+ insert_term(sum, np->coeff, np->exp);
|
|
|
+ np = np->next; //move to next term of b
|
|
|
+ }
|
|
|
+
|
|
|
+ else { //greater than
|
|
|
+ insert_term(sum, n->coeff, n->exp);
|
|
|
+ n = n->next;
|
|
|
+ }
|
|
|
+ /* check whether at the end of one list or the other */
|
|
|
+ if(np == NULL && state == true){ //copy rest of a to sum
|
|
|
+ for(; n != NULL; n = n->next)
|
|
|
+ insert_term(sum, n->coeff, n->exp);
|
|
|
+ state = false;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(n == NULL && state == true){
|
|
|
+ for(; np != NULL; np = np->next)
|
|
|
+ insert_term(sum, np->coeff, np->exp);
|
|
|
+ state = false;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return sum;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+* sub - subtracts two polynomials, and returns their difference (as a polynomial)
|
|
|
+* @a: the 1st polynomial
|
|
|
+* @b: the 2nd polynomial
|
|
|
+* Aids in code reuse by negating the terms (b) and then calls the add() function
|
|
|
+*/
|
|
|
+PolyAdt *subtract(const PolyAdt *a, const PolyAdt *b)
|
|
|
+{
|
|
|
+ assert(a != NULL && b != NULL);
|
|
|
+
|
|
|
+ PolyAdt *tmp = create_adt(b->hp);
|
|
|
+ Node *bptr;
|
|
|
+
|
|
|
+ for(bptr = b->head; bptr != NULL; bptr = bptr->next)
|
|
|
+ insert_term(tmp,-bptr->coeff,bptr->exp); //negating b's coeffs
|
|
|
+ return add(a,tmp);
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+* multiply - multiply two polynomials, and returns their product (as a polynomial)
|
|
|
+* @a: the 1st polynomial
|
|
|
+* @b: the 2nd polynomial
|
|
|
+*/
|
|
|
+PolyAdt *multiply(const PolyAdt *a, const PolyAdt *b)
|
|
|
+{
|
|
|
+ assert(a != NULL && b != NULL);
|
|
|
+
|
|
|
+ //the polys are inserted in order for now
|
|
|
+ PolyAdt *prod = create_adt(a->head->exp + b->head->exp);
|
|
|
+ Node *n = a->head, *np = b->head;
|
|
|
+ Node *t = b->head;
|
|
|
+
|
|
|
+ if(a->terms < b->terms){
|
|
|
+ n = b->head;
|
|
|
+ np = t = a->head;
|
|
|
+ }
|
|
|
+
|
|
|
+ for(; n != NULL; n = n->next){
|
|
|
+ np = t; //reset to the beginning
|
|
|
+ for(; np != NULL; np = np->next){ //always the least term in this loop
|
|
|
+ insert_term(prod, n->coeff * np->coeff, n->exp + np->exp);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return prod;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+* derivative - computes the derivative of a polynomial and returns the result
|
|
|
+* @a: the polynomial to take the derivative upon
|
|
|
+*/
|
|
|
+PolyAdt *derivative(const PolyAdt *a)
|
|
|
+{
|
|
|
+ assert(a != NULL);
|
|
|
+
|
|
|
+ PolyAdt *deriv = create_adt(a->head->exp - 1);
|
|
|
+ Node *n = a->head;
|
|
|
+
|
|
|
+ for(; n != NULL; n = n->next){
|
|
|
+ if(n->exp == 0) break;
|
|
|
+ insert_term(deriv, n->coeff * n->exp, n->exp-1);
|
|
|
+ }
|
|
|
+ return deriv;
|
|
|
+}
|
|
|
+/**
|
|
|
+* integrate - computes the integral of a polynomial and returns the result
|
|
|
+* @a: the polynomial to take the integral of
|
|
|
+*
|
|
|
+* Will compute an indefinite integral over a
|
|
|
+*/
|
|
|
+PolyAdt *integrate(const PolyAdt *a)
|
|
|
+{
|
|
|
+ assert(a != NULL);
|
|
|
+
|
|
|
+ PolyAdt *integrand = create_adt(a->head->exp + 1);
|
|
|
+ Node *n;
|
|
|
+
|
|
|
+ for(n = a->head; n != NULL; n = n->next) //very simple term by term
|
|
|
+ insert_term(integrand, (float)n->coeff/(n->exp+1.0F), n->exp + 1);
|
|
|
+
|
|
|
+ return integrand;
|
|
|
+}
|
|
|
+/**
|
|
|
+* quadratic_roots - finds the roots of the polynomial ax^2+bx+c, a != 0 && b != 0
|
|
|
+* @a: the polynomial
|
|
|
+* @real: a pointer to float of the real(R) part of a
|
|
|
+* @cplx: a pointer to float of the imaginary(I) part of a
|
|
|
+*
|
|
|
+* Usage:
|
|
|
+* Two options can be done by the client
|
|
|
+* 1. Either pass NULL to real and cplx
|
|
|
+* this will display the roots by printf
|
|
|
+* quadratic_roots(myPolynomial, NULL, NULL);
|
|
|
+*
|
|
|
+* 2. Pass in pointers** to type float of the real and complex
|
|
|
+* if the discriminant is >0 cplx = -ve root of X
|
|
|
+* quadratic_roots(myPolynomial, &realPart, &complexPart);
|
|
|
+*/
|
|
|
+void quadratic_roots(const PolyAdt *a, float *real, float *cplx)
|
|
|
+{
|
|
|
+ assert(a != NULL);
|
|
|
+
|
|
|
+ float dscrmnt, _a, b, c;
|
|
|
+ float u, v;
|
|
|
+
|
|
|
+ Node *n = a->head;
|
|
|
+ _a = n->coeff; b = n->next->coeff; c = n->next->next->coeff;
|
|
|
+
|
|
|
+ dscrmnt = (b*b) - 4*_a*c;
|
|
|
+ u = -b/(2*_a); v = sqrt((double)fabs(dscrmnt))/(2*_a);
|
|
|
+
|
|
|
+ if(real && !cplx || !real && cplx)
|
|
|
+ assert(true);
|
|
|
+
|
|
|
+ if(real == NULL && cplx == NULL){
|
|
|
+ if(a->hp != 2 && a->terms < 3){
|
|
|
+ printf("Invalid Quadratic*, A and B must be non-zero");
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if(dscrmnt != 0)
|
|
|
+ printf("X = %.2f +/- %.2f%c\n",u,v,dscrmnt < 0 ? 'I':' ');
|
|
|
+ else{
|
|
|
+ printf("(X %c %.2f)(X %c %.2f)\n",sgn(u),fabs(u),sgn(u),fabs(u));
|
|
|
+ printf("X1,2 = %.2f\n",u);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ //save values in pointers
|
|
|
+ else {
|
|
|
+ if(dscrmnt < 0){ //x = u +/- vI Re(x) = u, Im(x) = +v
|
|
|
+ *real = u;
|
|
|
+ *cplx = v; //understand +/- is not representable
|
|
|
+ }
|
|
|
+ else if(dscrmnt == 0){
|
|
|
+ *real = u;
|
|
|
+ *cplx = 0.00F;
|
|
|
+ }
|
|
|
+ else{
|
|
|
+ *real = u + v;
|
|
|
+ *cplx = u - v;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+* exponentiate - computes polynomial exponentiation (P(x))^n, n E Z*
|
|
|
+* @a: the polynomial
|
|
|
+* @n: the exponent
|
|
|
+* Works fast for small n (n < 8) currently runs ~ O(n^2 lg n)
|
|
|
+*/
|
|
|
+PolyAdt *exponentiate(const PolyAdt *a, int n)
|
|
|
+{
|
|
|
+ assert(a != NULL);
|
|
|
+
|
|
|
+ PolyAdt *expn = create_adt(a->hp * n);
|
|
|
+ PolyAdt *aptr = polyImage(a);
|
|
|
+ int hl = n / 2;
|
|
|
+
|
|
|
+ //check default cases before calculation
|
|
|
+ if(n == 0){
|
|
|
+ insert_term(expn, 1, 0);
|
|
|
+ return expn;
|
|
|
+ }
|
|
|
+ else if(n == 1){
|
|
|
+ return aptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ for(; hl ; hl--)
|
|
|
+ aptr = multiply(aptr, aptr);
|
|
|
+
|
|
|
+ if(n % 2) //odd exponent do a^(n-1) * a = a^n
|
|
|
+ expn = multiply(aptr, a);
|
|
|
+ else
|
|
|
+ expn = aptr;
|
|
|
+ return expn;
|
|
|
+}
|
|
|
+/**
|
|
|
+* compose - computes the composition of two polynomials P(Q(x)) and returns the composition
|
|
|
+* @p: polynomial P(x) which will x will be equal to Q(x)
|
|
|
+* @q: polynomial Q(x) which is the argument to P(x)
|
|
|
+*/
|
|
|
+PolyAdt *compose(const PolyAdt *p, const PolyAdt *q)
|
|
|
+{
|
|
|
+ assert(p && q);
|
|
|
+
|
|
|
+ PolyAdt *comp = create_adt(p->head->exp * q->head->exp);
|
|
|
+ PolyAdt *exp;
|
|
|
+
|
|
|
+ Node *pp = p->head;
|
|
|
+ Node *qq = q->head;
|
|
|
+
|
|
|
+ int swap = 0;
|
|
|
+
|
|
|
+ if(p->terms < q->terms){
|
|
|
+ pp = q->head;
|
|
|
+ qq = p->head;
|
|
|
+ swap = 1;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* going through, exponentiate each term with the exponent of p */
|
|
|
+ for(; pp != NULL; pp = pp->next){
|
|
|
+ exp = exponentiate(swap ? p: q, pp->exp);
|
|
|
+ insert_term(comp, pp->coeff * exp->head->coeff, exp->head->exp);
|
|
|
+ }
|
|
|
+
|
|
|
+ return comp;
|
|
|
+}
|
|
|
+/**
|
|
|
+* destroy_poly - completely frees the polynomial from the heap and resets all values
|
|
|
+* @poly: the polynomial to release memory back to the heap
|
|
|
+* Usage:
|
|
|
+* destroy_poly(myPoly); //puts polynomial on free list
|
|
|
+*/
|
|
|
+void destroy_poly(PolyAdt *poly)
|
|
|
+{
|
|
|
+ Node *ps = poly->head;
|
|
|
+ Node *tmp = NULL;
|
|
|
+ while(ps != NULL){
|
|
|
+ tmp = ps;
|
|
|
+ free(tmp);
|
|
|
+ ps = ps->next;
|
|
|
+ }
|
|
|
+ poly->hp = poly->terms = 0;
|
|
|
+ poly->head = NULL;
|
|
|
+}
|
|
|
+/**
|
|
|
+* display_poly - displays the polynomial to the console in nice format
|
|
|
+* @a: the polynomial to display
|
|
|
+*/
|
|
|
+void display_poly(const PolyAdt *a)
|
|
|
+{
|
|
|
+ assert(a != NULL);
|
|
|
+ Node *n;
|
|
|
+
|
|
|
+ for(n = a->head; n != NULL; n = n->next){
|
|
|
+
|
|
|
+ n->coeff < 0 ? putchar('-') : putchar('+');
|
|
|
+ if(n->exp == 0)
|
|
|
+ printf(" %.2f ",fabs(n->coeff));
|
|
|
+ else if(n->coeff == 1)
|
|
|
+ printf(" X^%d ",n->exp);
|
|
|
+ else if(n->exp == 1)
|
|
|
+ printf(" %.2fX ",fabs(n->coeff));
|
|
|
+ else if(n->coeff == 0)
|
|
|
+ continue;
|
|
|
+ else
|
|
|
+ printf(" %.2fX^%d ",fabs(n->coeff),n->exp);
|
|
|
+ }
|
|
|
+ printf("\n\n");
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|