driver-avalon.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /*
  2. * Copyright 2013 Con Kolivas <kernel@kolivas.org>
  3. * Copyright 2012-2013 Xiangfu <xiangfu@openmobilefree.com>
  4. * Copyright 2012 Luke Dashjr
  5. * Copyright 2012 Andrew Smith
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the Free
  9. * Software Foundation; either version 3 of the License, or (at your option)
  10. * any later version. See COPYING for more details.
  11. */
  12. #include "config.h"
  13. #include <limits.h>
  14. #include <pthread.h>
  15. #include <stdio.h>
  16. #include <sys/time.h>
  17. #include <sys/types.h>
  18. #include <dirent.h>
  19. #include <unistd.h>
  20. #ifndef WIN32
  21. #include <sys/select.h>
  22. #include <termios.h>
  23. #include <sys/stat.h>
  24. #include <fcntl.h>
  25. #ifndef O_CLOEXEC
  26. #define O_CLOEXEC 0
  27. #endif
  28. #else
  29. #include "compat.h"
  30. #include <windows.h>
  31. #include <io.h>
  32. #endif
  33. #include "elist.h"
  34. #include "miner.h"
  35. #include "fpgautils.h"
  36. #include "driver-avalon.h"
  37. #include "hexdump.c"
  38. #include "util.h"
  39. static int option_offset = -1;
  40. struct avalon_info **avalon_infos;
  41. struct device_drv avalon_drv;
  42. static int avalon_init_task(struct avalon_task *at,
  43. uint8_t reset, uint8_t ff, uint8_t fan,
  44. uint8_t timeout, uint8_t asic_num,
  45. uint8_t miner_num, uint8_t nonce_elf,
  46. uint8_t gate_miner, int frequency)
  47. {
  48. uint8_t *buf;
  49. static bool first = true;
  50. if (unlikely(!at))
  51. return -1;
  52. if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0))
  53. return -1;
  54. memset(at, 0, sizeof(struct avalon_task));
  55. if (unlikely(reset)) {
  56. at->reset = 1;
  57. at->fan_eft = 1;
  58. at->timer_eft = 1;
  59. first = true;
  60. }
  61. at->flush_fifo = (ff ? 1 : 0);
  62. at->fan_eft = (fan ? 1 : 0);
  63. if (unlikely(first && !at->reset)) {
  64. at->fan_eft = 1;
  65. at->timer_eft = 1;
  66. first = false;
  67. }
  68. at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM);
  69. at->timeout_data = timeout;
  70. at->asic_num = asic_num;
  71. at->miner_num = miner_num;
  72. at->nonce_elf = nonce_elf;
  73. at->gate_miner_elf = 1;
  74. at->asic_pll = 1;
  75. if (unlikely(gate_miner)) {
  76. at-> gate_miner = 1;
  77. at->asic_pll = 0;
  78. }
  79. buf = (uint8_t *)at;
  80. buf[5] = 0x00;
  81. buf[8] = 0x74;
  82. buf[9] = 0x01;
  83. buf[10] = 0x00;
  84. buf[11] = 0x00;
  85. if (frequency == 256) {
  86. buf[6] = 0x03;
  87. buf[7] = 0x08;
  88. } else if (frequency == 270) {
  89. buf[6] = 0x73;
  90. buf[7] = 0x08;
  91. } else if (frequency == 282) {
  92. buf[6] = 0xd3;
  93. buf[7] = 0x08;
  94. } else if (frequency == 300) {
  95. buf[6] = 0x63;
  96. buf[7] = 0x09;
  97. }
  98. return 0;
  99. }
  100. static inline void avalon_create_task(struct avalon_task *at,
  101. struct work *work)
  102. {
  103. memcpy(at->midstate, work->midstate, 32);
  104. memcpy(at->data, work->data + 64, 12);
  105. }
  106. static int avalon_send_task(int fd, const struct avalon_task *at,
  107. struct cgpu_info *avalon)
  108. {
  109. size_t ret;
  110. int full;
  111. struct timespec p;
  112. uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM];
  113. size_t nr_len;
  114. struct avalon_info *info;
  115. uint64_t delay = 32000000; /* Default 32ms for B19200 */
  116. uint32_t nonce_range;
  117. int i;
  118. if (at->nonce_elf)
  119. nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num;
  120. else
  121. nr_len = AVALON_WRITE_SIZE;
  122. memcpy(buf, at, AVALON_WRITE_SIZE);
  123. if (at->nonce_elf) {
  124. nonce_range = (uint32_t)0xffffffff / at->asic_num;
  125. for (i = 0; i < at->asic_num; i++) {
  126. buf[AVALON_WRITE_SIZE + (i * 4) + 3] =
  127. (i * nonce_range & 0xff000000) >> 24;
  128. buf[AVALON_WRITE_SIZE + (i * 4) + 2] =
  129. (i * nonce_range & 0x00ff0000) >> 16;
  130. buf[AVALON_WRITE_SIZE + (i * 4) + 1] =
  131. (i * nonce_range & 0x0000ff00) >> 8;
  132. buf[AVALON_WRITE_SIZE + (i * 4) + 0] =
  133. (i * nonce_range & 0x000000ff) >> 0;
  134. }
  135. }
  136. #if defined(__BIG_ENDIAN__) || defined(MIPSEB)
  137. uint8_t tt = 0;
  138. tt = (buf[0] & 0x0f) << 4;
  139. tt |= ((buf[0] & 0x10) ? (1 << 3) : 0);
  140. tt |= ((buf[0] & 0x20) ? (1 << 2) : 0);
  141. tt |= ((buf[0] & 0x40) ? (1 << 1) : 0);
  142. tt |= ((buf[0] & 0x80) ? (1 << 0) : 0);
  143. buf[0] = tt;
  144. tt = (buf[4] & 0x0f) << 4;
  145. tt |= ((buf[4] & 0x10) ? (1 << 3) : 0);
  146. tt |= ((buf[4] & 0x20) ? (1 << 2) : 0);
  147. tt |= ((buf[4] & 0x40) ? (1 << 1) : 0);
  148. tt |= ((buf[4] & 0x80) ? (1 << 0) : 0);
  149. buf[4] = tt;
  150. #endif
  151. if (likely(avalon)) {
  152. info = avalon->device_data;
  153. delay = nr_len * 10 * 1000000000ULL;
  154. delay = delay / info->baud;
  155. }
  156. if (at->reset)
  157. nr_len = 1;
  158. if (opt_debug) {
  159. applog(LOG_DEBUG, "Avalon: Sent(%u):", (unsigned int)nr_len);
  160. hexdump((uint8_t *)buf, nr_len);
  161. }
  162. ret = write(fd, buf, nr_len);
  163. if (unlikely(ret != nr_len))
  164. return AVA_SEND_ERROR;
  165. p.tv_sec = 0;
  166. p.tv_nsec = (long)delay + 4000000;
  167. nanosleep(&p, NULL);
  168. applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %ld", p.tv_nsec);
  169. full = avalon_buffer_full(fd);
  170. applog(LOG_DEBUG, "Avalon: Sent: Buffer full: %s",
  171. ((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
  172. if (unlikely(full == AVA_BUFFER_FULL))
  173. return AVA_SEND_BUFFER_FULL;
  174. return AVA_SEND_BUFFER_EMPTY;
  175. }
  176. static inline int avalon_gets(int fd, uint8_t *buf, struct thr_info *thr,
  177. struct timeval *tv_finish)
  178. {
  179. int read_amount = AVALON_READ_SIZE;
  180. bool first = true;
  181. ssize_t ret = 0;
  182. while (true) {
  183. struct timeval timeout;
  184. fd_set rd;
  185. if (unlikely(thr->work_restart)) {
  186. applog(LOG_DEBUG, "Avalon: Work restart");
  187. return AVA_GETS_RESTART;
  188. }
  189. timeout.tv_sec = 0;
  190. timeout.tv_usec = 100000;
  191. FD_ZERO(&rd);
  192. FD_SET((SOCKETTYPE)fd, &rd);
  193. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  194. if (unlikely(ret < 0)) {
  195. applog(LOG_ERR, "Avalon: Error %d on select in avalon_gets", errno);
  196. return AVA_GETS_ERROR;
  197. }
  198. if (ret) {
  199. ret = read(fd, buf, read_amount);
  200. if (unlikely(ret < 0)) {
  201. applog(LOG_ERR, "Avalon: Error %d on read in avalon_gets", errno);
  202. return AVA_GETS_ERROR;
  203. }
  204. if (likely(first)) {
  205. cgtime(tv_finish);
  206. first = false;
  207. }
  208. if (likely(ret >= read_amount))
  209. return AVA_GETS_OK;
  210. buf += ret;
  211. read_amount -= ret;
  212. continue;
  213. }
  214. if (unlikely(thr->work_restart)) {
  215. applog(LOG_DEBUG, "Avalon: Work restart");
  216. return AVA_GETS_RESTART;
  217. }
  218. return AVA_GETS_TIMEOUT;
  219. }
  220. }
  221. static int avalon_get_result(int fd, struct avalon_result *ar,
  222. struct thr_info *thr, struct timeval *tv_finish)
  223. {
  224. uint8_t result[AVALON_READ_SIZE];
  225. int ret;
  226. memset(result, 0, AVALON_READ_SIZE);
  227. ret = avalon_gets(fd, result, thr, tv_finish);
  228. if (ret == AVA_GETS_OK) {
  229. if (opt_debug) {
  230. applog(LOG_DEBUG, "Avalon: get:");
  231. hexdump((uint8_t *)result, AVALON_READ_SIZE);
  232. }
  233. memcpy((uint8_t *)ar, result, AVALON_READ_SIZE);
  234. }
  235. return ret;
  236. }
  237. static bool avalon_decode_nonce(struct thr_info *thr, struct avalon_result *ar,
  238. uint32_t *nonce)
  239. {
  240. struct cgpu_info *avalon;
  241. struct avalon_info *info;
  242. struct work *work;
  243. avalon = thr->cgpu;
  244. if (unlikely(!avalon->works))
  245. return false;
  246. work = find_queued_work_bymidstate(avalon, (char *)ar->midstate, 32,
  247. (char *)ar->data, 64, 12);
  248. if (!work)
  249. return false;
  250. info = avalon->device_data;
  251. info->matching_work[work->subid]++;
  252. *nonce = htole32(ar->nonce);
  253. submit_nonce(thr, work, *nonce);
  254. return true;
  255. }
  256. static int avalon_write(int fd, char *buf, ssize_t len)
  257. {
  258. ssize_t wrote = 0;
  259. while (len > 0) {
  260. struct timeval timeout;
  261. ssize_t ret;
  262. fd_set wd;
  263. timeout.tv_sec = 0;
  264. timeout.tv_usec = 100000;
  265. FD_ZERO(&wd);
  266. FD_SET((SOCKETTYPE)fd, &wd);
  267. ret = select(fd + 1, NULL, &wd, NULL, &timeout);
  268. if (unlikely(ret < 1)) {
  269. applog(LOG_WARNING, "Select error on avalon_write");
  270. return AVA_SEND_ERROR;
  271. }
  272. ret = write(fd, buf + wrote, len);
  273. if (unlikely(ret < 1)) {
  274. applog(LOG_WARNING, "Write error on avalon_write");
  275. return AVA_SEND_ERROR;
  276. }
  277. wrote += ret;
  278. len -= ret;
  279. }
  280. return 0;
  281. }
  282. static int avalon_read(int fd, char *buf, ssize_t len)
  283. {
  284. ssize_t aread = 0;
  285. while (len > 0) {
  286. struct timeval timeout;
  287. ssize_t ret;
  288. fd_set rd;
  289. timeout.tv_sec = 0;
  290. timeout.tv_usec = 100000;
  291. FD_ZERO(&rd);
  292. FD_SET((SOCKETTYPE)fd, &rd);
  293. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  294. if (unlikely(ret < 1)) {
  295. applog(LOG_WARNING, "Select error on avalon_read");
  296. return AVA_GETS_ERROR;
  297. }
  298. ret = read(fd, buf + aread, len);
  299. if (unlikely(ret < 1)) {
  300. applog(LOG_WARNING, "Read error on avalon_read");
  301. return AVA_GETS_ERROR;
  302. }
  303. aread += ret;
  304. len -= ret;
  305. }
  306. return 0;
  307. }
  308. /* Non blocking clearing of anything in the buffer */
  309. static void avalon_clear_readbuf(int fd)
  310. {
  311. ssize_t ret;
  312. do {
  313. struct timeval timeout;
  314. char buf[AVALON_FTDI_READSIZE];
  315. fd_set rd;
  316. timeout.tv_sec = timeout.tv_usec = 0;
  317. FD_ZERO(&rd);
  318. FD_SET((SOCKETTYPE)fd, &rd);
  319. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  320. if (ret > 0)
  321. ret = read(fd, buf, AVALON_FTDI_READSIZE);
  322. } while (ret > 0);
  323. }
  324. /* Wait until the avalon says it's ready to receive a write, or 2 seconds has
  325. * elapsed, whichever comes first. The status is updated by the ftdi device
  326. * every 40ms. Returns true if the avalon is ready. */
  327. static bool avalon_wait_write(int fd)
  328. {
  329. int i = 0;
  330. bool ret;
  331. do {
  332. ret = avalon_buffer_full(fd);
  333. if (ret)
  334. nmsleep(50);
  335. } while (ret == true && i++ < 40);
  336. return !ret;
  337. }
  338. static void avalon_idle(struct cgpu_info *avalon, int fd)
  339. {
  340. struct avalon_info *info = avalon->device_data;
  341. int i;
  342. for (i = 0; i < info->miner_count; i++) {
  343. struct avalon_task at;
  344. int ret;
  345. avalon_clear_readbuf(fd);
  346. if (unlikely(avalon_buffer_full(fd))) {
  347. applog(LOG_WARNING, "Avalon buffer full in avalon_idle after %d tasks", i);
  348. break;
  349. }
  350. avalon_init_task(&at, 0, 0, info->fan_pwm,
  351. info->timeout, info->asic_count,
  352. info->miner_count, 1, 1, info->frequency);
  353. ret = avalon_write(fd, (char *)&at, AVALON_WRITE_SIZE);
  354. if (unlikely(ret == AVA_SEND_ERROR))
  355. break;
  356. }
  357. applog(LOG_ERR, "Avalon: Going to idle mode");
  358. }
  359. static int avalon_reset(struct cgpu_info *avalon, int fd)
  360. {
  361. struct avalon_result ar;
  362. char reset = 0xad;
  363. uint8_t *buf;
  364. int ret, i = 0;
  365. struct timespec p;
  366. /* Reset once, then send command to go idle */
  367. ret = avalon_write(fd, &reset, 1);
  368. if (unlikely(ret == AVA_SEND_ERROR))
  369. return -1;
  370. /* Ignore first result as it may be corrupt with old work */
  371. avalon_clear_readbuf(fd);
  372. /* What do these sleeps do?? */
  373. p.tv_sec = 0;
  374. p.tv_nsec = AVALON_RESET_PITCH;
  375. nanosleep(&p, NULL);
  376. avalon_idle(avalon, fd);
  377. /* Reset again, then check result */
  378. ret = avalon_write(fd, &reset, 1);
  379. if (unlikely(ret == AVA_SEND_ERROR))
  380. return -1;
  381. ret = avalon_read(fd, (char *)&ar, AVALON_READ_SIZE);
  382. if (unlikely(ret == AVA_GETS_ERROR))
  383. return -1;
  384. nanosleep(&p, NULL);
  385. buf = (uint8_t *)&ar;
  386. if (buf[0] == 0xAA && buf[1] == 0x55 &&
  387. buf[2] == 0xAA && buf[3] == 0x55) {
  388. for (i = 4; i < 11; i++)
  389. if (buf[i] != 0)
  390. break;
  391. }
  392. if (i != 11) {
  393. applog(LOG_ERR, "Avalon: Reset failed! not an Avalon?"
  394. " (%d: %02x %02x %02x %02x)",
  395. i, buf[0], buf[1], buf[2], buf[3]);
  396. /* FIXME: return 1; */
  397. } else
  398. applog(LOG_WARNING, "Avalon: Reset succeeded");
  399. avalon_idle(avalon, fd);
  400. if (!avalon_wait_write(fd))
  401. applog(LOG_WARNING, "Avalon: Not ready for writes?");
  402. return 0;
  403. }
  404. static void get_options(int this_option_offset, int *baud, int *miner_count,
  405. int *asic_count, int *timeout, int *frequency)
  406. {
  407. char err_buf[BUFSIZ+1];
  408. char buf[BUFSIZ+1];
  409. char *ptr, *comma, *colon, *colon2, *colon3, *colon4;
  410. size_t max;
  411. int i, tmp;
  412. if (opt_avalon_options == NULL)
  413. buf[0] = '\0';
  414. else {
  415. ptr = opt_avalon_options;
  416. for (i = 0; i < this_option_offset; i++) {
  417. comma = strchr(ptr, ',');
  418. if (comma == NULL)
  419. break;
  420. ptr = comma + 1;
  421. }
  422. comma = strchr(ptr, ',');
  423. if (comma == NULL)
  424. max = strlen(ptr);
  425. else
  426. max = comma - ptr;
  427. if (max > BUFSIZ)
  428. max = BUFSIZ;
  429. strncpy(buf, ptr, max);
  430. buf[max] = '\0';
  431. }
  432. *baud = AVALON_IO_SPEED;
  433. *miner_count = AVALON_DEFAULT_MINER_NUM - 8;
  434. *asic_count = AVALON_DEFAULT_ASIC_NUM;
  435. *timeout = AVALON_DEFAULT_TIMEOUT;
  436. *frequency = AVALON_DEFAULT_FREQUENCY;
  437. if (!(*buf))
  438. return;
  439. colon = strchr(buf, ':');
  440. if (colon)
  441. *(colon++) = '\0';
  442. tmp = atoi(buf);
  443. switch (tmp) {
  444. case 115200:
  445. *baud = 115200;
  446. break;
  447. case 57600:
  448. *baud = 57600;
  449. break;
  450. case 38400:
  451. *baud = 38400;
  452. break;
  453. case 19200:
  454. *baud = 19200;
  455. break;
  456. default:
  457. sprintf(err_buf,
  458. "Invalid avalon-options for baud (%s) "
  459. "must be 115200, 57600, 38400 or 19200", buf);
  460. quit(1, err_buf);
  461. }
  462. if (colon && *colon) {
  463. colon2 = strchr(colon, ':');
  464. if (colon2)
  465. *(colon2++) = '\0';
  466. if (*colon) {
  467. tmp = atoi(colon);
  468. if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) {
  469. *miner_count = tmp;
  470. } else {
  471. sprintf(err_buf,
  472. "Invalid avalon-options for "
  473. "miner_count (%s) must be 1 ~ %d",
  474. colon, AVALON_DEFAULT_MINER_NUM);
  475. quit(1, err_buf);
  476. }
  477. }
  478. if (colon2 && *colon2) {
  479. colon3 = strchr(colon2, ':');
  480. if (colon3)
  481. *(colon3++) = '\0';
  482. tmp = atoi(colon2);
  483. if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM)
  484. *asic_count = tmp;
  485. else {
  486. sprintf(err_buf,
  487. "Invalid avalon-options for "
  488. "asic_count (%s) must be 1 ~ %d",
  489. colon2, AVALON_DEFAULT_ASIC_NUM);
  490. quit(1, err_buf);
  491. }
  492. if (colon3 && *colon3) {
  493. colon4 = strchr(colon3, ':');
  494. if (colon4)
  495. *(colon4++) = '\0';
  496. tmp = atoi(colon3);
  497. if (tmp > 0 && tmp <= 0xff)
  498. *timeout = tmp;
  499. else {
  500. sprintf(err_buf,
  501. "Invalid avalon-options for "
  502. "timeout (%s) must be 1 ~ %d",
  503. colon3, 0xff);
  504. quit(1, err_buf);
  505. }
  506. if (colon4 && *colon4) {
  507. tmp = atoi(colon4);
  508. switch (tmp) {
  509. case 256:
  510. case 270:
  511. case 282:
  512. case 300:
  513. *frequency = tmp;
  514. break;
  515. default:
  516. sprintf(err_buf,
  517. "Invalid avalon-options for "
  518. "frequency must be 256/270/282/300");
  519. quit(1, err_buf);
  520. }
  521. }
  522. }
  523. }
  524. }
  525. }
  526. static bool avalon_detect_one(const char *devpath)
  527. {
  528. struct avalon_info *info;
  529. int fd, ret;
  530. int baud, miner_count, asic_count, timeout, frequency = 0;
  531. struct cgpu_info *avalon;
  532. int this_option_offset = ++option_offset;
  533. get_options(this_option_offset, &baud, &miner_count, &asic_count,
  534. &timeout, &frequency);
  535. applog(LOG_DEBUG, "Avalon Detect: Attempting to open %s "
  536. "(baud=%d miner_count=%d asic_count=%d timeout=%d frequency=%d)",
  537. devpath, baud, miner_count, asic_count, timeout, frequency);
  538. fd = avalon_open2(devpath, baud, true);
  539. if (unlikely(fd == -1)) {
  540. applog(LOG_ERR, "Avalon Detect: Failed to open %s", devpath);
  541. return false;
  542. }
  543. avalon_clear_readbuf(fd);
  544. /* We have a real Avalon! */
  545. avalon = calloc(1, sizeof(struct cgpu_info));
  546. avalon->drv = &avalon_drv;
  547. avalon->device_path = strdup(devpath);
  548. avalon->device_fd = fd;
  549. avalon->threads = AVALON_MINER_THREADS;
  550. add_cgpu(avalon);
  551. avalon_infos = realloc(avalon_infos,
  552. sizeof(struct avalon_info *) *
  553. (total_devices + 1));
  554. applog(LOG_INFO, "Avalon Detect: Found at %s, mark as %d",
  555. devpath, avalon->device_id);
  556. avalon_infos[avalon->device_id] = calloc(sizeof(struct avalon_info), 1);
  557. if (unlikely(!(avalon_infos[avalon->device_id])))
  558. quit(1, "Failed to calloc avalon_infos");
  559. avalon->device_data = avalon_infos[avalon->device_id];
  560. info = avalon->device_data;
  561. info->baud = baud;
  562. info->miner_count = miner_count;
  563. info->asic_count = asic_count;
  564. info->timeout = timeout;
  565. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
  566. info->temp_max = 0;
  567. /* This is for check the temp/fan every 3~4s */
  568. info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1;
  569. if (info->temp_history_count <= 0)
  570. info->temp_history_count = 1;
  571. info->temp_history_index = 0;
  572. info->temp_sum = 0;
  573. info->temp_old = 0;
  574. info->frequency = frequency;
  575. ret = avalon_reset(avalon, fd);
  576. if (ret) {
  577. ; /* FIXME: I think IT IS avalon and wait on reset;
  578. * avalon_close(fd);
  579. * return false; */
  580. }
  581. return true;
  582. }
  583. static inline void avalon_detect()
  584. {
  585. serial_detect(&avalon_drv, avalon_detect_one);
  586. }
  587. static void avalon_init(struct cgpu_info *avalon)
  588. {
  589. applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path);
  590. }
  591. static bool avalon_prepare(struct thr_info *thr)
  592. {
  593. struct cgpu_info *avalon = thr->cgpu;
  594. struct avalon_info *info = avalon->device_data;
  595. struct timeval now;
  596. free(avalon->works);
  597. avalon->works = calloc(info->miner_count * sizeof(struct work *),
  598. AVALON_ARRAY_SIZE);
  599. if (!avalon->works)
  600. quit(1, "Failed to calloc avalon works in avalon_prepare");
  601. avalon_init(avalon);
  602. cgtime(&now);
  603. get_datestamp(avalon->init, &now);
  604. return true;
  605. }
  606. static void avalon_free_work(struct thr_info *thr)
  607. {
  608. struct cgpu_info *avalon;
  609. struct avalon_info *info;
  610. struct work **works;
  611. int i;
  612. avalon = thr->cgpu;
  613. avalon->queued = 0;
  614. if (unlikely(!avalon->works))
  615. return;
  616. works = avalon->works;
  617. info = avalon->device_data;
  618. for (i = 0; i < info->miner_count * 4; i++) {
  619. if (works[i]) {
  620. work_completed(avalon, works[i]);
  621. works[i] = NULL;
  622. }
  623. }
  624. }
  625. static void do_avalon_close(struct thr_info *thr)
  626. {
  627. struct cgpu_info *avalon = thr->cgpu;
  628. struct avalon_info *info = avalon->device_data;
  629. avalon_free_work(thr);
  630. avalon_reset(avalon, avalon->device_fd);
  631. avalon_close(avalon->device_fd);
  632. avalon->device_fd = -1;
  633. info->no_matching_work = 0;
  634. }
  635. static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg)
  636. {
  637. info->fan0 = ar->fan0 * AVALON_FAN_FACTOR;
  638. info->fan1 = ar->fan1 * AVALON_FAN_FACTOR;
  639. info->fan2 = ar->fan2 * AVALON_FAN_FACTOR;
  640. info->temp0 = ar->temp0;
  641. info->temp1 = ar->temp1;
  642. info->temp2 = ar->temp2;
  643. if (ar->temp0 & 0x80) {
  644. ar->temp0 &= 0x7f;
  645. info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1);
  646. }
  647. if (ar->temp1 & 0x80) {
  648. ar->temp1 &= 0x7f;
  649. info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1);
  650. }
  651. if (ar->temp2 & 0x80) {
  652. ar->temp2 &= 0x7f;
  653. info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1);
  654. }
  655. *temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1;
  656. if (info->temp0 > info->temp_max)
  657. info->temp_max = info->temp0;
  658. if (info->temp1 > info->temp_max)
  659. info->temp_max = info->temp1;
  660. if (info->temp2 > info->temp_max)
  661. info->temp_max = info->temp2;
  662. }
  663. static inline void adjust_fan(struct avalon_info *info)
  664. {
  665. int temp_new;
  666. temp_new = info->temp_sum / info->temp_history_count;
  667. if (temp_new < 35) {
  668. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
  669. info->temp_old = temp_new;
  670. } else if (temp_new > 55) {
  671. info->fan_pwm = AVALON_DEFAULT_FAN_MAX_PWM;
  672. info->temp_old = temp_new;
  673. } else if (abs(temp_new - info->temp_old) >= 2) {
  674. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM + (temp_new - 35) * 6.4;
  675. info->temp_old = temp_new;
  676. }
  677. }
  678. /* We use a replacement algorithm to only remove references to work done from
  679. * the buffer when we need the extra space for new work. */
  680. static bool avalon_fill(struct cgpu_info *avalon)
  681. {
  682. int subid, slot, mc = avalon_infos[avalon->device_id]->miner_count;
  683. struct work *work;
  684. if (avalon->queued >= mc)
  685. return true;
  686. work = get_queued(avalon);
  687. if (unlikely(!work))
  688. return false;
  689. subid = avalon->queued++;
  690. work->subid = subid;
  691. slot = avalon->work_array * mc + subid;
  692. if (likely(avalon->works[slot]))
  693. work_completed(avalon, avalon->works[slot]);
  694. avalon->works[slot] = work;
  695. if (avalon->queued >= mc)
  696. return true;
  697. return false;
  698. }
  699. static void avalon_rotate_array(struct cgpu_info *avalon)
  700. {
  701. avalon->queued = 0;
  702. if (++avalon->work_array >= AVALON_ARRAY_SIZE)
  703. avalon->work_array = 0;
  704. }
  705. static int64_t avalon_scanhash(struct thr_info *thr)
  706. {
  707. struct cgpu_info *avalon;
  708. struct work **works;
  709. int fd, ret = AVA_GETS_OK, full;
  710. struct avalon_info *info;
  711. struct avalon_task at;
  712. struct avalon_result ar;
  713. int i;
  714. int avalon_get_work_count;
  715. int start_count, end_count;
  716. struct timeval tv_start, tv_finish, elapsed;
  717. uint32_t nonce;
  718. int64_t hash_count;
  719. static int first_try = 0;
  720. int result_wrong;
  721. avalon = thr->cgpu;
  722. works = avalon->works;
  723. info = avalon->device_data;
  724. avalon_get_work_count = info->miner_count;
  725. fd = avalon->device_fd;
  726. #ifndef WIN32
  727. tcflush(fd, TCOFLUSH);
  728. #endif
  729. start_count = avalon->work_array * avalon_get_work_count;
  730. end_count = start_count + avalon_get_work_count;
  731. i = start_count;
  732. while (true) {
  733. avalon_init_task(&at, 0, 0, info->fan_pwm,
  734. info->timeout, info->asic_count,
  735. info->miner_count, 1, 0, info->frequency);
  736. avalon_create_task(&at, works[i]);
  737. ret = avalon_send_task(fd, &at, avalon);
  738. if (unlikely(ret == AVA_SEND_ERROR ||
  739. (ret == AVA_SEND_BUFFER_EMPTY &&
  740. (i + 1 == end_count) &&
  741. first_try))) {
  742. applog(LOG_ERR, "AVA%i: Comms error(buffer)",
  743. avalon->device_id);
  744. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  745. avalon_reset(avalon, fd);
  746. first_try = 0;
  747. return 0; /* This should never happen */
  748. }
  749. if (ret == AVA_SEND_BUFFER_EMPTY && (i + 1 == end_count)) {
  750. first_try = 1;
  751. avalon_rotate_array(avalon);
  752. return 0xffffffff;
  753. }
  754. works[i]->blk.nonce = 0xffffffff;
  755. if (ret == AVA_SEND_BUFFER_FULL)
  756. break;
  757. i++;
  758. }
  759. if (unlikely(first_try))
  760. first_try = 0;
  761. elapsed.tv_sec = elapsed.tv_usec = 0;
  762. cgtime(&tv_start);
  763. result_wrong = 0;
  764. hash_count = 0;
  765. while (true) {
  766. full = avalon_buffer_full(fd);
  767. applog(LOG_DEBUG, "Avalon: Buffer full: %s",
  768. ((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
  769. if (unlikely(full == AVA_BUFFER_EMPTY))
  770. break;
  771. ret = avalon_get_result(fd, &ar, thr, &tv_finish);
  772. if (unlikely(ret == AVA_GETS_ERROR)) {
  773. applog(LOG_ERR,
  774. "AVA%i: Comms error(read)", avalon->device_id);
  775. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  776. avalon_reset(avalon, fd);
  777. return 0;
  778. }
  779. if (unlikely(ret == AVA_GETS_RESTART))
  780. break;
  781. if (unlikely(ret == AVA_GETS_TIMEOUT)) {
  782. timersub(&tv_finish, &tv_start, &elapsed);
  783. applog(LOG_DEBUG, "Avalon: no nonce in (%ld.%06lds)",
  784. elapsed.tv_sec, elapsed.tv_usec);
  785. continue;
  786. }
  787. if (!avalon_decode_nonce(thr, &ar, &nonce)) {
  788. info->no_matching_work++;
  789. result_wrong++;
  790. if (unlikely(result_wrong >= avalon_get_work_count))
  791. break;
  792. if (opt_debug) {
  793. timersub(&tv_finish, &tv_start, &elapsed);
  794. applog(LOG_DEBUG,"Avalon: no matching work: %d"
  795. " (%ld.%06lds)", info->no_matching_work,
  796. elapsed.tv_sec, elapsed.tv_usec);
  797. }
  798. continue;
  799. }
  800. hash_count += 0xffffffff;
  801. if (opt_debug) {
  802. timersub(&tv_finish, &tv_start, &elapsed);
  803. applog(LOG_DEBUG,
  804. "Avalon: nonce = 0x%08x = 0x%08llx hashes "
  805. "(%ld.%06lds)", nonce, (unsigned long long)hash_count,
  806. elapsed.tv_sec, elapsed.tv_usec);
  807. }
  808. }
  809. if (hash_count && avalon->results < AVALON_ARRAY_SIZE)
  810. avalon->results++;
  811. if (unlikely((result_wrong >= avalon_get_work_count) ||
  812. (!hash_count && ret != AVA_GETS_RESTART && --avalon->results < 0))) {
  813. /* Look for all invalid results, or consecutive failure
  814. * to generate any results suggesting the FPGA
  815. * controller has screwed up. */
  816. applog(LOG_ERR,
  817. "AVA%i: FPGA controller messed up, %d wrong results",
  818. avalon->device_id, result_wrong);
  819. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  820. avalon_reset(avalon, fd);
  821. return 0;
  822. }
  823. avalon_rotate_array(avalon);
  824. if (hash_count) {
  825. record_temp_fan(info, &ar, &(avalon->temp));
  826. applog(LOG_INFO,
  827. "Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t"
  828. "Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC",
  829. info->fan0, info->fan1, info->fan2,
  830. info->temp0, info->temp1, info->temp2, info->temp_max);
  831. info->temp_history_index++;
  832. info->temp_sum += avalon->temp;
  833. applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d",
  834. info->temp_history_index, info->temp_history_count, info->temp_old);
  835. if (info->temp_history_index == info->temp_history_count) {
  836. adjust_fan(info);
  837. info->temp_history_index = 0;
  838. info->temp_sum = 0;
  839. }
  840. }
  841. /* This hashmeter is just a utility counter based on returned shares */
  842. return hash_count;
  843. }
  844. static struct api_data *avalon_api_stats(struct cgpu_info *cgpu)
  845. {
  846. struct api_data *root = NULL;
  847. struct avalon_info *info = cgpu->device_data;
  848. int i;
  849. root = api_add_int(root, "baud", &(info->baud), false);
  850. root = api_add_int(root, "miner_count", &(info->miner_count),false);
  851. root = api_add_int(root, "asic_count", &(info->asic_count), false);
  852. root = api_add_int(root, "timeout", &(info->timeout), false);
  853. root = api_add_int(root, "frequency", &(info->frequency), false);
  854. root = api_add_int(root, "fan1", &(info->fan0), false);
  855. root = api_add_int(root, "fan2", &(info->fan1), false);
  856. root = api_add_int(root, "fan3", &(info->fan2), false);
  857. root = api_add_int(root, "temp1", &(info->temp0), false);
  858. root = api_add_int(root, "temp2", &(info->temp1), false);
  859. root = api_add_int(root, "temp3", &(info->temp2), false);
  860. root = api_add_int(root, "temp_max", &(info->temp_max), false);
  861. root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false);
  862. for (i = 0; i < info->miner_count; i++) {
  863. char mcw[24];
  864. sprintf(mcw, "match_work_count%d", i + 1);
  865. root = api_add_int(root, mcw, &(info->matching_work[i]), false);
  866. }
  867. return root;
  868. }
  869. static void avalon_shutdown(struct thr_info *thr)
  870. {
  871. do_avalon_close(thr);
  872. }
  873. struct device_drv avalon_drv = {
  874. .drv_id = DRIVER_AVALON,
  875. .dname = "avalon",
  876. .name = "AVA",
  877. .drv_detect = avalon_detect,
  878. .thread_prepare = avalon_prepare,
  879. .hash_work = hash_queued_work,
  880. .queue_full = avalon_fill,
  881. .scanwork = avalon_scanhash,
  882. .get_api_stats = avalon_api_stats,
  883. .reinit_device = avalon_init,
  884. .thread_shutdown = avalon_shutdown,
  885. };