driver-icarus.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. * Copyright 2012 Xiangfu
  4. * Copyright 2012 Andrew Smith
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 3 of the License, or (at your option)
  9. * any later version. See COPYING for more details.
  10. */
  11. /*
  12. * Those code should be works fine with V2 and V3 bitstream of Icarus.
  13. * Operation:
  14. * No detection implement.
  15. * Input: 64B = 32B midstate + 20B fill bytes + last 12 bytes of block head.
  16. * Return: send back 32bits immediately when Icarus found a valid nonce.
  17. * no query protocol implemented here, if no data send back in ~11.3
  18. * seconds (full cover time on 32bit nonce range by 380MH/s speed)
  19. * just send another work.
  20. * Notice:
  21. * 1. Icarus will start calculate when you push a work to them, even they
  22. * are busy.
  23. * 2. The 2 FPGAs on Icarus will distribute the job, one will calculate the
  24. * 0 ~ 7FFFFFFF, another one will cover the 80000000 ~ FFFFFFFF.
  25. * 3. It's possible for 2 FPGAs both find valid nonce in the meantime, the 2
  26. * valid nonce will all be send back.
  27. * 4. Icarus will stop work when: a valid nonce has been found or 32 bits
  28. * nonce range is completely calculated.
  29. */
  30. #include "config.h"
  31. #include "miner.h"
  32. #include <limits.h>
  33. #include <pthread.h>
  34. #include <stdbool.h>
  35. #include <stdint.h>
  36. #include <stdio.h>
  37. #include <sys/time.h>
  38. #include <sys/types.h>
  39. #include <dirent.h>
  40. #include <unistd.h>
  41. #ifndef WIN32
  42. #include <termios.h>
  43. #include <sys/stat.h>
  44. #include <fcntl.h>
  45. #ifndef O_CLOEXEC
  46. #define O_CLOEXEC 0
  47. #endif
  48. #else
  49. #include <windows.h>
  50. #include <io.h>
  51. #endif
  52. #ifdef HAVE_SYS_EPOLL_H
  53. #include <sys/epoll.h>
  54. #define HAVE_EPOLL
  55. #endif
  56. #include "compat.h"
  57. #include "dynclock.h"
  58. #include "driver-icarus.h"
  59. #include "lowl-vcom.h"
  60. // The serial I/O speed - Linux uses a define 'B115200' in bits/termios.h
  61. #define ICARUS_IO_SPEED 115200
  62. // The number of bytes in a nonce (always 4)
  63. // This is NOT the read-size for the Icarus driver
  64. // That is defined in ICARUS_INFO->read_size
  65. #define ICARUS_NONCE_SIZE 4
  66. #define ASSERT1(condition) __maybe_unused static char sizeof_uint32_t_must_be_4[(condition)?1:-1]
  67. ASSERT1(sizeof(uint32_t) == 4);
  68. #define ICARUS_READ_TIME(baud, read_size) ((double)read_size * (double)8.0 / (double)(baud))
  69. // Defined in deciseconds
  70. // There's no need to have this bigger, since the overhead/latency of extra work
  71. // is pretty small once you get beyond a 10s nonce range time and 10s also
  72. // means that nothing slower than 429MH/s can go idle so most icarus devices
  73. // will always mine without idling
  74. #define ICARUS_READ_COUNT_LIMIT_MAX 100
  75. // In timing mode: Default starting value until an estimate can be obtained
  76. // 5 seconds allows for up to a ~840MH/s device
  77. #define ICARUS_READ_COUNT_TIMING (5 * TIME_FACTOR)
  78. // For a standard Icarus REV3
  79. #define ICARUS_REV3_HASH_TIME 0.00000000264083
  80. // Icarus Rev3 doesn't send a completion message when it finishes
  81. // the full nonce range, so to avoid being idle we must abort the
  82. // work (by starting a new work) shortly before it finishes
  83. //
  84. // Thus we need to estimate 2 things:
  85. // 1) How many hashes were done if the work was aborted
  86. // 2) How high can the timeout be before the Icarus is idle,
  87. // to minimise the number of work started
  88. // We set 2) to 'the calculated estimate' - 1
  89. // to ensure the estimate ends before idle
  90. //
  91. // The simple calculation used is:
  92. // Tn = Total time in seconds to calculate n hashes
  93. // Hs = seconds per hash
  94. // Xn = number of hashes
  95. // W = code overhead per work
  96. //
  97. // Rough but reasonable estimate:
  98. // Tn = Hs * Xn + W (of the form y = mx + b)
  99. //
  100. // Thus:
  101. // Line of best fit (using least squares)
  102. //
  103. // Hs = (n*Sum(XiTi)-Sum(Xi)*Sum(Ti))/(n*Sum(Xi^2)-Sum(Xi)^2)
  104. // W = Sum(Ti)/n - (Hs*Sum(Xi))/n
  105. //
  106. // N.B. W is less when aborting work since we aren't waiting for the reply
  107. // to be transferred back (ICARUS_READ_TIME)
  108. // Calculating the hashes aborted at n seconds is thus just n/Hs
  109. // (though this is still a slight overestimate due to code delays)
  110. //
  111. // Both below must be exceeded to complete a set of data
  112. // Minimum how long after the first, the last data point must be
  113. #define HISTORY_SEC 60
  114. // Minimum how many points a single ICARUS_HISTORY should have
  115. #define MIN_DATA_COUNT 5
  116. // The value above used is doubled each history until it exceeds:
  117. #define MAX_MIN_DATA_COUNT 100
  118. #if (TIME_FACTOR != 10)
  119. #error TIME_FACTOR must be 10
  120. #endif
  121. static struct timeval history_sec = { HISTORY_SEC, 0 };
  122. static const char *MODE_DEFAULT_STR = "default";
  123. static const char *MODE_SHORT_STR = "short";
  124. static const char *MODE_SHORT_STREQ = "short=";
  125. static const char *MODE_LONG_STR = "long";
  126. static const char *MODE_LONG_STREQ = "long=";
  127. static const char *MODE_VALUE_STR = "value";
  128. static const char *MODE_UNKNOWN_STR = "unknown";
  129. #define END_CONDITION 0x0000ffff
  130. #define DEFAULT_DETECT_THRESHOLD 1
  131. BFG_REGISTER_DRIVER(icarus_drv)
  132. extern const struct bfg_set_device_definition icarus_set_device_funcs[];
  133. extern const struct bfg_set_device_definition icarus_set_device_funcs_live[];
  134. extern void convert_icarus_to_cairnsmore(struct cgpu_info *);
  135. static inline
  136. uint32_t icarus_nonce32toh(const struct ICARUS_INFO * const info, const uint32_t nonce)
  137. {
  138. return info->nonce_littleendian ? le32toh(nonce) : be32toh(nonce);
  139. }
  140. #define icarus_open2(devpath, baud, purge) serial_open(devpath, baud, ICARUS_READ_FAULT_DECISECONDS, purge)
  141. #define icarus_open(devpath, baud) icarus_open2(devpath, baud, false)
  142. static
  143. void icarus_log_protocol(int fd, const void *buf, size_t bufLen, const char *prefix)
  144. {
  145. char hex[(bufLen * 2) + 1];
  146. bin2hex(hex, buf, bufLen);
  147. applog(LOG_DEBUG, "%s fd=%d: DEVPROTO: %s %s", icarus_drv.dname, fd, prefix, hex);
  148. }
  149. int icarus_gets(unsigned char *buf, int fd, struct timeval *tv_finish, struct thr_info *thr, int read_count, int read_size)
  150. {
  151. ssize_t ret = 0;
  152. int rc = 0;
  153. int epollfd = -1;
  154. int epoll_timeout = ICARUS_READ_FAULT_DECISECONDS * 100;
  155. int read_amount = read_size;
  156. bool first = true;
  157. #ifdef HAVE_EPOLL
  158. struct epoll_event ev = {
  159. .events = EPOLLIN,
  160. .data.fd = fd,
  161. };
  162. struct epoll_event evr[2];
  163. if (thr && thr->work_restart_notifier[1] != -1) {
  164. epollfd = epoll_create(2);
  165. if (epollfd != -1) {
  166. if (-1 == epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev)) {
  167. close(epollfd);
  168. epollfd = -1;
  169. }
  170. {
  171. ev.data.fd = thr->work_restart_notifier[0];
  172. if (-1 == epoll_ctl(epollfd, EPOLL_CTL_ADD, thr->work_restart_notifier[0], &ev))
  173. applog(LOG_ERR, "%s: Error adding work restart fd to epoll", __func__);
  174. else
  175. {
  176. epoll_timeout *= read_count;
  177. read_count = 1;
  178. }
  179. }
  180. }
  181. else
  182. applog(LOG_ERR, "%s: Error creating epoll", __func__);
  183. }
  184. #endif
  185. // Read reply 1 byte at a time to get earliest tv_finish
  186. while (true) {
  187. #ifdef HAVE_EPOLL
  188. if (epollfd != -1 && (ret = epoll_wait(epollfd, evr, 2, epoll_timeout)) != -1)
  189. {
  190. if (ret == 1 && evr[0].data.fd == fd)
  191. ret = read(fd, buf, 1);
  192. else
  193. {
  194. if (ret)
  195. notifier_read(thr->work_restart_notifier);
  196. ret = 0;
  197. }
  198. }
  199. else
  200. #endif
  201. ret = read(fd, buf, 1);
  202. if (ret < 0)
  203. return ICA_GETS_ERROR;
  204. if (first)
  205. cgtime(tv_finish);
  206. if (ret >= read_amount)
  207. {
  208. if (epollfd != -1)
  209. close(epollfd);
  210. if (opt_dev_protocol && opt_debug)
  211. icarus_log_protocol(fd, buf, read_size, "RECV");
  212. return ICA_GETS_OK;
  213. }
  214. if (ret > 0) {
  215. buf += ret;
  216. read_amount -= ret;
  217. first = false;
  218. continue;
  219. }
  220. if (thr && thr->work_restart) {
  221. if (epollfd != -1)
  222. close(epollfd);
  223. applog(LOG_DEBUG, "%s: Interrupted by work restart", __func__);
  224. return ICA_GETS_RESTART;
  225. }
  226. rc++;
  227. if (rc >= read_count) {
  228. if (epollfd != -1)
  229. close(epollfd);
  230. applog(LOG_DEBUG, "%s: No data in %.2f seconds",
  231. __func__,
  232. (float)rc * epoll_timeout / 1000.);
  233. return ICA_GETS_TIMEOUT;
  234. }
  235. }
  236. }
  237. int icarus_write(int fd, const void *buf, size_t bufLen)
  238. {
  239. size_t ret;
  240. if (opt_dev_protocol && opt_debug)
  241. icarus_log_protocol(fd, buf, bufLen, "SEND");
  242. if (unlikely(fd == -1))
  243. return 1;
  244. ret = write(fd, buf, bufLen);
  245. if (unlikely(ret != bufLen))
  246. return 1;
  247. return 0;
  248. }
  249. #define icarus_close(fd) serial_close(fd)
  250. void do_icarus_close(struct thr_info *thr)
  251. {
  252. struct cgpu_info *icarus = thr->cgpu;
  253. const int fd = icarus->device_fd;
  254. if (fd == -1)
  255. return;
  256. icarus_close(fd);
  257. icarus->device_fd = -1;
  258. }
  259. static const char *timing_mode_str(enum timing_mode timing_mode)
  260. {
  261. switch(timing_mode) {
  262. case MODE_DEFAULT:
  263. return MODE_DEFAULT_STR;
  264. case MODE_SHORT:
  265. return MODE_SHORT_STR;
  266. case MODE_LONG:
  267. return MODE_LONG_STR;
  268. case MODE_VALUE:
  269. return MODE_VALUE_STR;
  270. default:
  271. return MODE_UNKNOWN_STR;
  272. }
  273. }
  274. static
  275. const char *icarus_set_timing(struct cgpu_info * const proc, const char * const optname, const char * const buf, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  276. {
  277. struct ICARUS_INFO * const info = proc->device_data;
  278. double Hs;
  279. char *eq;
  280. if (strcasecmp(buf, MODE_SHORT_STR) == 0) {
  281. // short
  282. info->read_count = ICARUS_READ_COUNT_TIMING;
  283. info->read_count_limit = 0; // 0 = no limit
  284. info->timing_mode = MODE_SHORT;
  285. info->do_icarus_timing = true;
  286. } else if (strncasecmp(buf, MODE_SHORT_STREQ, strlen(MODE_SHORT_STREQ)) == 0) {
  287. // short=limit
  288. info->read_count = ICARUS_READ_COUNT_TIMING;
  289. info->timing_mode = MODE_SHORT;
  290. info->do_icarus_timing = true;
  291. info->read_count_limit = atoi(&buf[strlen(MODE_SHORT_STREQ)]);
  292. if (info->read_count_limit < 0)
  293. info->read_count_limit = 0;
  294. if (info->read_count_limit > ICARUS_READ_COUNT_LIMIT_MAX)
  295. info->read_count_limit = ICARUS_READ_COUNT_LIMIT_MAX;
  296. } else if (strcasecmp(buf, MODE_LONG_STR) == 0) {
  297. // long
  298. info->read_count = ICARUS_READ_COUNT_TIMING;
  299. info->read_count_limit = 0; // 0 = no limit
  300. info->timing_mode = MODE_LONG;
  301. info->do_icarus_timing = true;
  302. } else if (strncasecmp(buf, MODE_LONG_STREQ, strlen(MODE_LONG_STREQ)) == 0) {
  303. // long=limit
  304. info->read_count = ICARUS_READ_COUNT_TIMING;
  305. info->timing_mode = MODE_LONG;
  306. info->do_icarus_timing = true;
  307. info->read_count_limit = atoi(&buf[strlen(MODE_LONG_STREQ)]);
  308. if (info->read_count_limit < 0)
  309. info->read_count_limit = 0;
  310. if (info->read_count_limit > ICARUS_READ_COUNT_LIMIT_MAX)
  311. info->read_count_limit = ICARUS_READ_COUNT_LIMIT_MAX;
  312. } else if ((Hs = atof(buf)) != 0) {
  313. // ns[=read_count]
  314. info->Hs = Hs / NANOSEC;
  315. info->fullnonce = info->Hs * (((double)0xffffffff) + 1);
  316. info->read_count = 0;
  317. if ((eq = strchr(buf, '=')) != NULL)
  318. info->read_count = atoi(eq+1);
  319. if (info->read_count < 1)
  320. info->read_count = (int)(info->fullnonce * TIME_FACTOR) - 1;
  321. if (unlikely(info->read_count < 1))
  322. info->read_count = 1;
  323. info->read_count_limit = 0; // 0 = no limit
  324. info->timing_mode = MODE_VALUE;
  325. info->do_icarus_timing = false;
  326. } else {
  327. // Anything else in buf just uses DEFAULT mode
  328. info->fullnonce = info->Hs * (((double)0xffffffff) + 1);
  329. info->read_count = 0;
  330. if ((eq = strchr(buf, '=')) != NULL)
  331. info->read_count = atoi(eq+1);
  332. int def_read_count = ICARUS_READ_COUNT_TIMING;
  333. if (info->timing_mode == MODE_DEFAULT) {
  334. if (proc->drv == &icarus_drv) {
  335. info->do_default_detection = 0x10;
  336. } else {
  337. def_read_count = (int)(info->fullnonce * TIME_FACTOR) - 1;
  338. }
  339. info->do_icarus_timing = false;
  340. }
  341. if (info->read_count < 1)
  342. info->read_count = def_read_count;
  343. info->read_count_limit = 0; // 0 = no limit
  344. }
  345. info->min_data_count = MIN_DATA_COUNT;
  346. applog(LOG_DEBUG, "%"PRIpreprv": Init: mode=%s read_count=%d limit=%dms Hs=%e",
  347. proc->proc_repr,
  348. timing_mode_str(info->timing_mode),
  349. info->read_count, info->read_count_limit, info->Hs);
  350. return NULL;
  351. }
  352. static uint32_t mask(int work_division)
  353. {
  354. return 0xffffffff / work_division;
  355. }
  356. // Number of bytes remaining after reading a nonce from Icarus
  357. int icarus_excess_nonce_size(int fd, struct ICARUS_INFO *info)
  358. {
  359. // How big a buffer?
  360. int excess_size = info->read_size - ICARUS_NONCE_SIZE;
  361. // Try to read one more to ensure the device doesn't return
  362. // more than we want for this driver
  363. excess_size++;
  364. unsigned char excess_bin[excess_size];
  365. // Read excess_size from Icarus
  366. struct timeval tv_now;
  367. timer_set_now(&tv_now);
  368. //icarus_gets(excess_bin, fd, &tv_now, NULL, 1, excess_size);
  369. int bytes_read = read(fd, excess_bin, excess_size);
  370. // Number of bytes that were still available
  371. return bytes_read;
  372. }
  373. bool icarus_detect_custom(const char *devpath, struct device_drv *api, struct ICARUS_INFO *info)
  374. {
  375. struct timeval tv_start, tv_finish;
  376. int fd;
  377. unsigned char nonce_bin[ICARUS_NONCE_SIZE];
  378. char nonce_hex[(sizeof(nonce_bin) * 2) + 1];
  379. drv_set_defaults(api, icarus_set_device_funcs, info, devpath, detectone_meta_info.serial, 1);
  380. int baud = info->baud;
  381. int work_division = info->work_division;
  382. int fpga_count = info->fpga_count;
  383. applog(LOG_DEBUG, "%s: Attempting to open %s", api->dname, devpath);
  384. fd = icarus_open2(devpath, baud, true);
  385. if (unlikely(fd == -1)) {
  386. applog(LOG_DEBUG, "%s: Failed to open %s", api->dname, devpath);
  387. return false;
  388. }
  389. // Set a default so that individual drivers need not specify
  390. // e.g. Cairnsmore
  391. BFGINIT(info->probe_read_count, 1);
  392. if (info->read_size == 0)
  393. info->read_size = ICARUS_DEFAULT_READ_SIZE;
  394. if (!info->golden_ob)
  395. {
  396. // Block 171874 nonce = (0xa2870100) = 0x000187a2
  397. // NOTE: this MUST take less time to calculate
  398. // than the timeout set in icarus_open()
  399. // This one takes ~0.53ms on Rev3 Icarus
  400. info->golden_ob =
  401. "4679ba4ec99876bf4bfe086082b40025"
  402. "4df6c356451471139a3afa71e48f544a"
  403. "00000000000000000000000000000000"
  404. "0000000087320b1a1426674f2fa722ce";
  405. /* NOTE: This gets sent to basically every port specified in --scan-serial,
  406. * even ones that aren't Icarus; be sure they can all handle it, when
  407. * this is changed...
  408. * BitForce: Ignores entirely
  409. * ModMiner: Starts (useless) work, gets back to clean state
  410. */
  411. info->golden_nonce = "000187a2";
  412. }
  413. if (info->detect_init_func)
  414. info->detect_init_func(devpath, fd, info);
  415. int ob_size = strlen(info->golden_ob) / 2;
  416. unsigned char ob_bin[ob_size];
  417. BFGINIT(info->ob_size, ob_size);
  418. if (!info->ignore_golden_nonce)
  419. {
  420. hex2bin(ob_bin, info->golden_ob, sizeof(ob_bin));
  421. icarus_write(fd, ob_bin, sizeof(ob_bin));
  422. cgtime(&tv_start);
  423. memset(nonce_bin, 0, sizeof(nonce_bin));
  424. // Do not use info->read_size here, instead read exactly ICARUS_NONCE_SIZE
  425. // We will then compare the bytes left in fd with info->read_size to determine
  426. // if this is a valid device
  427. icarus_gets(nonce_bin, fd, &tv_finish, NULL, info->probe_read_count, ICARUS_NONCE_SIZE);
  428. // How many bytes were left after reading the above nonce
  429. int bytes_left = icarus_excess_nonce_size(fd, info);
  430. icarus_close(fd);
  431. bin2hex(nonce_hex, nonce_bin, sizeof(nonce_bin));
  432. if (strncmp(nonce_hex, info->golden_nonce, 8))
  433. {
  434. applog(LOG_DEBUG,
  435. "%s: "
  436. "Test failed at %s: get %s, should: %s",
  437. api->dname,
  438. devpath, nonce_hex, info->golden_nonce);
  439. return false;
  440. }
  441. if (info->read_size - ICARUS_NONCE_SIZE != bytes_left)
  442. {
  443. applog(LOG_DEBUG,
  444. "%s: "
  445. "Test failed at %s: expected %d bytes, got %d",
  446. api->dname,
  447. devpath, info->read_size, ICARUS_NONCE_SIZE + bytes_left);
  448. return false;
  449. }
  450. }
  451. else
  452. icarus_close(fd);
  453. applog(LOG_DEBUG,
  454. "%s: "
  455. "Test succeeded at %s: got %s",
  456. api->dname,
  457. devpath, nonce_hex);
  458. if (serial_claim_v(devpath, api))
  459. return false;
  460. /* We have a real Icarus! */
  461. struct cgpu_info *icarus;
  462. icarus = calloc(1, sizeof(struct cgpu_info));
  463. icarus->drv = api;
  464. icarus->device_path = strdup(devpath);
  465. icarus->device_fd = -1;
  466. icarus->threads = 1;
  467. icarus->set_device_funcs = icarus_set_device_funcs_live;
  468. add_cgpu(icarus);
  469. applog(LOG_INFO, "Found %"PRIpreprv" at %s",
  470. icarus->proc_repr,
  471. devpath);
  472. applog(LOG_DEBUG, "%"PRIpreprv": Init: baud=%d work_division=%d fpga_count=%d",
  473. icarus->proc_repr,
  474. baud, work_division, fpga_count);
  475. icarus->device_data = info;
  476. timersub(&tv_finish, &tv_start, &(info->golden_tv));
  477. icarus_set_timing(icarus, NULL, "", NULL, NULL);
  478. return true;
  479. }
  480. static bool icarus_detect_one(const char *devpath)
  481. {
  482. struct ICARUS_INFO *info = calloc(1, sizeof(struct ICARUS_INFO));
  483. if (unlikely(!info))
  484. quit(1, "Failed to malloc ICARUS_INFO");
  485. // TODO: try some higher speeds with the Icarus and BFL to see
  486. // if they support them and if setting them makes any difference
  487. // N.B. B3000000 doesn't work on Icarus
  488. info->baud = ICARUS_IO_SPEED;
  489. info->reopen_mode = IRM_TIMEOUT;
  490. info->Hs = ICARUS_REV3_HASH_TIME;
  491. info->timing_mode = MODE_DEFAULT;
  492. info->read_size = ICARUS_DEFAULT_READ_SIZE;
  493. if (!icarus_detect_custom(devpath, &icarus_drv, info)) {
  494. free(info);
  495. return false;
  496. }
  497. return true;
  498. }
  499. static
  500. bool icarus_lowl_probe(const struct lowlevel_device_info * const info)
  501. {
  502. return vcom_lowl_probe_wrapper(info, icarus_detect_one);
  503. }
  504. static bool icarus_prepare(struct thr_info *thr)
  505. {
  506. struct cgpu_info *icarus = thr->cgpu;
  507. struct icarus_state *state;
  508. thr->cgpu_data = state = calloc(1, sizeof(*state));
  509. state->firstrun = true;
  510. #ifdef HAVE_EPOLL
  511. int epollfd = epoll_create(2);
  512. if (epollfd != -1)
  513. {
  514. close(epollfd);
  515. notifier_init(thr->work_restart_notifier);
  516. }
  517. #endif
  518. icarus->status = LIFE_INIT2;
  519. return true;
  520. }
  521. bool icarus_init(struct thr_info *thr)
  522. {
  523. struct cgpu_info *icarus = thr->cgpu;
  524. struct ICARUS_INFO *info = icarus->device_data;
  525. struct icarus_state * const state = thr->cgpu_data;
  526. int fd = icarus_open2(icarus->device_path, info->baud, true);
  527. icarus->device_fd = fd;
  528. if (unlikely(-1 == fd)) {
  529. applog(LOG_ERR, "%s: Failed to open %s",
  530. icarus->dev_repr,
  531. icarus->device_path);
  532. return false;
  533. }
  534. applog(LOG_INFO, "%s: Opened %s", icarus->dev_repr, icarus->device_path);
  535. BFGINIT(info->job_start_func, icarus_job_start);
  536. BFGINIT(state->ob_bin, calloc(1, info->ob_size));
  537. if (!info->work_division)
  538. {
  539. struct timeval tv_finish;
  540. // For reading the nonce from Icarus
  541. unsigned char res_bin[info->read_size];
  542. // For storing the the 32-bit nonce
  543. uint32_t res;
  544. applog(LOG_DEBUG, "%"PRIpreprv": Work division not specified - autodetecting", icarus->proc_repr);
  545. // Special packet to probe work_division
  546. unsigned char pkt[64] =
  547. "\x2e\x4c\x8f\x91\xfd\x59\x5d\x2d\x7e\xa2\x0a\xaa\xcb\x64\xa2\xa0"
  548. "\x43\x82\x86\x02\x77\xcf\x26\xb6\xa1\xee\x04\xc5\x6a\x5b\x50\x4a"
  549. "BFGMiner Probe\0\0"
  550. "BFG\0\x64\x61\x01\x1a\xc9\x06\xa9\x51\xfb\x9b\x3c\x73";
  551. icarus_write(fd, pkt, sizeof(pkt));
  552. memset(res_bin, 0, sizeof(res_bin));
  553. if (ICA_GETS_OK == icarus_gets(res_bin, fd, &tv_finish, NULL, info->read_count, info->read_size))
  554. {
  555. memcpy(&res, res_bin, sizeof(res));
  556. res = icarus_nonce32toh(info, res);
  557. }
  558. else
  559. res = 0;
  560. switch (res) {
  561. case 0x04C0FDB4:
  562. info->work_division = 1;
  563. break;
  564. case 0x82540E46:
  565. info->work_division = 2;
  566. break;
  567. case 0x417C0F36:
  568. info->work_division = 4;
  569. break;
  570. case 0x60C994D5:
  571. info->work_division = 8;
  572. break;
  573. default:
  574. applog(LOG_ERR, "%"PRIpreprv": Work division autodetection failed (assuming 2): got %08x", icarus->proc_repr, res);
  575. info->work_division = 2;
  576. }
  577. applog(LOG_DEBUG, "%"PRIpreprv": Work division autodetection got %08x (=%d)", icarus->proc_repr, res, info->work_division);
  578. }
  579. if (!info->fpga_count)
  580. info->fpga_count = info->work_division;
  581. if (!is_power_of_two(info->work_division))
  582. info->work_division = upper_power_of_two_u32(info->work_division);
  583. info->nonce_mask = mask(info->work_division);
  584. return true;
  585. }
  586. static bool icarus_reopen(struct cgpu_info *icarus, struct icarus_state *state, int *fdp)
  587. {
  588. struct ICARUS_INFO *info = icarus->device_data;
  589. // Reopen the serial port to workaround a USB-host-chipset-specific issue with the Icarus's buggy USB-UART
  590. do_icarus_close(icarus->thr[0]);
  591. *fdp = icarus->device_fd = icarus_open(icarus->device_path, info->baud);
  592. if (unlikely(-1 == *fdp)) {
  593. applog(LOG_ERR, "%"PRIpreprv": Failed to reopen on %s", icarus->proc_repr, icarus->device_path);
  594. dev_error(icarus, REASON_DEV_COMMS_ERROR);
  595. state->firstrun = true;
  596. return false;
  597. }
  598. return true;
  599. }
  600. static
  601. bool icarus_job_prepare(struct thr_info *thr, struct work *work, __maybe_unused uint64_t max_nonce)
  602. {
  603. struct cgpu_info * const icarus = thr->cgpu;
  604. struct icarus_state * const state = thr->cgpu_data;
  605. uint8_t * const ob_bin = state->ob_bin;
  606. swab256(ob_bin, work->midstate);
  607. bswap_96p(&ob_bin[0x34], &work->data[0x40]);
  608. if (!(memcmp(&ob_bin[56], "\xff\xff\xff\xff", 4)
  609. || memcmp(&ob_bin, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 32))) {
  610. // This sequence is used on cairnsmore bitstreams for commands, NEVER send it otherwise
  611. applog(LOG_WARNING, "%"PRIpreprv": Received job attempting to send a command, corrupting it!",
  612. icarus->proc_repr);
  613. ob_bin[56] = 0;
  614. }
  615. return true;
  616. }
  617. bool icarus_job_start(struct thr_info *thr)
  618. {
  619. struct cgpu_info *icarus = thr->cgpu;
  620. struct ICARUS_INFO *info = icarus->device_data;
  621. struct icarus_state *state = thr->cgpu_data;
  622. const uint8_t * const ob_bin = state->ob_bin;
  623. int fd = icarus->device_fd;
  624. int ret;
  625. // Handle dynamic clocking for "subclass" devices
  626. // This needs to run before sending next job, since it hashes the command too
  627. if (info->dclk.freqM && likely(!state->firstrun)) {
  628. dclk_preUpdate(&info->dclk);
  629. dclk_updateFreq(&info->dclk, info->dclk_change_clock_func, thr);
  630. }
  631. cgtime(&state->tv_workstart);
  632. ret = icarus_write(fd, ob_bin, info->ob_size);
  633. if (ret) {
  634. do_icarus_close(thr);
  635. applog(LOG_ERR, "%"PRIpreprv": Comms error (werr=%d)", icarus->proc_repr, ret);
  636. dev_error(icarus, REASON_DEV_COMMS_ERROR);
  637. return false; /* This should never happen */
  638. }
  639. if (opt_debug) {
  640. char ob_hex[(info->ob_size * 2) + 1];
  641. bin2hex(ob_hex, ob_bin, info->ob_size);
  642. applog(LOG_DEBUG, "%"PRIpreprv" sent: %s",
  643. icarus->proc_repr,
  644. ob_hex);
  645. }
  646. return true;
  647. }
  648. static
  649. struct work *icarus_process_worknonce(const struct ICARUS_INFO * const info, struct icarus_state *state, uint32_t *nonce)
  650. {
  651. *nonce = icarus_nonce32toh(info, *nonce);
  652. if (test_nonce(state->last_work, *nonce, false))
  653. return state->last_work;
  654. if (likely(state->last2_work && test_nonce(state->last2_work, *nonce, false)))
  655. return state->last2_work;
  656. return NULL;
  657. }
  658. static
  659. void handle_identify(struct thr_info * const thr, int ret, const bool was_first_run)
  660. {
  661. const struct cgpu_info * const icarus = thr->cgpu;
  662. const struct ICARUS_INFO * const info = icarus->device_data;
  663. struct icarus_state * const state = thr->cgpu_data;
  664. int fd = icarus->device_fd;
  665. struct timeval tv_now;
  666. double delapsed;
  667. // For reading the nonce from Icarus
  668. unsigned char nonce_bin[info->read_size];
  669. // For storing the the 32-bit nonce
  670. uint32_t nonce;
  671. if (fd == -1)
  672. return;
  673. // If identify is requested (block erupters):
  674. // 1. Don't start the next job right away (above)
  675. // 2. Wait for the current job to complete 100%
  676. if (!was_first_run)
  677. {
  678. applog(LOG_DEBUG, "%"PRIpreprv": Identify: Waiting for current job to finish", icarus->proc_repr);
  679. while (true)
  680. {
  681. cgtime(&tv_now);
  682. delapsed = tdiff(&tv_now, &state->tv_workstart);
  683. if (delapsed + 0.1 > info->fullnonce)
  684. break;
  685. // Try to get more nonces (ignoring work restart)
  686. memset(nonce_bin, 0, sizeof(nonce_bin));
  687. ret = icarus_gets(nonce_bin, fd, &tv_now, NULL, (info->fullnonce - delapsed) * 10, info->read_size);
  688. if (ret == ICA_GETS_OK)
  689. {
  690. memcpy(&nonce, nonce_bin, sizeof(nonce));
  691. nonce = icarus_nonce32toh(info, nonce);
  692. submit_nonce(thr, state->last_work, nonce);
  693. }
  694. }
  695. }
  696. else
  697. applog(LOG_DEBUG, "%"PRIpreprv": Identify: Current job should already be finished", icarus->proc_repr);
  698. // 3. Delay 3 more seconds
  699. applog(LOG_DEBUG, "%"PRIpreprv": Identify: Leaving idle for 3 seconds", icarus->proc_repr);
  700. cgsleep_ms(3000);
  701. // Check for work restart in the meantime
  702. if (thr->work_restart)
  703. {
  704. applog(LOG_DEBUG, "%"PRIpreprv": Identify: Work restart requested during delay", icarus->proc_repr);
  705. goto no_job_start;
  706. }
  707. // 4. Start next job
  708. if (!state->firstrun)
  709. {
  710. applog(LOG_DEBUG, "%"PRIpreprv": Identify: Starting next job", icarus->proc_repr);
  711. if (!info->job_start_func(thr))
  712. no_job_start:
  713. state->firstrun = true;
  714. }
  715. state->identify = false;
  716. }
  717. static
  718. void icarus_transition_work(struct icarus_state *state, struct work *work)
  719. {
  720. if (state->last2_work)
  721. free_work(state->last2_work);
  722. state->last2_work = state->last_work;
  723. state->last_work = copy_work(work);
  724. }
  725. static int64_t icarus_scanhash(struct thr_info *thr, struct work *work,
  726. __maybe_unused int64_t max_nonce)
  727. {
  728. struct cgpu_info *icarus;
  729. int fd;
  730. int ret;
  731. struct ICARUS_INFO *info;
  732. struct work *nonce_work;
  733. int64_t hash_count;
  734. struct timeval tv_start = {.tv_sec=0}, elapsed;
  735. struct timeval tv_history_start, tv_history_finish;
  736. double Ti, Xi;
  737. int i;
  738. bool was_hw_error = false;
  739. bool was_first_run;
  740. struct ICARUS_HISTORY *history0, *history;
  741. int count;
  742. double Hs, W, fullnonce;
  743. int read_count;
  744. bool limited;
  745. uint32_t values;
  746. int64_t hash_count_range;
  747. elapsed.tv_sec = elapsed.tv_usec = 0;
  748. icarus = thr->cgpu;
  749. struct icarus_state *state = thr->cgpu_data;
  750. was_first_run = state->firstrun;
  751. icarus->drv->job_prepare(thr, work, max_nonce);
  752. // Wait for the previous run's result
  753. fd = icarus->device_fd;
  754. info = icarus->device_data;
  755. // For reading the nonce from Icarus
  756. unsigned char nonce_bin[info->read_size];
  757. // For storing the the 32-bit nonce
  758. uint32_t nonce;
  759. if (unlikely(fd == -1) && !icarus_reopen(icarus, state, &fd))
  760. return -1;
  761. if (!state->firstrun) {
  762. if (state->changework)
  763. {
  764. state->changework = false;
  765. ret = ICA_GETS_RESTART;
  766. }
  767. else
  768. {
  769. read_count = info->read_count;
  770. keepwaiting:
  771. /* Icarus will return info->read_size bytes nonces or nothing */
  772. memset(nonce_bin, 0, sizeof(nonce_bin));
  773. ret = icarus_gets(nonce_bin, fd, &state->tv_workfinish, thr, read_count, info->read_size);
  774. switch (ret) {
  775. case ICA_GETS_RESTART:
  776. // The prepared work is invalid, and the current work is abandoned
  777. // Go back to the main loop to get the next work, and stuff
  778. // Returning to the main loop will clear work_restart, so use a flag...
  779. state->changework = true;
  780. return 0;
  781. case ICA_GETS_ERROR:
  782. do_icarus_close(thr);
  783. applog(LOG_ERR, "%"PRIpreprv": Comms error (rerr)", icarus->proc_repr);
  784. dev_error(icarus, REASON_DEV_COMMS_ERROR);
  785. if (!icarus_reopen(icarus, state, &fd))
  786. return -1;
  787. break;
  788. case ICA_GETS_TIMEOUT:
  789. if (info->reopen_mode == IRM_TIMEOUT && !icarus_reopen(icarus, state, &fd))
  790. return -1;
  791. case ICA_GETS_OK:
  792. break;
  793. }
  794. }
  795. tv_start = state->tv_workstart;
  796. timersub(&state->tv_workfinish, &tv_start, &elapsed);
  797. }
  798. else
  799. {
  800. if (fd == -1 && !icarus_reopen(icarus, state, &fd))
  801. return -1;
  802. // First run; no nonce, no hashes done
  803. ret = ICA_GETS_ERROR;
  804. }
  805. #ifndef WIN32
  806. tcflush(fd, TCOFLUSH);
  807. #endif
  808. if (ret == ICA_GETS_OK)
  809. {
  810. memcpy(&nonce, nonce_bin, sizeof(nonce));
  811. nonce_work = icarus_process_worknonce(info, state, &nonce);
  812. if (likely(nonce_work))
  813. {
  814. if (nonce_work == state->last2_work)
  815. {
  816. // nonce was for the last job; submit and keep processing the current one
  817. submit_nonce(thr, nonce_work, nonce);
  818. goto keepwaiting;
  819. }
  820. if (info->continue_search)
  821. {
  822. read_count = info->read_count - ((timer_elapsed_us(&state->tv_workstart, NULL) / (1000000 / TIME_FACTOR)) + 1);
  823. if (read_count)
  824. {
  825. submit_nonce(thr, nonce_work, nonce);
  826. goto keepwaiting;
  827. }
  828. }
  829. }
  830. else
  831. was_hw_error = true;
  832. }
  833. // Handle dynamic clocking for "subclass" devices
  834. // This needs to run before sending next job, since it hashes the command too
  835. if (info->dclk.freqM && likely(ret == ICA_GETS_OK || ret == ICA_GETS_TIMEOUT)) {
  836. int qsec = ((4 * elapsed.tv_sec) + (elapsed.tv_usec / 250000)) ?: 1;
  837. for (int n = qsec; n; --n)
  838. dclk_gotNonces(&info->dclk);
  839. if (was_hw_error)
  840. dclk_errorCount(&info->dclk, qsec);
  841. }
  842. // Force a USB close/reopen on any hw error (or on request, eg for baud change)
  843. if (was_hw_error || info->reopen_now)
  844. {
  845. info->reopen_now = false;
  846. if (info->reopen_mode == IRM_CYCLE)
  847. {} // Do nothing here, we reopen after sending the job
  848. else
  849. if (!icarus_reopen(icarus, state, &fd))
  850. state->firstrun = true;
  851. }
  852. if (unlikely(state->identify))
  853. {
  854. // Delay job start until later...
  855. }
  856. else
  857. if (unlikely(icarus->deven != DEV_ENABLED || !info->job_start_func(thr)))
  858. state->firstrun = true;
  859. if (info->reopen_mode == IRM_CYCLE && !icarus_reopen(icarus, state, &fd))
  860. state->firstrun = true;
  861. work->blk.nonce = 0xffffffff;
  862. if (ret == ICA_GETS_ERROR) {
  863. state->firstrun = false;
  864. icarus_transition_work(state, work);
  865. hash_count = 0;
  866. goto out;
  867. }
  868. // OK, done starting Icarus's next job... now process the last run's result!
  869. if (ret == ICA_GETS_OK && !was_hw_error)
  870. {
  871. submit_nonce(thr, nonce_work, nonce);
  872. icarus_transition_work(state, work);
  873. hash_count = (nonce & info->nonce_mask);
  874. hash_count++;
  875. hash_count *= info->fpga_count;
  876. applog(LOG_DEBUG, "%"PRIpreprv" nonce = 0x%08x = 0x%08" PRIx64 " hashes (%"PRId64".%06lus)",
  877. icarus->proc_repr,
  878. nonce,
  879. (uint64_t)hash_count,
  880. (int64_t)elapsed.tv_sec, (unsigned long)elapsed.tv_usec);
  881. }
  882. else
  883. {
  884. double estimate_hashes = elapsed.tv_sec;
  885. estimate_hashes += ((double)elapsed.tv_usec) / 1000000.;
  886. if (ret == ICA_GETS_OK)
  887. {
  888. inc_hw_errors(thr, state->last_work, nonce);
  889. estimate_hashes -= ICARUS_READ_TIME(info->baud, info->read_size);
  890. }
  891. icarus_transition_work(state, work);
  892. estimate_hashes /= info->Hs;
  893. // If some Serial-USB delay allowed the full nonce range to
  894. // complete it can't have done more than a full nonce
  895. if (unlikely(estimate_hashes > 0xffffffff))
  896. estimate_hashes = 0xffffffff;
  897. applog(LOG_DEBUG, "%"PRIpreprv" %s nonce = 0x%08"PRIx64" hashes (%"PRId64".%06lus)",
  898. icarus->proc_repr,
  899. (ret == ICA_GETS_OK) ? "bad" : "no",
  900. (uint64_t)estimate_hashes,
  901. (int64_t)elapsed.tv_sec, (unsigned long)elapsed.tv_usec);
  902. hash_count = estimate_hashes;
  903. if (ret != ICA_GETS_OK)
  904. goto out;
  905. }
  906. // Only ICA_GETS_OK gets here
  907. if (info->do_default_detection && elapsed.tv_sec >= DEFAULT_DETECT_THRESHOLD) {
  908. int MHs = (double)hash_count / ((double)elapsed.tv_sec * 1e6 + (double)elapsed.tv_usec);
  909. --info->do_default_detection;
  910. applog(LOG_DEBUG, "%"PRIpreprv": Autodetect device speed: %d MH/s", icarus->proc_repr, MHs);
  911. if (MHs <= 370 || MHs > 420) {
  912. // Not a real Icarus: enable short timing
  913. applog(LOG_WARNING, "%"PRIpreprv": Seems too %s to be an Icarus; calibrating with short timing", icarus->proc_repr, MHs>380?"fast":"slow");
  914. info->timing_mode = MODE_SHORT;
  915. info->do_icarus_timing = true;
  916. info->do_default_detection = 0;
  917. }
  918. else
  919. if (MHs <= 380) {
  920. // Real Icarus?
  921. if (!info->do_default_detection) {
  922. applog(LOG_DEBUG, "%"PRIpreprv": Seems to be a real Icarus", icarus->proc_repr);
  923. info->read_count = (int)(info->fullnonce * TIME_FACTOR) - 1;
  924. }
  925. }
  926. else
  927. if (MHs <= 420) {
  928. // Enterpoint Cairnsmore1
  929. size_t old_repr_len = strlen(icarus->proc_repr);
  930. char old_repr[old_repr_len + 1];
  931. strcpy(old_repr, icarus->proc_repr);
  932. convert_icarus_to_cairnsmore(icarus);
  933. info->do_default_detection = 0;
  934. applog(LOG_WARNING, "%"PRIpreprv": Detected Cairnsmore1 device, upgrading driver to %"PRIpreprv, old_repr, icarus->proc_repr);
  935. }
  936. }
  937. // Ignore possible end condition values ... and hw errors
  938. // TODO: set limitations on calculated values depending on the device
  939. // to avoid crap values caused by CPU/Task Switching/Swapping/etc
  940. if (info->do_icarus_timing
  941. && !was_hw_error
  942. && ((nonce & info->nonce_mask) > END_CONDITION)
  943. && ((nonce & info->nonce_mask) < (info->nonce_mask & ~END_CONDITION))) {
  944. cgtime(&tv_history_start);
  945. history0 = &(info->history[0]);
  946. if (history0->values == 0)
  947. timeradd(&tv_start, &history_sec, &(history0->finish));
  948. Ti = (double)(elapsed.tv_sec)
  949. + ((double)(elapsed.tv_usec))/((double)1000000)
  950. - ((double)ICARUS_READ_TIME(info->baud, info->read_size));
  951. Xi = (double)hash_count;
  952. history0->sumXiTi += Xi * Ti;
  953. history0->sumXi += Xi;
  954. history0->sumTi += Ti;
  955. history0->sumXi2 += Xi * Xi;
  956. history0->values++;
  957. if (history0->hash_count_max < hash_count)
  958. history0->hash_count_max = hash_count;
  959. if (history0->hash_count_min > hash_count || history0->hash_count_min == 0)
  960. history0->hash_count_min = hash_count;
  961. if (history0->values >= info->min_data_count
  962. && timercmp(&tv_start, &(history0->finish), >)) {
  963. for (i = INFO_HISTORY; i > 0; i--)
  964. memcpy(&(info->history[i]),
  965. &(info->history[i-1]),
  966. sizeof(struct ICARUS_HISTORY));
  967. // Initialise history0 to zero for summary calculation
  968. memset(history0, 0, sizeof(struct ICARUS_HISTORY));
  969. // We just completed a history data set
  970. // So now recalc read_count based on the whole history thus we will
  971. // initially get more accurate until it completes INFO_HISTORY
  972. // total data sets
  973. count = 0;
  974. for (i = 1 ; i <= INFO_HISTORY; i++) {
  975. history = &(info->history[i]);
  976. if (history->values >= MIN_DATA_COUNT) {
  977. count++;
  978. history0->sumXiTi += history->sumXiTi;
  979. history0->sumXi += history->sumXi;
  980. history0->sumTi += history->sumTi;
  981. history0->sumXi2 += history->sumXi2;
  982. history0->values += history->values;
  983. if (history0->hash_count_max < history->hash_count_max)
  984. history0->hash_count_max = history->hash_count_max;
  985. if (history0->hash_count_min > history->hash_count_min || history0->hash_count_min == 0)
  986. history0->hash_count_min = history->hash_count_min;
  987. }
  988. }
  989. // All history data
  990. Hs = (history0->values*history0->sumXiTi - history0->sumXi*history0->sumTi)
  991. / (history0->values*history0->sumXi2 - history0->sumXi*history0->sumXi);
  992. W = history0->sumTi/history0->values - Hs*history0->sumXi/history0->values;
  993. hash_count_range = history0->hash_count_max - history0->hash_count_min;
  994. values = history0->values;
  995. // Initialise history0 to zero for next data set
  996. memset(history0, 0, sizeof(struct ICARUS_HISTORY));
  997. fullnonce = W + Hs * (((double)0xffffffff) + 1);
  998. read_count = (int)(fullnonce * TIME_FACTOR) - 1;
  999. if (info->read_count_limit > 0 && read_count > info->read_count_limit) {
  1000. read_count = info->read_count_limit;
  1001. limited = true;
  1002. } else
  1003. limited = false;
  1004. info->Hs = Hs;
  1005. info->read_count = read_count;
  1006. info->fullnonce = fullnonce;
  1007. info->count = count;
  1008. info->W = W;
  1009. info->values = values;
  1010. info->hash_count_range = hash_count_range;
  1011. if (info->min_data_count < MAX_MIN_DATA_COUNT)
  1012. info->min_data_count *= 2;
  1013. else if (info->timing_mode == MODE_SHORT)
  1014. info->do_icarus_timing = false;
  1015. // applog(LOG_DEBUG, "%"PRIpreprv" Re-estimate: read_count=%d%s fullnonce=%fs history count=%d Hs=%e W=%e values=%d hash range=0x%08lx min data count=%u", icarus->proc_repr, read_count, limited ? " (limited)" : "", fullnonce, count, Hs, W, values, hash_count_range, info->min_data_count);
  1016. applog(LOG_DEBUG, "%"PRIpreprv" Re-estimate: Hs=%e W=%e read_count=%d%s fullnonce=%.3fs",
  1017. icarus->proc_repr,
  1018. Hs, W, read_count,
  1019. limited ? " (limited)" : "", fullnonce);
  1020. }
  1021. info->history_count++;
  1022. cgtime(&tv_history_finish);
  1023. timersub(&tv_history_finish, &tv_history_start, &tv_history_finish);
  1024. timeradd(&tv_history_finish, &(info->history_time), &(info->history_time));
  1025. }
  1026. out:
  1027. if (unlikely(state->identify))
  1028. handle_identify(thr, ret, was_first_run);
  1029. return hash_count;
  1030. }
  1031. static struct api_data *icarus_drv_stats(struct cgpu_info *cgpu)
  1032. {
  1033. struct api_data *root = NULL;
  1034. struct ICARUS_INFO *info = cgpu->device_data;
  1035. // Warning, access to these is not locked - but we don't really
  1036. // care since hashing performance is way more important than
  1037. // locking access to displaying API debug 'stats'
  1038. // If locking becomes an issue for any of them, use copy_data=true also
  1039. root = api_add_int(root, "read_count", &(info->read_count), false);
  1040. root = api_add_int(root, "read_count_limit", &(info->read_count_limit), false);
  1041. root = api_add_double(root, "fullnonce", &(info->fullnonce), false);
  1042. root = api_add_int(root, "count", &(info->count), false);
  1043. root = api_add_hs(root, "Hs", &(info->Hs), false);
  1044. root = api_add_double(root, "W", &(info->W), false);
  1045. root = api_add_uint(root, "total_values", &(info->values), false);
  1046. root = api_add_uint64(root, "range", &(info->hash_count_range), false);
  1047. root = api_add_uint64(root, "history_count", &(info->history_count), false);
  1048. root = api_add_timeval(root, "history_time", &(info->history_time), false);
  1049. root = api_add_uint(root, "min_data_count", &(info->min_data_count), false);
  1050. root = api_add_uint(root, "timing_values", &(info->history[0].values), false);
  1051. root = api_add_const(root, "timing_mode", timing_mode_str(info->timing_mode), false);
  1052. root = api_add_bool(root, "is_timing", &(info->do_icarus_timing), false);
  1053. root = api_add_int(root, "baud", &(info->baud), false);
  1054. root = api_add_int(root, "work_division", &(info->work_division), false);
  1055. root = api_add_int(root, "fpga_count", &(info->fpga_count), false);
  1056. return root;
  1057. }
  1058. static
  1059. const char *icarus_set_baud(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  1060. {
  1061. struct ICARUS_INFO * const info = proc->device_data;
  1062. const int baud = atoi(newvalue);
  1063. if (!valid_baud(baud))
  1064. return "Invalid baud setting";
  1065. if (info->baud != baud)
  1066. {
  1067. info->baud = baud;
  1068. info->reopen_now = true;
  1069. }
  1070. return NULL;
  1071. }
  1072. static
  1073. const char *icarus_set_probe_timeout(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  1074. {
  1075. struct ICARUS_INFO * const info = proc->device_data;
  1076. info->probe_read_count = atof(newvalue) * 10.0 / ICARUS_READ_FAULT_DECISECONDS;
  1077. return NULL;
  1078. }
  1079. static
  1080. const char *icarus_set_work_division(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  1081. {
  1082. struct ICARUS_INFO * const info = proc->device_data;
  1083. const int work_division = atoi(newvalue);
  1084. if (!is_power_of_two(work_division))
  1085. return "Invalid work_division: must be a power of two";
  1086. if (info->user_set & IUS_FPGA_COUNT)
  1087. {
  1088. if (info->fpga_count > work_division)
  1089. return "work_division must be >= fpga_count";
  1090. }
  1091. else
  1092. info->fpga_count = work_division;
  1093. info->user_set |= IUS_WORK_DIVISION;
  1094. info->work_division = work_division;
  1095. info->nonce_mask = mask(work_division);
  1096. return NULL;
  1097. }
  1098. static
  1099. const char *icarus_set_fpga_count(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  1100. {
  1101. struct ICARUS_INFO * const info = proc->device_data;
  1102. const int fpga_count = atoi(newvalue);
  1103. if (fpga_count < 1 || fpga_count > info->work_division)
  1104. return "Invalid fpga_count: must be >0 and <=work_division";
  1105. info->fpga_count = fpga_count;
  1106. return NULL;
  1107. }
  1108. static
  1109. const char *icarus_set_reopen(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  1110. {
  1111. struct ICARUS_INFO * const info = proc->device_data;
  1112. if ((!strcasecmp(newvalue, "never")) || !strcasecmp(newvalue, "-r"))
  1113. info->reopen_mode = IRM_NEVER;
  1114. else
  1115. if (!strcasecmp(newvalue, "timeout"))
  1116. info->reopen_mode = IRM_TIMEOUT;
  1117. else
  1118. if ((!strcasecmp(newvalue, "cycle")) || !strcasecmp(newvalue, "r"))
  1119. info->reopen_mode = IRM_CYCLE;
  1120. else
  1121. if (!strcasecmp(newvalue, "now"))
  1122. info->reopen_now = true;
  1123. else
  1124. return "Invalid reopen mode";
  1125. return NULL;
  1126. }
  1127. static void icarus_shutdown(struct thr_info *thr)
  1128. {
  1129. do_icarus_close(thr);
  1130. free(thr->cgpu_data);
  1131. }
  1132. const struct bfg_set_device_definition icarus_set_device_funcs[] = {
  1133. // NOTE: Order of parameters below is important for --icarus-options
  1134. {"baud" , icarus_set_baud , "serial baud rate"},
  1135. {"work_division", icarus_set_work_division, "number of pieces work is split into"},
  1136. {"fpga_count" , icarus_set_fpga_count , "number of chips working on pieces"},
  1137. {"reopen" , icarus_set_reopen , "how often to reopen device: never, timeout, cycle, (or now for a one-shot reopen)"},
  1138. // NOTE: Below here, order is irrelevant
  1139. {"probe_timeout", icarus_set_probe_timeout},
  1140. {"timing" , icarus_set_timing , "timing of device; see README.FPGA"},
  1141. {NULL},
  1142. };
  1143. const struct bfg_set_device_definition icarus_set_device_funcs_live[] = {
  1144. {"baud" , icarus_set_baud , "serial baud rate"},
  1145. {"work_division", icarus_set_work_division, "number of pieces work is split into"},
  1146. {"reopen" , icarus_set_reopen , "how often to reopen device: never, timeout, cycle, (or now for a one-shot reopen)"},
  1147. {"timing" , icarus_set_timing , "timing of device; see README.FPGA"},
  1148. {NULL},
  1149. };
  1150. struct device_drv icarus_drv = {
  1151. .dname = "icarus",
  1152. .name = "ICA",
  1153. .probe_priority = -115,
  1154. .lowl_probe = icarus_lowl_probe,
  1155. .get_api_stats = icarus_drv_stats,
  1156. .thread_prepare = icarus_prepare,
  1157. .thread_init = icarus_init,
  1158. .scanhash = icarus_scanhash,
  1159. .job_prepare = icarus_job_prepare,
  1160. .thread_disable = close_device_fd,
  1161. .thread_shutdown = icarus_shutdown,
  1162. };