scrypt.cl 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858
  1. /*-
  2. * Copyright 2009 Colin Percival
  3. * Copyright 2011 ArtForz
  4. * Copyright 2011 pooler
  5. * Copyright 2012 mtrlt
  6. * Copyright 2012-2013 Con Kolivas
  7. * All rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, this list of conditions and the following disclaimer.
  14. * 2. Redistributions in binary form must reproduce the above copyright
  15. * notice, this list of conditions and the following disclaimer in the
  16. * documentation and/or other materials provided with the distribution.
  17. *
  18. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  19. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  20. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  21. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  22. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  23. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  24. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  25. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  26. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  27. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  28. * SUCH DAMAGE.
  29. *
  30. * This file was originally written by Colin Percival as part of the Tarsnap
  31. * online backup system.
  32. */
  33. // kernel-interface: scrypt
  34. __constant uint ES[2] = { 0x00FF00FF, 0xFF00FF00 };
  35. __constant uint K[] = {
  36. 0x428a2f98U,
  37. 0x71374491U,
  38. 0xb5c0fbcfU,
  39. 0xe9b5dba5U,
  40. 0x3956c25bU,
  41. 0x59f111f1U,
  42. 0x923f82a4U,
  43. 0xab1c5ed5U,
  44. 0xd807aa98U,
  45. 0x12835b01U,
  46. 0x243185beU, // 10
  47. 0x550c7dc3U,
  48. 0x72be5d74U,
  49. 0x80deb1feU,
  50. 0x9bdc06a7U,
  51. 0xe49b69c1U,
  52. 0xefbe4786U,
  53. 0x0fc19dc6U,
  54. 0x240ca1ccU,
  55. 0x2de92c6fU,
  56. 0x4a7484aaU, // 20
  57. 0x5cb0a9dcU,
  58. 0x76f988daU,
  59. 0x983e5152U,
  60. 0xa831c66dU,
  61. 0xb00327c8U,
  62. 0xbf597fc7U,
  63. 0xc6e00bf3U,
  64. 0xd5a79147U,
  65. 0x06ca6351U,
  66. 0x14292967U, // 30
  67. 0x27b70a85U,
  68. 0x2e1b2138U,
  69. 0x4d2c6dfcU,
  70. 0x53380d13U,
  71. 0x650a7354U,
  72. 0x766a0abbU,
  73. 0x81c2c92eU,
  74. 0x92722c85U,
  75. 0xa2bfe8a1U,
  76. 0xa81a664bU, // 40
  77. 0xc24b8b70U,
  78. 0xc76c51a3U,
  79. 0xd192e819U,
  80. 0xd6990624U,
  81. 0xf40e3585U,
  82. 0x106aa070U,
  83. 0x19a4c116U,
  84. 0x1e376c08U,
  85. 0x2748774cU,
  86. 0x34b0bcb5U, // 50
  87. 0x391c0cb3U,
  88. 0x4ed8aa4aU,
  89. 0x5b9cca4fU,
  90. 0x682e6ff3U,
  91. 0x748f82eeU,
  92. 0x78a5636fU,
  93. 0x84c87814U,
  94. 0x8cc70208U,
  95. 0x90befffaU,
  96. 0xa4506cebU, // 60
  97. 0xbef9a3f7U,
  98. 0xc67178f2U,
  99. 0x98c7e2a2U,
  100. 0xfc08884dU,
  101. 0xcd2a11aeU,
  102. 0x510e527fU,
  103. 0x9b05688cU,
  104. 0xC3910C8EU,
  105. 0xfb6feee7U,
  106. 0x2a01a605U, // 70
  107. 0x0c2e12e0U,
  108. 0x4498517BU,
  109. 0x6a09e667U,
  110. 0xa4ce148bU,
  111. 0x95F61999U,
  112. 0xc19bf174U,
  113. 0xBB67AE85U,
  114. 0x3C6EF372U,
  115. 0xA54FF53AU,
  116. 0x1F83D9ABU, // 80
  117. 0x5BE0CD19U,
  118. 0x5C5C5C5CU,
  119. 0x36363636U,
  120. 0x80000000U,
  121. 0x000003FFU,
  122. 0x00000280U,
  123. 0x000004a0U,
  124. 0x00000300U
  125. };
  126. #define rotl(x,y) rotate(x,y)
  127. #define Ch(x,y,z) bitselect(z,y,x)
  128. #define Maj(x,y,z) Ch((x^z),y,z)
  129. #define EndianSwap(n) (rotl(n & ES[0], 24U)|rotl(n & ES[1], 8U))
  130. #define Tr2(x) (rotl(x, 30U) ^ rotl(x, 19U) ^ rotl(x, 10U))
  131. #define Tr1(x) (rotl(x, 26U) ^ rotl(x, 21U) ^ rotl(x, 7U))
  132. #define Wr2(x) (rotl(x, 25U) ^ rotl(x, 14U) ^ (x>>3U))
  133. #define Wr1(x) (rotl(x, 15U) ^ rotl(x, 13U) ^ (x>>10U))
  134. #define RND(a, b, c, d, e, f, g, h, k) \
  135. h += Tr1(e); \
  136. h += Ch(e, f, g); \
  137. h += k; \
  138. d += h; \
  139. h += Tr2(a); \
  140. h += Maj(a, b, c);
  141. void SHA256(uint4*restrict state0,uint4*restrict state1, const uint4 block0, const uint4 block1, const uint4 block2, const uint4 block3)
  142. {
  143. uint4 S0 = *state0;
  144. uint4 S1 = *state1;
  145. #define A S0.x
  146. #define B S0.y
  147. #define C S0.z
  148. #define D S0.w
  149. #define E S1.x
  150. #define F S1.y
  151. #define G S1.z
  152. #define H S1.w
  153. uint4 W[4];
  154. W[ 0].x = block0.x;
  155. RND(A,B,C,D,E,F,G,H, W[0].x+ K[0]);
  156. W[ 0].y = block0.y;
  157. RND(H,A,B,C,D,E,F,G, W[0].y+ K[1]);
  158. W[ 0].z = block0.z;
  159. RND(G,H,A,B,C,D,E,F, W[0].z+ K[2]);
  160. W[ 0].w = block0.w;
  161. RND(F,G,H,A,B,C,D,E, W[0].w+ K[3]);
  162. W[ 1].x = block1.x;
  163. RND(E,F,G,H,A,B,C,D, W[1].x+ K[4]);
  164. W[ 1].y = block1.y;
  165. RND(D,E,F,G,H,A,B,C, W[1].y+ K[5]);
  166. W[ 1].z = block1.z;
  167. RND(C,D,E,F,G,H,A,B, W[1].z+ K[6]);
  168. W[ 1].w = block1.w;
  169. RND(B,C,D,E,F,G,H,A, W[1].w+ K[7]);
  170. W[ 2].x = block2.x;
  171. RND(A,B,C,D,E,F,G,H, W[2].x+ K[8]);
  172. W[ 2].y = block2.y;
  173. RND(H,A,B,C,D,E,F,G, W[2].y+ K[9]);
  174. W[ 2].z = block2.z;
  175. RND(G,H,A,B,C,D,E,F, W[2].z+ K[10]);
  176. W[ 2].w = block2.w;
  177. RND(F,G,H,A,B,C,D,E, W[2].w+ K[11]);
  178. W[ 3].x = block3.x;
  179. RND(E,F,G,H,A,B,C,D, W[3].x+ K[12]);
  180. W[ 3].y = block3.y;
  181. RND(D,E,F,G,H,A,B,C, W[3].y+ K[13]);
  182. W[ 3].z = block3.z;
  183. RND(C,D,E,F,G,H,A,B, W[3].z+ K[14]);
  184. W[ 3].w = block3.w;
  185. RND(B,C,D,E,F,G,H,A, W[3].w+ K[76]);
  186. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  187. RND(A,B,C,D,E,F,G,H, W[0].x+ K[15]);
  188. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  189. RND(H,A,B,C,D,E,F,G, W[0].y+ K[16]);
  190. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  191. RND(G,H,A,B,C,D,E,F, W[0].z+ K[17]);
  192. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  193. RND(F,G,H,A,B,C,D,E, W[0].w+ K[18]);
  194. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  195. RND(E,F,G,H,A,B,C,D, W[1].x+ K[19]);
  196. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  197. RND(D,E,F,G,H,A,B,C, W[1].y+ K[20]);
  198. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  199. RND(C,D,E,F,G,H,A,B, W[1].z+ K[21]);
  200. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  201. RND(B,C,D,E,F,G,H,A, W[1].w+ K[22]);
  202. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  203. RND(A,B,C,D,E,F,G,H, W[2].x+ K[23]);
  204. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  205. RND(H,A,B,C,D,E,F,G, W[2].y+ K[24]);
  206. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  207. RND(G,H,A,B,C,D,E,F, W[2].z+ K[25]);
  208. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  209. RND(F,G,H,A,B,C,D,E, W[2].w+ K[26]);
  210. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  211. RND(E,F,G,H,A,B,C,D, W[3].x+ K[27]);
  212. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  213. RND(D,E,F,G,H,A,B,C, W[3].y+ K[28]);
  214. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  215. RND(C,D,E,F,G,H,A,B, W[3].z+ K[29]);
  216. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  217. RND(B,C,D,E,F,G,H,A, W[3].w+ K[30]);
  218. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  219. RND(A,B,C,D,E,F,G,H, W[0].x+ K[31]);
  220. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  221. RND(H,A,B,C,D,E,F,G, W[0].y+ K[32]);
  222. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  223. RND(G,H,A,B,C,D,E,F, W[0].z+ K[33]);
  224. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  225. RND(F,G,H,A,B,C,D,E, W[0].w+ K[34]);
  226. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  227. RND(E,F,G,H,A,B,C,D, W[1].x+ K[35]);
  228. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  229. RND(D,E,F,G,H,A,B,C, W[1].y+ K[36]);
  230. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  231. RND(C,D,E,F,G,H,A,B, W[1].z+ K[37]);
  232. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  233. RND(B,C,D,E,F,G,H,A, W[1].w+ K[38]);
  234. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  235. RND(A,B,C,D,E,F,G,H, W[2].x+ K[39]);
  236. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  237. RND(H,A,B,C,D,E,F,G, W[2].y+ K[40]);
  238. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  239. RND(G,H,A,B,C,D,E,F, W[2].z+ K[41]);
  240. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  241. RND(F,G,H,A,B,C,D,E, W[2].w+ K[42]);
  242. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  243. RND(E,F,G,H,A,B,C,D, W[3].x+ K[43]);
  244. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  245. RND(D,E,F,G,H,A,B,C, W[3].y+ K[44]);
  246. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  247. RND(C,D,E,F,G,H,A,B, W[3].z+ K[45]);
  248. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  249. RND(B,C,D,E,F,G,H,A, W[3].w+ K[46]);
  250. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  251. RND(A,B,C,D,E,F,G,H, W[0].x+ K[47]);
  252. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  253. RND(H,A,B,C,D,E,F,G, W[0].y+ K[48]);
  254. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  255. RND(G,H,A,B,C,D,E,F, W[0].z+ K[49]);
  256. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  257. RND(F,G,H,A,B,C,D,E, W[0].w+ K[50]);
  258. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  259. RND(E,F,G,H,A,B,C,D, W[1].x+ K[51]);
  260. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  261. RND(D,E,F,G,H,A,B,C, W[1].y+ K[52]);
  262. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  263. RND(C,D,E,F,G,H,A,B, W[1].z+ K[53]);
  264. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  265. RND(B,C,D,E,F,G,H,A, W[1].w+ K[54]);
  266. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  267. RND(A,B,C,D,E,F,G,H, W[2].x+ K[55]);
  268. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  269. RND(H,A,B,C,D,E,F,G, W[2].y+ K[56]);
  270. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  271. RND(G,H,A,B,C,D,E,F, W[2].z+ K[57]);
  272. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  273. RND(F,G,H,A,B,C,D,E, W[2].w+ K[58]);
  274. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  275. RND(E,F,G,H,A,B,C,D, W[3].x+ K[59]);
  276. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  277. RND(D,E,F,G,H,A,B,C, W[3].y+ K[60]);
  278. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  279. RND(C,D,E,F,G,H,A,B, W[3].z+ K[61]);
  280. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  281. RND(B,C,D,E,F,G,H,A, W[3].w+ K[62]);
  282. #undef A
  283. #undef B
  284. #undef C
  285. #undef D
  286. #undef E
  287. #undef F
  288. #undef G
  289. #undef H
  290. *state0 += S0;
  291. *state1 += S1;
  292. }
  293. void SHA256_fresh(uint4*restrict state0,uint4*restrict state1, const uint4 block0, const uint4 block1, const uint4 block2, const uint4 block3)
  294. {
  295. #define A (*state0).x
  296. #define B (*state0).y
  297. #define C (*state0).z
  298. #define D (*state0).w
  299. #define E (*state1).x
  300. #define F (*state1).y
  301. #define G (*state1).z
  302. #define H (*state1).w
  303. uint4 W[4];
  304. W[0].x = block0.x;
  305. D= K[63] +W[0].x;
  306. H= K[64] +W[0].x;
  307. W[0].y = block0.y;
  308. C= K[65] +Tr1(D)+Ch(D, K[66], K[67])+W[0].y;
  309. G= K[68] +C+Tr2(H)+Ch(H, K[69] ,K[70]);
  310. W[0].z = block0.z;
  311. B= K[71] +Tr1(C)+Ch(C,D,K[66])+W[0].z;
  312. F= K[72] +B+Tr2(G)+Maj(G,H, K[73]);
  313. W[0].w = block0.w;
  314. A= K[74] +Tr1(B)+Ch(B,C,D)+W[0].w;
  315. E= K[75] +A+Tr2(F)+Maj(F,G,H);
  316. W[1].x = block1.x;
  317. RND(E,F,G,H,A,B,C,D, W[1].x+ K[4]);
  318. W[1].y = block1.y;
  319. RND(D,E,F,G,H,A,B,C, W[1].y+ K[5]);
  320. W[1].z = block1.z;
  321. RND(C,D,E,F,G,H,A,B, W[1].z+ K[6]);
  322. W[1].w = block1.w;
  323. RND(B,C,D,E,F,G,H,A, W[1].w+ K[7]);
  324. W[2].x = block2.x;
  325. RND(A,B,C,D,E,F,G,H, W[2].x+ K[8]);
  326. W[2].y = block2.y;
  327. RND(H,A,B,C,D,E,F,G, W[2].y+ K[9]);
  328. W[2].z = block2.z;
  329. RND(G,H,A,B,C,D,E,F, W[2].z+ K[10]);
  330. W[2].w = block2.w;
  331. RND(F,G,H,A,B,C,D,E, W[2].w+ K[11]);
  332. W[3].x = block3.x;
  333. RND(E,F,G,H,A,B,C,D, W[3].x+ K[12]);
  334. W[3].y = block3.y;
  335. RND(D,E,F,G,H,A,B,C, W[3].y+ K[13]);
  336. W[3].z = block3.z;
  337. RND(C,D,E,F,G,H,A,B, W[3].z+ K[14]);
  338. W[3].w = block3.w;
  339. RND(B,C,D,E,F,G,H,A, W[3].w+ K[76]);
  340. W[0].x += Wr1(W[3].z) + W[2].y + Wr2(W[0].y);
  341. RND(A,B,C,D,E,F,G,H, W[0].x+ K[15]);
  342. W[0].y += Wr1(W[3].w) + W[2].z + Wr2(W[0].z);
  343. RND(H,A,B,C,D,E,F,G, W[0].y+ K[16]);
  344. W[0].z += Wr1(W[0].x) + W[2].w + Wr2(W[0].w);
  345. RND(G,H,A,B,C,D,E,F, W[0].z+ K[17]);
  346. W[0].w += Wr1(W[0].y) + W[3].x + Wr2(W[1].x);
  347. RND(F,G,H,A,B,C,D,E, W[0].w+ K[18]);
  348. W[1].x += Wr1(W[0].z) + W[3].y + Wr2(W[1].y);
  349. RND(E,F,G,H,A,B,C,D, W[1].x+ K[19]);
  350. W[1].y += Wr1(W[0].w) + W[3].z + Wr2(W[1].z);
  351. RND(D,E,F,G,H,A,B,C, W[1].y+ K[20]);
  352. W[1].z += Wr1(W[1].x) + W[3].w + Wr2(W[1].w);
  353. RND(C,D,E,F,G,H,A,B, W[1].z+ K[21]);
  354. W[1].w += Wr1(W[1].y) + W[0].x + Wr2(W[2].x);
  355. RND(B,C,D,E,F,G,H,A, W[1].w+ K[22]);
  356. W[2].x += Wr1(W[1].z) + W[0].y + Wr2(W[2].y);
  357. RND(A,B,C,D,E,F,G,H, W[2].x+ K[23]);
  358. W[2].y += Wr1(W[1].w) + W[0].z + Wr2(W[2].z);
  359. RND(H,A,B,C,D,E,F,G, W[2].y+ K[24]);
  360. W[2].z += Wr1(W[2].x) + W[0].w + Wr2(W[2].w);
  361. RND(G,H,A,B,C,D,E,F, W[2].z+ K[25]);
  362. W[2].w += Wr1(W[2].y) + W[1].x + Wr2(W[3].x);
  363. RND(F,G,H,A,B,C,D,E, W[2].w+ K[26]);
  364. W[3].x += Wr1(W[2].z) + W[1].y + Wr2(W[3].y);
  365. RND(E,F,G,H,A,B,C,D, W[3].x+ K[27]);
  366. W[3].y += Wr1(W[2].w) + W[1].z + Wr2(W[3].z);
  367. RND(D,E,F,G,H,A,B,C, W[3].y+ K[28]);
  368. W[3].z += Wr1(W[3].x) + W[1].w + Wr2(W[3].w);
  369. RND(C,D,E,F,G,H,A,B, W[3].z+ K[29]);
  370. W[3].w += Wr1(W[3].y) + W[2].x + Wr2(W[0].x);
  371. RND(B,C,D,E,F,G,H,A, W[3].w+ K[30]);
  372. W[0].x += Wr1(W[3].z) + W[2].y + Wr2(W[0].y);
  373. RND(A,B,C,D,E,F,G,H, W[0].x+ K[31]);
  374. W[0].y += Wr1(W[3].w) + W[2].z + Wr2(W[0].z);
  375. RND(H,A,B,C,D,E,F,G, W[0].y+ K[32]);
  376. W[0].z += Wr1(W[0].x) + W[2].w + Wr2(W[0].w);
  377. RND(G,H,A,B,C,D,E,F, W[0].z+ K[33]);
  378. W[0].w += Wr1(W[0].y) + W[3].x + Wr2(W[1].x);
  379. RND(F,G,H,A,B,C,D,E, W[0].w+ K[34]);
  380. W[1].x += Wr1(W[0].z) + W[3].y + Wr2(W[1].y);
  381. RND(E,F,G,H,A,B,C,D, W[1].x+ K[35]);
  382. W[1].y += Wr1(W[0].w) + W[3].z + Wr2(W[1].z);
  383. RND(D,E,F,G,H,A,B,C, W[1].y+ K[36]);
  384. W[1].z += Wr1(W[1].x) + W[3].w + Wr2(W[1].w);
  385. RND(C,D,E,F,G,H,A,B, W[1].z+ K[37]);
  386. W[1].w += Wr1(W[1].y) + W[0].x + Wr2(W[2].x);
  387. RND(B,C,D,E,F,G,H,A, W[1].w+ K[38]);
  388. W[2].x += Wr1(W[1].z) + W[0].y + Wr2(W[2].y);
  389. RND(A,B,C,D,E,F,G,H, W[2].x+ K[39]);
  390. W[2].y += Wr1(W[1].w) + W[0].z + Wr2(W[2].z);
  391. RND(H,A,B,C,D,E,F,G, W[2].y+ K[40]);
  392. W[2].z += Wr1(W[2].x) + W[0].w + Wr2(W[2].w);
  393. RND(G,H,A,B,C,D,E,F, W[2].z+ K[41]);
  394. W[2].w += Wr1(W[2].y) + W[1].x + Wr2(W[3].x);
  395. RND(F,G,H,A,B,C,D,E, W[2].w+ K[42]);
  396. W[3].x += Wr1(W[2].z) + W[1].y + Wr2(W[3].y);
  397. RND(E,F,G,H,A,B,C,D, W[3].x+ K[43]);
  398. W[3].y += Wr1(W[2].w) + W[1].z + Wr2(W[3].z);
  399. RND(D,E,F,G,H,A,B,C, W[3].y+ K[44]);
  400. W[3].z += Wr1(W[3].x) + W[1].w + Wr2(W[3].w);
  401. RND(C,D,E,F,G,H,A,B, W[3].z+ K[45]);
  402. W[3].w += Wr1(W[3].y) + W[2].x + Wr2(W[0].x);
  403. RND(B,C,D,E,F,G,H,A, W[3].w+ K[46]);
  404. W[0].x += Wr1(W[3].z) + W[2].y + Wr2(W[0].y);
  405. RND(A,B,C,D,E,F,G,H, W[0].x+ K[47]);
  406. W[0].y += Wr1(W[3].w) + W[2].z + Wr2(W[0].z);
  407. RND(H,A,B,C,D,E,F,G, W[0].y+ K[48]);
  408. W[0].z += Wr1(W[0].x) + W[2].w + Wr2(W[0].w);
  409. RND(G,H,A,B,C,D,E,F, W[0].z+ K[49]);
  410. W[0].w += Wr1(W[0].y) + W[3].x + Wr2(W[1].x);
  411. RND(F,G,H,A,B,C,D,E, W[0].w+ K[50]);
  412. W[1].x += Wr1(W[0].z) + W[3].y + Wr2(W[1].y);
  413. RND(E,F,G,H,A,B,C,D, W[1].x+ K[51]);
  414. W[1].y += Wr1(W[0].w) + W[3].z + Wr2(W[1].z);
  415. RND(D,E,F,G,H,A,B,C, W[1].y+ K[52]);
  416. W[1].z += Wr1(W[1].x) + W[3].w + Wr2(W[1].w);
  417. RND(C,D,E,F,G,H,A,B, W[1].z+ K[53]);
  418. W[1].w += Wr1(W[1].y) + W[0].x + Wr2(W[2].x);
  419. RND(B,C,D,E,F,G,H,A, W[1].w+ K[54]);
  420. W[2].x += Wr1(W[1].z) + W[0].y + Wr2(W[2].y);
  421. RND(A,B,C,D,E,F,G,H, W[2].x+ K[55]);
  422. W[2].y += Wr1(W[1].w) + W[0].z + Wr2(W[2].z);
  423. RND(H,A,B,C,D,E,F,G, W[2].y+ K[56]);
  424. W[2].z += Wr1(W[2].x) + W[0].w + Wr2(W[2].w);
  425. RND(G,H,A,B,C,D,E,F, W[2].z+ K[57]);
  426. W[2].w += Wr1(W[2].y) + W[1].x + Wr2(W[3].x);
  427. RND(F,G,H,A,B,C,D,E, W[2].w+ K[58]);
  428. W[3].x += Wr1(W[2].z) + W[1].y + Wr2(W[3].y);
  429. RND(E,F,G,H,A,B,C,D, W[3].x+ K[59]);
  430. W[3].y += Wr1(W[2].w) + W[1].z + Wr2(W[3].z);
  431. RND(D,E,F,G,H,A,B,C, W[3].y+ K[60]);
  432. W[3].z += Wr1(W[3].x) + W[1].w + Wr2(W[3].w);
  433. RND(C,D,E,F,G,H,A,B, W[3].z+ K[61]);
  434. W[3].w += Wr1(W[3].y) + W[2].x + Wr2(W[0].x);
  435. RND(B,C,D,E,F,G,H,A, W[3].w+ K[62]);
  436. #undef A
  437. #undef B
  438. #undef C
  439. #undef D
  440. #undef E
  441. #undef F
  442. #undef G
  443. #undef H
  444. *state0 += (uint4)(K[73], K[77], K[78], K[79]);
  445. *state1 += (uint4)(K[66], K[67], K[80], K[81]);
  446. }
  447. __constant uint fixedW[64] =
  448. {
  449. 0x428a2f99,0xf1374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
  450. 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf794,
  451. 0xf59b89c2,0x73924787,0x23c6886e,0xa42ca65c,0x15ed3627,0x4d6edcbf,0xe28217fc,0xef02488f,
  452. 0xb707775c,0x0468c23f,0xe7e72b4c,0x49e1f1a2,0x4b99c816,0x926d1570,0xaa0fc072,0xadb36e2c,
  453. 0xad87a3ea,0xbcb1d3a3,0x7b993186,0x562b9420,0xbff3ca0c,0xda4b0c23,0x6cd8711a,0x8f337caa,
  454. 0xc91b1417,0xc359dce1,0xa83253a7,0x3b13c12d,0x9d3d725d,0xd9031a84,0xb1a03340,0x16f58012,
  455. 0xe64fb6a2,0xe84d923a,0xe93a5730,0x09837686,0x078ff753,0x29833341,0xd5de0b7e,0x6948ccf4,
  456. 0xe0a1adbe,0x7c728e11,0x511c78e4,0x315b45bd,0xfca71413,0xea28f96a,0x79703128,0x4e1ef848,
  457. };
  458. void SHA256_fixed(uint4*restrict state0,uint4*restrict state1)
  459. {
  460. uint4 S0 = *state0;
  461. uint4 S1 = *state1;
  462. #define A S0.x
  463. #define B S0.y
  464. #define C S0.z
  465. #define D S0.w
  466. #define E S1.x
  467. #define F S1.y
  468. #define G S1.z
  469. #define H S1.w
  470. RND(A,B,C,D,E,F,G,H, fixedW[0]);
  471. RND(H,A,B,C,D,E,F,G, fixedW[1]);
  472. RND(G,H,A,B,C,D,E,F, fixedW[2]);
  473. RND(F,G,H,A,B,C,D,E, fixedW[3]);
  474. RND(E,F,G,H,A,B,C,D, fixedW[4]);
  475. RND(D,E,F,G,H,A,B,C, fixedW[5]);
  476. RND(C,D,E,F,G,H,A,B, fixedW[6]);
  477. RND(B,C,D,E,F,G,H,A, fixedW[7]);
  478. RND(A,B,C,D,E,F,G,H, fixedW[8]);
  479. RND(H,A,B,C,D,E,F,G, fixedW[9]);
  480. RND(G,H,A,B,C,D,E,F, fixedW[10]);
  481. RND(F,G,H,A,B,C,D,E, fixedW[11]);
  482. RND(E,F,G,H,A,B,C,D, fixedW[12]);
  483. RND(D,E,F,G,H,A,B,C, fixedW[13]);
  484. RND(C,D,E,F,G,H,A,B, fixedW[14]);
  485. RND(B,C,D,E,F,G,H,A, fixedW[15]);
  486. RND(A,B,C,D,E,F,G,H, fixedW[16]);
  487. RND(H,A,B,C,D,E,F,G, fixedW[17]);
  488. RND(G,H,A,B,C,D,E,F, fixedW[18]);
  489. RND(F,G,H,A,B,C,D,E, fixedW[19]);
  490. RND(E,F,G,H,A,B,C,D, fixedW[20]);
  491. RND(D,E,F,G,H,A,B,C, fixedW[21]);
  492. RND(C,D,E,F,G,H,A,B, fixedW[22]);
  493. RND(B,C,D,E,F,G,H,A, fixedW[23]);
  494. RND(A,B,C,D,E,F,G,H, fixedW[24]);
  495. RND(H,A,B,C,D,E,F,G, fixedW[25]);
  496. RND(G,H,A,B,C,D,E,F, fixedW[26]);
  497. RND(F,G,H,A,B,C,D,E, fixedW[27]);
  498. RND(E,F,G,H,A,B,C,D, fixedW[28]);
  499. RND(D,E,F,G,H,A,B,C, fixedW[29]);
  500. RND(C,D,E,F,G,H,A,B, fixedW[30]);
  501. RND(B,C,D,E,F,G,H,A, fixedW[31]);
  502. RND(A,B,C,D,E,F,G,H, fixedW[32]);
  503. RND(H,A,B,C,D,E,F,G, fixedW[33]);
  504. RND(G,H,A,B,C,D,E,F, fixedW[34]);
  505. RND(F,G,H,A,B,C,D,E, fixedW[35]);
  506. RND(E,F,G,H,A,B,C,D, fixedW[36]);
  507. RND(D,E,F,G,H,A,B,C, fixedW[37]);
  508. RND(C,D,E,F,G,H,A,B, fixedW[38]);
  509. RND(B,C,D,E,F,G,H,A, fixedW[39]);
  510. RND(A,B,C,D,E,F,G,H, fixedW[40]);
  511. RND(H,A,B,C,D,E,F,G, fixedW[41]);
  512. RND(G,H,A,B,C,D,E,F, fixedW[42]);
  513. RND(F,G,H,A,B,C,D,E, fixedW[43]);
  514. RND(E,F,G,H,A,B,C,D, fixedW[44]);
  515. RND(D,E,F,G,H,A,B,C, fixedW[45]);
  516. RND(C,D,E,F,G,H,A,B, fixedW[46]);
  517. RND(B,C,D,E,F,G,H,A, fixedW[47]);
  518. RND(A,B,C,D,E,F,G,H, fixedW[48]);
  519. RND(H,A,B,C,D,E,F,G, fixedW[49]);
  520. RND(G,H,A,B,C,D,E,F, fixedW[50]);
  521. RND(F,G,H,A,B,C,D,E, fixedW[51]);
  522. RND(E,F,G,H,A,B,C,D, fixedW[52]);
  523. RND(D,E,F,G,H,A,B,C, fixedW[53]);
  524. RND(C,D,E,F,G,H,A,B, fixedW[54]);
  525. RND(B,C,D,E,F,G,H,A, fixedW[55]);
  526. RND(A,B,C,D,E,F,G,H, fixedW[56]);
  527. RND(H,A,B,C,D,E,F,G, fixedW[57]);
  528. RND(G,H,A,B,C,D,E,F, fixedW[58]);
  529. RND(F,G,H,A,B,C,D,E, fixedW[59]);
  530. RND(E,F,G,H,A,B,C,D, fixedW[60]);
  531. RND(D,E,F,G,H,A,B,C, fixedW[61]);
  532. RND(C,D,E,F,G,H,A,B, fixedW[62]);
  533. RND(B,C,D,E,F,G,H,A, fixedW[63]);
  534. #undef A
  535. #undef B
  536. #undef C
  537. #undef D
  538. #undef E
  539. #undef F
  540. #undef G
  541. #undef H
  542. *state0 += S0;
  543. *state1 += S1;
  544. }
  545. void shittify(uint4 B[8])
  546. {
  547. uint4 tmp[4];
  548. tmp[0] = (uint4)(B[1].x,B[2].y,B[3].z,B[0].w);
  549. tmp[1] = (uint4)(B[2].x,B[3].y,B[0].z,B[1].w);
  550. tmp[2] = (uint4)(B[3].x,B[0].y,B[1].z,B[2].w);
  551. tmp[3] = (uint4)(B[0].x,B[1].y,B[2].z,B[3].w);
  552. #pragma unroll
  553. for(uint i=0; i<4; ++i)
  554. B[i] = EndianSwap(tmp[i]);
  555. tmp[0] = (uint4)(B[5].x,B[6].y,B[7].z,B[4].w);
  556. tmp[1] = (uint4)(B[6].x,B[7].y,B[4].z,B[5].w);
  557. tmp[2] = (uint4)(B[7].x,B[4].y,B[5].z,B[6].w);
  558. tmp[3] = (uint4)(B[4].x,B[5].y,B[6].z,B[7].w);
  559. #pragma unroll
  560. for(uint i=0; i<4; ++i)
  561. B[i+4] = EndianSwap(tmp[i]);
  562. }
  563. void unshittify(uint4 B[8])
  564. {
  565. uint4 tmp[4];
  566. tmp[0] = (uint4)(B[3].x,B[2].y,B[1].z,B[0].w);
  567. tmp[1] = (uint4)(B[0].x,B[3].y,B[2].z,B[1].w);
  568. tmp[2] = (uint4)(B[1].x,B[0].y,B[3].z,B[2].w);
  569. tmp[3] = (uint4)(B[2].x,B[1].y,B[0].z,B[3].w);
  570. #pragma unroll
  571. for(uint i=0; i<4; ++i)
  572. B[i] = EndianSwap(tmp[i]);
  573. tmp[0] = (uint4)(B[7].x,B[6].y,B[5].z,B[4].w);
  574. tmp[1] = (uint4)(B[4].x,B[7].y,B[6].z,B[5].w);
  575. tmp[2] = (uint4)(B[5].x,B[4].y,B[7].z,B[6].w);
  576. tmp[3] = (uint4)(B[6].x,B[5].y,B[4].z,B[7].w);
  577. #pragma unroll
  578. for(uint i=0; i<4; ++i)
  579. B[i+4] = EndianSwap(tmp[i]);
  580. }
  581. void salsa(uint4 B[8])
  582. {
  583. uint4 w[4];
  584. #pragma unroll
  585. for(uint i=0; i<4; ++i)
  586. w[i] = (B[i]^=B[i+4]);
  587. #pragma unroll
  588. for(uint i=0; i<4; ++i)
  589. {
  590. w[0] ^= rotl(w[3] +w[2] , 7U);
  591. w[1] ^= rotl(w[0] +w[3] , 9U);
  592. w[2] ^= rotl(w[1] +w[0] ,13U);
  593. w[3] ^= rotl(w[2] +w[1] ,18U);
  594. w[2] ^= rotl(w[3].wxyz+w[0].zwxy, 7U);
  595. w[1] ^= rotl(w[2].wxyz+w[3].zwxy, 9U);
  596. w[0] ^= rotl(w[1].wxyz+w[2].zwxy,13U);
  597. w[3] ^= rotl(w[0].wxyz+w[1].zwxy,18U);
  598. }
  599. #pragma unroll
  600. for(uint i=0; i<4; ++i)
  601. w[i] = (B[i+4]^=(B[i]+=w[i]));
  602. #pragma unroll
  603. for(uint i=0; i<4; ++i)
  604. {
  605. w[0] ^= rotl(w[3] +w[2] , 7U);
  606. w[1] ^= rotl(w[0] +w[3] , 9U);
  607. w[2] ^= rotl(w[1] +w[0] ,13U);
  608. w[3] ^= rotl(w[2] +w[1] ,18U);
  609. w[2] ^= rotl(w[3].wxyz+w[0].zwxy, 7U);
  610. w[1] ^= rotl(w[2].wxyz+w[3].zwxy, 9U);
  611. w[0] ^= rotl(w[1].wxyz+w[2].zwxy,13U);
  612. w[3] ^= rotl(w[0].wxyz+w[1].zwxy,18U);
  613. }
  614. #pragma unroll
  615. for(uint i=0; i<4; ++i)
  616. B[i+4] += w[i];
  617. }
  618. #define Coord(x,y,z) x+y*(x ## SIZE)+z*(y ## SIZE)*(x ## SIZE)
  619. #define CO Coord(z,x,y)
  620. void scrypt_core(uint4 X[8], __global uint4*restrict lookup)
  621. {
  622. shittify(X);
  623. const uint zSIZE = 8;
  624. const uint ySIZE = (1024/LOOKUP_GAP+(1024%LOOKUP_GAP>0));
  625. const uint xSIZE = CONCURRENT_THREADS;
  626. uint x = get_global_id(0)%xSIZE;
  627. for(uint y=0; y<1024/LOOKUP_GAP; ++y)
  628. {
  629. #pragma unroll
  630. for(uint z=0; z<zSIZE; ++z)
  631. lookup[CO] = X[z];
  632. for(uint i=0; i<LOOKUP_GAP; ++i)
  633. salsa(X);
  634. }
  635. #if (LOOKUP_GAP != 1) && (LOOKUP_GAP != 2) && (LOOKUP_GAP != 4) && (LOOKUP_GAP != 8)
  636. {
  637. uint y = (1024/LOOKUP_GAP);
  638. #pragma unroll
  639. for(uint z=0; z<zSIZE; ++z)
  640. lookup[CO] = X[z];
  641. for(uint i=0; i<1024%LOOKUP_GAP; ++i)
  642. salsa(X);
  643. }
  644. #endif
  645. for (uint i=0; i<1024; ++i)
  646. {
  647. uint4 V[8];
  648. uint j = X[7].x & K[85];
  649. uint y = (j/LOOKUP_GAP);
  650. #pragma unroll
  651. for(uint z=0; z<zSIZE; ++z)
  652. V[z] = lookup[CO];
  653. #if (LOOKUP_GAP == 1)
  654. #elif (LOOKUP_GAP == 2)
  655. if (j&1)
  656. salsa(V);
  657. #else
  658. uint val = j%LOOKUP_GAP;
  659. for (uint z=0; z<val; ++z)
  660. salsa(V);
  661. #endif
  662. #pragma unroll
  663. for(uint z=0; z<zSIZE; ++z)
  664. X[z] ^= V[z];
  665. salsa(X);
  666. }
  667. unshittify(X);
  668. }
  669. #define SCRYPT_FOUND (0xFF)
  670. #define SETFOUND(Xnonce) output[output[SCRYPT_FOUND]++] = Xnonce
  671. __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
  672. __kernel void search(__global const uint4 * restrict input,
  673. volatile __global uint*restrict output, __global uint4*restrict padcache,
  674. const uint4 midstate0, const uint4 midstate16, const uint target)
  675. {
  676. uint gid = get_global_id(0);
  677. uint4 X[8];
  678. uint4 tstate0, tstate1, ostate0, ostate1, tmp0, tmp1;
  679. uint4 data = (uint4)(input[4].x,input[4].y,input[4].z,gid);
  680. uint4 pad0 = midstate0, pad1 = midstate16;
  681. SHA256(&pad0,&pad1, data, (uint4)(K[84],0,0,0), (uint4)(0,0,0,0), (uint4)(0,0,0, K[86]));
  682. SHA256_fresh(&ostate0,&ostate1, pad0^ K[82], pad1^ K[82], K[82], K[82]);
  683. SHA256_fresh(&tstate0,&tstate1, pad0^ K[83], pad1^ K[83], K[83], K[83]);
  684. tmp0 = tstate0;
  685. tmp1 = tstate1;
  686. SHA256(&tstate0, &tstate1, input[0],input[1],input[2],input[3]);
  687. #pragma unroll
  688. for (uint i=0; i<4; i++)
  689. {
  690. pad0 = tstate0;
  691. pad1 = tstate1;
  692. X[i*2 ] = ostate0;
  693. X[i*2+1] = ostate1;
  694. SHA256(&pad0,&pad1, data, (uint4)(i+1,K[84],0,0), (uint4)(0,0,0,0), (uint4)(0,0,0, K[87]));
  695. SHA256(X+i*2,X+i*2+1, pad0, pad1, (uint4)(K[84], 0U, 0U, 0U), (uint4)(0U, 0U, 0U, K[88]));
  696. }
  697. scrypt_core(X,padcache);
  698. SHA256(&tmp0,&tmp1, X[0], X[1], X[2], X[3]);
  699. SHA256(&tmp0,&tmp1, X[4], X[5], X[6], X[7]);
  700. SHA256_fixed(&tmp0,&tmp1);
  701. SHA256(&ostate0,&ostate1, tmp0, tmp1, (uint4)(K[84], 0U, 0U, 0U), (uint4)(0U, 0U, 0U, K[88]));
  702. bool result = (EndianSwap(ostate1.w) <= target);
  703. if (result)
  704. SETFOUND(gid);
  705. }