driver-avalonmm.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899
  1. /*
  2. * Copyright 2014 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <stdbool.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <unistd.h>
  15. #include <utlist.h>
  16. #include "deviceapi.h"
  17. #include "logging.h"
  18. #include "lowlevel.h"
  19. #include "lowl-vcom.h"
  20. #include "miner.h"
  21. #include "util.h"
  22. #include "work2d.h"
  23. #define AVALONMM_MAX_MODULES 4
  24. #define AVALONMM_MAX_COINBASE_SIZE (6 * 1024)
  25. #define AVALONMM_MAX_MERKLES 20
  26. #define AVALONMM_MAX_NONCE_DIFF 0x20
  27. // Must be a power of two
  28. #define AVALONMM_CACHED_JOBS 2
  29. #define AVALONMM_NONCE_OFFSET 0x180
  30. BFG_REGISTER_DRIVER(avalonmm_drv)
  31. static const struct bfg_set_device_definition avalonmm_set_device_funcs[];
  32. #define AVALONMM_PKT_DATA_SIZE 0x20
  33. #define AVALONMM_PKT_SIZE (AVALONMM_PKT_DATA_SIZE + 7)
  34. enum avalonmm_cmd {
  35. AMC_DETECT = 0x0a,
  36. AMC_NEW_JOB = 0x0b,
  37. AMC_JOB_ID = 0x0c,
  38. AMC_COINBASE = 0x0d,
  39. AMC_MERKLES = 0x0e,
  40. AMC_BLKHDR = 0x0f,
  41. AMC_POLL = 0x10,
  42. AMC_TARGET = 0x11,
  43. AMC_START = 0x13,
  44. };
  45. enum avalonmm_reply {
  46. AMR_NONCE = 0x17,
  47. AMR_STATUS = 0x18,
  48. AMR_DETECT_ACK = 0x19,
  49. };
  50. static
  51. bool avalonmm_write_cmd(const int fd, const enum avalonmm_cmd cmd, const void *data, size_t datasz)
  52. {
  53. uint8_t packets = ((datasz + AVALONMM_PKT_DATA_SIZE - 1) / AVALONMM_PKT_DATA_SIZE) ?: 1;
  54. uint8_t pkt[AVALONMM_PKT_SIZE] = {'A', 'V', cmd, 1, packets};
  55. uint16_t crc;
  56. ssize_t r;
  57. while (true)
  58. {
  59. size_t copysz = AVALONMM_PKT_DATA_SIZE;
  60. if (datasz < copysz)
  61. {
  62. copysz = datasz;
  63. memset(&pkt[5 + copysz], '\0', AVALONMM_PKT_DATA_SIZE - copysz);
  64. }
  65. if (copysz)
  66. memcpy(&pkt[5], data, copysz);
  67. crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  68. pk_u16be(pkt, 5 + AVALONMM_PKT_DATA_SIZE, crc);
  69. r = write(fd, pkt, sizeof(pkt));
  70. if (opt_dev_protocol)
  71. {
  72. char hex[(sizeof(pkt) * 2) + 1];
  73. bin2hex(hex, pkt, sizeof(pkt));
  74. applog(LOG_DEBUG, "DEVPROTO fd=%d SEND: %s => %d", fd, hex, (int)r);
  75. }
  76. if (sizeof(pkt) != r)
  77. return false;
  78. datasz -= copysz;
  79. if (!datasz)
  80. break;
  81. data += copysz;
  82. ++pkt[3];
  83. }
  84. return true;
  85. }
  86. static
  87. ssize_t avalonmm_read(const int fd, const int logprio, enum avalonmm_reply *out_reply, void * const bufp, size_t bufsz)
  88. {
  89. uint8_t *buf = bufp;
  90. uint8_t pkt[AVALONMM_PKT_SIZE];
  91. uint8_t packets = 0, got = 0;
  92. uint16_t good_crc, actual_crc;
  93. ssize_t r;
  94. while (true)
  95. {
  96. r = serial_read(fd, pkt, sizeof(pkt));
  97. if (opt_dev_protocol)
  98. {
  99. if (r >= 0)
  100. {
  101. char hex[(r * 2) + 1];
  102. bin2hex(hex, pkt, r);
  103. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV: %s", fd, hex);
  104. }
  105. else
  106. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV (%d)", fd, (int)r);
  107. }
  108. if (r != sizeof(pkt))
  109. return -1;
  110. if (memcmp(pkt, "AV", 2))
  111. applogr(-1, logprio, "%s: bad header", __func__);
  112. good_crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  113. actual_crc = upk_u16le(pkt, 5 + AVALONMM_PKT_DATA_SIZE);
  114. if (good_crc != actual_crc)
  115. applogr(-1, logprio, "%s: bad CRC (good=%04x actual=%04x)", __func__, good_crc, actual_crc);
  116. *out_reply = pkt[2];
  117. if (!got)
  118. {
  119. if (pkt[3] != 1)
  120. applogr(-1, logprio, "%s: first packet is not index 1", __func__);
  121. ++got;
  122. packets = pkt[4];
  123. }
  124. else
  125. {
  126. if (pkt[3] != ++got)
  127. applogr(-1, logprio, "%s: packet %d is not index %d", __func__, got, got);
  128. if (pkt[4] != packets)
  129. applogr(-1, logprio, "%s: packet %d total packet count is %d rather than original value of %d", __func__, got, pkt[4], packets);
  130. }
  131. if (bufsz)
  132. {
  133. if (likely(bufsz > AVALONMM_PKT_DATA_SIZE))
  134. {
  135. memcpy(buf, &pkt[5], AVALONMM_PKT_DATA_SIZE);
  136. bufsz -= AVALONMM_PKT_DATA_SIZE;
  137. buf += AVALONMM_PKT_DATA_SIZE;
  138. }
  139. else
  140. {
  141. memcpy(buf, &pkt[5], bufsz);
  142. bufsz = 0;
  143. }
  144. }
  145. if (got == packets)
  146. break;
  147. }
  148. return (((ssize_t)got) * AVALONMM_PKT_DATA_SIZE);
  149. }
  150. static
  151. bool avalonmm_detect_one(const char * const devpath)
  152. {
  153. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  154. enum avalonmm_reply reply;
  155. const int fd = serial_open(devpath, 115200, 1, true);
  156. struct cgpu_info *prev_cgpu = NULL;
  157. if (fd == -1)
  158. applogr(false, LOG_DEBUG, "%s: Failed to open %s", __func__, devpath);
  159. for (int i = 0; i < AVALONMM_MAX_MODULES; ++i)
  160. {
  161. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, i);
  162. avalonmm_write_cmd(fd, AMC_DETECT, buf, AVALONMM_PKT_DATA_SIZE);
  163. }
  164. while (avalonmm_read(fd, LOG_DEBUG, &reply, buf, AVALONMM_PKT_DATA_SIZE) > 0)
  165. {
  166. if (reply != AMR_DETECT_ACK)
  167. continue;
  168. int moduleno = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  169. struct cgpu_info * const cgpu = malloc(sizeof(*cgpu));
  170. *cgpu = (struct cgpu_info){
  171. .drv = &avalonmm_drv,
  172. .device_path = prev_cgpu ? prev_cgpu->device_path : strdup(devpath),
  173. .device_data = (void*)(intptr_t)moduleno,
  174. .set_device_funcs = avalonmm_set_device_funcs,
  175. .deven = DEV_ENABLED,
  176. .procs = 1,
  177. .threads = prev_cgpu ? 0 : 1,
  178. };
  179. add_cgpu_slave(cgpu, prev_cgpu);
  180. prev_cgpu = cgpu;
  181. }
  182. serial_close(fd);
  183. return prev_cgpu;
  184. }
  185. static
  186. bool avalonmm_lowl_probe(const struct lowlevel_device_info * const info)
  187. {
  188. return vcom_lowl_probe_wrapper(info, avalonmm_detect_one);
  189. }
  190. struct avalonmm_job {
  191. struct stratum_work swork;
  192. uint32_t jobid;
  193. struct timeval tv_prepared;
  194. double nonce_diff;
  195. };
  196. struct avalonmm_chain_state {
  197. uint32_t xnonce1;
  198. struct avalonmm_job *jobs[AVALONMM_CACHED_JOBS];
  199. uint32_t next_jobid;
  200. uint32_t fan_desired;
  201. uint32_t clock_desired;
  202. uint32_t voltcfg_desired;
  203. };
  204. struct avalonmm_module_state {
  205. uint32_t module_id;
  206. uint16_t temp[2];
  207. uint16_t fan[2];
  208. uint32_t clock_actual;
  209. uint32_t voltcfg_actual;
  210. };
  211. static
  212. uint16_t avalonmm_voltage_config_from_dmvolts(uint32_t dmvolts)
  213. {
  214. return ((uint16_t)bitflip8((0x78 - dmvolts / 125) << 1 | 1)) << 8;
  215. }
  216. // Potentially lossy!
  217. static
  218. uint32_t avalonmm_dmvolts_from_voltage_config(uint32_t voltcfg)
  219. {
  220. return (0x78 - (bitflip8(voltcfg >> 8) >> 1)) * 125;
  221. }
  222. static
  223. uint32_t avalonmm_fan_config_from_percent(uint8_t percent)
  224. {
  225. return (0x3ff - percent * 0x3ff / 100);
  226. }
  227. static
  228. uint8_t avalonmm_fan_percent_from_config(uint32_t cfg)
  229. {
  230. return (0x3ff - cfg) * 100 / 0x3ff;
  231. }
  232. static struct cgpu_info *avalonmm_dev_for_module_id(struct cgpu_info *, uint32_t);
  233. static bool avalonmm_poll_once(struct cgpu_info *, int64_t *);
  234. static
  235. bool avalonmm_init(struct thr_info * const master_thr)
  236. {
  237. struct cgpu_info * const master_dev = master_thr->cgpu, *dev = NULL;
  238. const char * const devpath = master_dev->device_path;
  239. const int fd = serial_open(devpath, 115200, 1, true);
  240. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  241. int64_t module_id;
  242. master_dev->device_fd = fd;
  243. if (unlikely(fd == -1))
  244. applogr(false, LOG_ERR, "%s: Failed to initialise", master_dev->dev_repr);
  245. struct avalonmm_chain_state * const chain = malloc(sizeof(*chain));
  246. *chain = (struct avalonmm_chain_state){
  247. .fan_desired = avalonmm_fan_config_from_percent(90),
  248. .voltcfg_desired = avalonmm_voltage_config_from_dmvolts(6625),
  249. };
  250. work2d_init();
  251. if (!reserve_work2d_(&chain->xnonce1))
  252. {
  253. applog(LOG_ERR, "%s: Failed to reserve 2D work", master_dev->dev_repr);
  254. free(chain);
  255. serial_close(fd);
  256. return false;
  257. }
  258. for_each_managed_proc(proc, master_dev)
  259. {
  260. if (dev == proc->device)
  261. continue;
  262. dev = proc->device;
  263. struct thr_info * const thr = proc->thr[0];
  264. struct avalonmm_module_state * const module = malloc(sizeof(*module));
  265. *module = (struct avalonmm_module_state){
  266. .module_id = (intptr_t)dev->device_data,
  267. };
  268. proc->device_data = chain;
  269. thr->cgpu_data = module;
  270. }
  271. dev = NULL;
  272. for_each_managed_proc(proc, master_dev)
  273. {
  274. cgpu_set_defaults(proc);
  275. proc->status = LIFE_INIT2;
  276. }
  277. if (!chain->clock_desired)
  278. {
  279. // Get a reasonable default frequency
  280. dev = master_dev;
  281. struct thr_info * const thr = dev->thr[0];
  282. struct avalonmm_module_state * const module = thr->cgpu_data;
  283. resend:
  284. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, module->module_id);
  285. avalonmm_write_cmd(fd, AMC_POLL, buf, AVALONMM_PKT_DATA_SIZE);
  286. while (avalonmm_poll_once(master_dev, &module_id))
  287. {
  288. if (module_id != module->module_id)
  289. continue;
  290. if (module->clock_actual)
  291. {
  292. chain->clock_desired = module->clock_actual;
  293. break;
  294. }
  295. else
  296. goto resend;
  297. }
  298. }
  299. if (likely(chain->clock_desired))
  300. applog(LOG_DEBUG, "%s: Frequency is initialised with %d MHz", master_dev->dev_repr, chain->clock_desired);
  301. else
  302. applogr(false, LOG_ERR, "%s: No frequency detected, please use --set %s@%s:clock=MHZ", master_dev->dev_repr, master_dev->drv->dname, devpath);
  303. return true;
  304. }
  305. static
  306. bool avalonmm_send_swork(const int fd, struct avalonmm_chain_state * const chain, const struct stratum_work * const swork, uint32_t jobid, double *out_nonce_diff)
  307. {
  308. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  309. bytes_t coinbase = BYTES_INIT;
  310. int coinbase_len = bytes_len(&swork->coinbase);
  311. if (coinbase_len > AVALONMM_MAX_COINBASE_SIZE)
  312. return false;
  313. if (swork->merkles > AVALONMM_MAX_MERKLES)
  314. return false;
  315. pk_u32be(buf, 0, coinbase_len);
  316. const size_t xnonce2_offset = swork->nonce2_offset + work2d_pad_xnonce_size(swork) + work2d_xnonce1sz;
  317. pk_u32be(buf, 4, xnonce2_offset);
  318. pk_u32be(buf, 8, 4); // extranonce2 size, but only 4 is supported - smaller sizes are handled by limiting the range
  319. pk_u32be(buf, 0x0c, 0x24); // merkle_offset, always 0x24 for Bitcoin
  320. pk_u32be(buf, 0x10, swork->merkles);
  321. pk_u32be(buf, 0x14, 1); // diff? poorly defined
  322. pk_u32be(buf, 0x18, 0); // pool number - none of its business
  323. if (!avalonmm_write_cmd(fd, AMC_NEW_JOB, buf, 0x1c))
  324. return false;
  325. double nonce_diff = target_diff(swork->target);
  326. if (nonce_diff >= AVALONMM_MAX_NONCE_DIFF)
  327. set_target_to_pdiff(buf, nonce_diff = AVALONMM_MAX_NONCE_DIFF);
  328. else
  329. memcpy(buf, swork->target, 0x20);
  330. *out_nonce_diff = nonce_diff;
  331. if (!avalonmm_write_cmd(fd, AMC_TARGET, buf, 0x20))
  332. return false;
  333. pk_u32be(buf, 0, jobid);
  334. if (!avalonmm_write_cmd(fd, AMC_JOB_ID, buf, 4))
  335. return false;
  336. // Need to add extranonce padding and extranonce2
  337. bytes_cpy(&coinbase, &swork->coinbase);
  338. uint8_t *cbp = bytes_buf(&coinbase);
  339. cbp += swork->nonce2_offset;
  340. work2d_pad_xnonce(cbp, swork, false);
  341. cbp += work2d_pad_xnonce_size(swork);
  342. memcpy(cbp, &chain->xnonce1, work2d_xnonce1sz);
  343. cbp += work2d_xnonce1sz;
  344. if (!avalonmm_write_cmd(fd, AMC_COINBASE, bytes_buf(&coinbase), bytes_len(&coinbase)))
  345. return false;
  346. if (!avalonmm_write_cmd(fd, AMC_MERKLES, bytes_buf(&swork->merkle_bin), bytes_len(&swork->merkle_bin)))
  347. return false;
  348. uint8_t header_bin[0x80];
  349. memcpy(&header_bin[ 0], swork->header1, 0x24);
  350. memset(&header_bin[0x24], '\0', 0x20); // merkle root
  351. pk_u32be(header_bin, 0x44, swork->ntime);
  352. memcpy(&header_bin[0x48], swork->diffbits, 4);
  353. memset(&header_bin[0x4c], '\0', 4); // nonce
  354. memcpy(&header_bin[0x50], bfg_workpadding_bin, 0x30);
  355. if (!avalonmm_write_cmd(fd, AMC_BLKHDR, header_bin, sizeof(header_bin)))
  356. return false;
  357. // Avalon MM cannot handle xnonce2_size other than 4, and works in big endian, so we use a range to ensure the following bytes match
  358. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  359. uint8_t mm_xnonce2_start[4];
  360. uint32_t xnonce2_range;
  361. memset(mm_xnonce2_start, '\0', 4);
  362. cbp += work2d_xnonce2sz;
  363. for (int i = 1; i <= fixed_mm_xnonce2_bytes; ++i)
  364. mm_xnonce2_start[fixed_mm_xnonce2_bytes - i] = cbp++[0];
  365. if (fixed_mm_xnonce2_bytes > 0)
  366. xnonce2_range = (1 << (8 * work2d_xnonce2sz)) - 1;
  367. else
  368. xnonce2_range = 0xffffffff;
  369. pk_u32be(buf, 0, chain->fan_desired);
  370. pk_u32be(buf, 4, chain->voltcfg_desired);
  371. pk_u32be(buf, 8, chain->clock_desired);
  372. memcpy(&buf[0xc], mm_xnonce2_start, 4);
  373. pk_u32be(buf, 0x10, xnonce2_range);
  374. if (!avalonmm_write_cmd(fd, AMC_START, buf, 0x14))
  375. return false;
  376. return true;
  377. }
  378. static
  379. void avalonmm_free_job(struct avalonmm_job * const mmjob)
  380. {
  381. stratum_work_clean(&mmjob->swork);
  382. free(mmjob);
  383. }
  384. static
  385. bool avalonmm_update_swork_from_pool(struct cgpu_info * const master_dev, struct pool * const pool)
  386. {
  387. struct avalonmm_chain_state * const chain = master_dev->device_data;
  388. const int fd = master_dev->device_fd;
  389. struct avalonmm_job *mmjob = malloc(sizeof(*mmjob));
  390. *mmjob = (struct avalonmm_job){
  391. .jobid = chain->next_jobid,
  392. };
  393. cg_rlock(&pool->data_lock);
  394. stratum_work_cpy(&mmjob->swork, &pool->swork);
  395. cg_runlock(&pool->data_lock);
  396. timer_set_now(&mmjob->tv_prepared);
  397. mmjob->swork.data_lock_p = NULL;
  398. if (!avalonmm_send_swork(fd, chain, &mmjob->swork, mmjob->jobid, &mmjob->nonce_diff))
  399. {
  400. avalonmm_free_job(mmjob);
  401. return false;
  402. }
  403. applog(LOG_DEBUG, "%s: Upload of job id %08lx complete", master_dev->dev_repr, (unsigned long)mmjob->jobid);
  404. ++chain->next_jobid;
  405. struct avalonmm_job **jobentry = &chain->jobs[mmjob->jobid % AVALONMM_CACHED_JOBS];
  406. if (*jobentry)
  407. avalonmm_free_job(*jobentry);
  408. *jobentry = mmjob;
  409. return true;
  410. }
  411. static
  412. struct cgpu_info *avalonmm_dev_for_module_id(struct cgpu_info * const master_dev, const uint32_t module_id)
  413. {
  414. struct cgpu_info *dev = NULL;
  415. for_each_managed_proc(proc, master_dev)
  416. {
  417. if (dev == proc->device)
  418. continue;
  419. dev = proc->device;
  420. struct thr_info * const thr = dev->thr[0];
  421. struct avalonmm_module_state * const module = thr->cgpu_data;
  422. if (module->module_id == module_id)
  423. return dev;
  424. }
  425. return NULL;
  426. }
  427. static
  428. bool avalonmm_poll_once(struct cgpu_info * const master_dev, int64_t *out_module_id)
  429. {
  430. struct avalonmm_chain_state * const chain = master_dev->device_data;
  431. const int fd = master_dev->device_fd;
  432. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  433. enum avalonmm_reply reply;
  434. *out_module_id = -1;
  435. if (avalonmm_read(fd, LOG_ERR, &reply, buf, sizeof(buf)) < 0)
  436. return false;
  437. switch (reply)
  438. {
  439. case AMR_DETECT_ACK:
  440. break;
  441. case AMR_STATUS:
  442. {
  443. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  444. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  445. if (unlikely(!dev))
  446. {
  447. struct thr_info * const master_thr = master_dev->thr[0];
  448. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Status", (unsigned long)module_id);
  449. inc_hw_errors_only(master_thr);
  450. break;
  451. }
  452. *out_module_id = module_id;
  453. struct thr_info * const thr = dev->thr[0];
  454. struct avalonmm_module_state * const module = thr->cgpu_data;
  455. module->temp[0] = upk_u16be(buf, 0);
  456. module->temp[1] = upk_u16be(buf, 2);
  457. module->fan [0] = upk_u16be(buf, 4);
  458. module->fan [1] = upk_u16be(buf, 6);
  459. module->clock_actual = upk_u32be(buf, 8);
  460. module->voltcfg_actual = upk_u32be(buf, 0x0c);
  461. dev->temp = max(module->temp[0], module->temp[1]);
  462. break;
  463. }
  464. case AMR_NONCE:
  465. {
  466. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  467. const uint8_t * const backward_xnonce2 = &buf[8 + fixed_mm_xnonce2_bytes];
  468. const uint32_t nonce = upk_u32be(buf, 0x10) - AVALONMM_NONCE_OFFSET;
  469. const uint32_t jobid = upk_u32be(buf, 0x14);
  470. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  471. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  472. if (unlikely(!dev))
  473. {
  474. struct thr_info * const master_thr = master_dev->thr[0];
  475. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Nonce", (unsigned long)module_id);
  476. inc_hw_errors_only(master_thr);
  477. break;
  478. }
  479. *out_module_id = module_id;
  480. struct thr_info * const thr = dev->thr[0];
  481. bool invalid_jobid = false;
  482. if (unlikely((uint32_t)(chain->next_jobid - AVALONMM_CACHED_JOBS) > chain->next_jobid))
  483. // Jobs wrap around
  484. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS && jobid >= chain->next_jobid);
  485. else
  486. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS || jobid >= chain->next_jobid);
  487. struct avalonmm_job * const mmjob = chain->jobs[jobid % AVALONMM_CACHED_JOBS];
  488. if (unlikely(invalid_jobid || !mmjob))
  489. {
  490. applog(LOG_ERR, "%s: Bad job id %08lx", dev->dev_repr, (unsigned long)jobid);
  491. inc_hw_errors_only(thr);
  492. break;
  493. }
  494. uint8_t xnonce2[work2d_xnonce2sz];
  495. for (int i = 0; i < work2d_xnonce2sz; ++i)
  496. xnonce2[i] = backward_xnonce2[(work2d_xnonce2sz - 1) - i];
  497. work2d_submit_nonce(thr, &mmjob->swork, &mmjob->tv_prepared, xnonce2, chain->xnonce1, nonce, mmjob->swork.ntime, NULL, mmjob->nonce_diff);
  498. hashes_done2(thr, mmjob->nonce_diff * 0x100000000, NULL);
  499. break;
  500. }
  501. }
  502. return true;
  503. }
  504. static
  505. void avalonmm_poll(struct cgpu_info * const master_dev, int n)
  506. {
  507. int64_t dummy;
  508. while (n > 0)
  509. {
  510. if (avalonmm_poll_once(master_dev, &dummy))
  511. --n;
  512. }
  513. }
  514. static
  515. struct thr_info *avalonmm_should_disable(struct cgpu_info * const master_dev)
  516. {
  517. for_each_managed_proc(proc, master_dev)
  518. {
  519. struct thr_info * const thr = proc->thr[0];
  520. if (thr->pause || proc->deven != DEV_ENABLED)
  521. return thr;
  522. }
  523. return NULL;
  524. }
  525. static
  526. void avalonmm_minerloop(struct thr_info * const master_thr)
  527. {
  528. struct cgpu_info * const master_dev = master_thr->cgpu;
  529. const int fd = master_dev->device_fd;
  530. struct pool *nextpool = current_pool(), *pool = NULL;
  531. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  532. while (likely(!master_dev->shutdown))
  533. {
  534. if (avalonmm_should_disable(master_dev))
  535. {
  536. struct thr_info *thr;
  537. while ( (thr = avalonmm_should_disable(master_dev)) )
  538. {
  539. if (!thr->_mt_disable_called)
  540. if (avalonmm_write_cmd(fd, AMC_NEW_JOB, NULL, 0))
  541. {
  542. for_each_managed_proc(proc, master_dev)
  543. {
  544. struct thr_info * const thr = proc->thr[0];
  545. mt_disable_start(thr);
  546. }
  547. }
  548. notifier_read(thr->notifier);
  549. }
  550. for_each_managed_proc(proc, master_dev)
  551. {
  552. struct thr_info * const thr = proc->thr[0];
  553. mt_disable_finish(thr);
  554. }
  555. }
  556. master_thr->work_restart = false;
  557. if (!pool_has_usable_swork(nextpool))
  558. ; // FIXME
  559. else
  560. if (avalonmm_update_swork_from_pool(master_dev, nextpool))
  561. pool = nextpool;
  562. while (likely(!(master_thr->work_restart || ((nextpool = current_pool()) != pool && pool_has_usable_swork(nextpool)) || avalonmm_should_disable(master_dev))))
  563. {
  564. cgsleep_ms(10);
  565. struct cgpu_info *dev = NULL;
  566. for_each_managed_proc(proc, master_dev)
  567. {
  568. if (dev == proc->device)
  569. continue;
  570. dev = proc->device;
  571. struct thr_info * const thr = dev->thr[0];
  572. struct avalonmm_module_state * const module = thr->cgpu_data;
  573. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, module->module_id);
  574. avalonmm_write_cmd(fd, AMC_POLL, buf, AVALONMM_PKT_DATA_SIZE);
  575. avalonmm_poll(master_dev, 1);
  576. }
  577. }
  578. }
  579. }
  580. static
  581. const char *avalonmm_set_clock(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  582. {
  583. struct cgpu_info * const dev = proc->device;
  584. struct avalonmm_chain_state * const chain = dev->device_data;
  585. const int nv = atoi(newvalue);
  586. if (nv < 0)
  587. return "Invalid clock";
  588. chain->clock_desired = nv;
  589. return NULL;
  590. }
  591. static
  592. const char *avalonmm_set_fan(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  593. {
  594. struct cgpu_info * const dev = proc->device;
  595. struct avalonmm_chain_state * const chain = dev->device_data;
  596. const int nv = atoi(newvalue);
  597. if (nv < 0 || nv > 100)
  598. return "Invalid fan speed";
  599. chain->fan_desired = avalonmm_fan_config_from_percent(nv);
  600. return NULL;
  601. }
  602. static
  603. const char *avalonmm_set_voltage(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const success)
  604. {
  605. struct cgpu_info * const dev = proc->device;
  606. struct avalonmm_chain_state * const chain = dev->device_data;
  607. const long val = atof(newvalue) * 10000;
  608. if (val < 0 || val > 15000)
  609. return "Invalid voltage value";
  610. chain->voltcfg_desired = avalonmm_voltage_config_from_dmvolts(val);
  611. return NULL;
  612. }
  613. static const struct bfg_set_device_definition avalonmm_set_device_funcs[] = {
  614. {"clock", avalonmm_set_clock, "clock frequency"},
  615. {"fan", avalonmm_set_fan, "fan speed (0-100 percent)"},
  616. {"voltage", avalonmm_set_voltage, "voltage (0 to 1.5 volts)"},
  617. {NULL},
  618. };
  619. static
  620. struct api_data *avalonmm_api_extra_device_detail(struct cgpu_info * const proc)
  621. {
  622. struct cgpu_info * const dev = proc->device;
  623. struct avalonmm_chain_state * const chain = dev->device_data;
  624. struct thr_info * const thr = dev->thr[0];
  625. struct avalonmm_module_state * const module = thr->cgpu_data;
  626. struct api_data *root = NULL;
  627. root = api_add_uint32(root, "Module Id", &module->module_id, false);
  628. root = api_add_uint32(root, "ExtraNonce1", &chain->xnonce1, false);
  629. return root;
  630. }
  631. static
  632. struct api_data *avalonmm_api_extra_device_status(struct cgpu_info * const proc)
  633. {
  634. struct cgpu_info * const dev = proc->device;
  635. struct avalonmm_chain_state * const chain = dev->device_data;
  636. struct thr_info * const thr = dev->thr[0];
  637. struct avalonmm_module_state * const module = thr->cgpu_data;
  638. struct api_data *root = NULL;
  639. char buf[0x10];
  640. strcpy(buf, "Temperature");
  641. for (int i = 0; i < 2; ++i)
  642. {
  643. if (module->temp[i])
  644. {
  645. float temp = module->temp[i];
  646. buf[0xb] = '0' + i;
  647. root = api_add_temp(root, buf, &temp, true);
  648. }
  649. }
  650. {
  651. uint8_t fan_percent = avalonmm_fan_percent_from_config(chain->fan_desired);
  652. root = api_add_uint8(root, "Fan Percent", &fan_percent, true);
  653. }
  654. strcpy(buf, "Fan RPM ");
  655. for (int i = 0; i < 2; ++i)
  656. {
  657. if (module->fan[i])
  658. {
  659. buf[8] = '0' + i;
  660. root = api_add_uint16(root, buf, &module->fan[i], false);
  661. }
  662. }
  663. if (module->clock_actual)
  664. {
  665. double freq = module->clock_actual;
  666. root = api_add_freq(root, "Frequency", &freq, true);
  667. }
  668. if (module->voltcfg_actual)
  669. {
  670. float volts = avalonmm_dmvolts_from_voltage_config(module->voltcfg_actual);
  671. volts /= 10000;
  672. root = api_add_volts(root, "Voltage", &volts, true);
  673. }
  674. return root;
  675. }
  676. #ifdef HAVE_CURSES
  677. static
  678. void avalonmm_wlogprint_status(struct cgpu_info * const proc)
  679. {
  680. struct cgpu_info * const dev = proc->device;
  681. struct avalonmm_chain_state * const chain = dev->device_data;
  682. struct thr_info * const thr = dev->thr[0];
  683. struct avalonmm_module_state * const module = thr->cgpu_data;
  684. wlogprint("ExtraNonce1:%0*lx ModuleId:%lu\n", work2d_xnonce1sz * 2, (unsigned long)chain->xnonce1, (unsigned long)module->module_id);
  685. if (module->temp[0] && module->temp[1])
  686. {
  687. wlogprint("Temperatures: %uC %uC", (unsigned)module->temp[0], (unsigned)module->temp[1]);
  688. if (module->fan[0] || module->fan[1])
  689. wlogprint(" ");
  690. }
  691. unsigned fan_percent = avalonmm_fan_percent_from_config(chain->fan_desired);
  692. if (module->fan[0])
  693. {
  694. if (module->fan[1])
  695. wlogprint("Fans: %u RPM, %u RPM (%u%%)", (unsigned)module->fan[0], (unsigned)module->fan[1], fan_percent);
  696. else
  697. wlogprint("Fan: %u RPM (%u%%)", (unsigned)module->fan[0], fan_percent);
  698. }
  699. else
  700. if (module->fan[1])
  701. wlogprint("Fan: %u RPM (%u%%)", (unsigned)module->fan[1], fan_percent);
  702. else
  703. wlogprint("Fan: %u%%", fan_percent);
  704. wlogprint("\n");
  705. if (module->clock_actual)
  706. wlogprint("Clock speed: %lu\n", (unsigned long)module->clock_actual);
  707. if (module->voltcfg_actual)
  708. {
  709. const uint32_t dmvolts = avalonmm_dmvolts_from_voltage_config(module->voltcfg_actual);
  710. wlogprint("Voltage: %u.%04u V\n", (unsigned)(dmvolts / 10000), (unsigned)(dmvolts % 10000));
  711. }
  712. }
  713. static
  714. void avalonmm_tui_wlogprint_choices(struct cgpu_info * const proc)
  715. {
  716. wlogprint("[C]lock speed ");
  717. wlogprint("[F]an speed ");
  718. wlogprint("[V]oltage ");
  719. }
  720. static
  721. const char *avalonmm_tui_wrapper(struct cgpu_info * const proc, bfg_set_device_func_t func, const char * const prompt)
  722. {
  723. static char replybuf[0x20];
  724. char * const cvar = curses_input(prompt);
  725. if (!cvar)
  726. return "Cancelled\n";
  727. const char *reply = func(proc, NULL, cvar, NULL, NULL);
  728. free(cvar);
  729. if (reply)
  730. {
  731. snprintf(replybuf, sizeof(replybuf), "%s\n", reply);
  732. return replybuf;
  733. }
  734. return "Successful\n";
  735. }
  736. static
  737. const char *avalonmm_tui_handle_choice(struct cgpu_info * const proc, const int input)
  738. {
  739. switch (input)
  740. {
  741. case 'c': case 'C':
  742. return avalonmm_tui_wrapper(proc, avalonmm_set_clock , "Set clock speed (Avalon2: 1500; Avalon3: 450)");
  743. case 'f': case 'F':
  744. return avalonmm_tui_wrapper(proc, avalonmm_set_fan , "Set fan speed (0-100 percent)");
  745. case 'v': case 'V':
  746. return avalonmm_tui_wrapper(proc, avalonmm_set_voltage, "Set voltage (Avalon2: 1.0; Avalon3: 0.6625)");
  747. }
  748. return NULL;
  749. }
  750. #endif
  751. struct device_drv avalonmm_drv = {
  752. .dname = "avalonmm",
  753. .name = "AVM",
  754. .lowl_probe = avalonmm_lowl_probe,
  755. .thread_init = avalonmm_init,
  756. .minerloop = avalonmm_minerloop,
  757. .get_api_extra_device_detail = avalonmm_api_extra_device_detail,
  758. .get_api_extra_device_status = avalonmm_api_extra_device_status,
  759. #ifdef HAVE_CURSES
  760. .proc_wlogprint_status = avalonmm_wlogprint_status,
  761. .proc_tui_wlogprint_choices = avalonmm_tui_wlogprint_choices,
  762. .proc_tui_handle_choice = avalonmm_tui_handle_choice,
  763. #endif
  764. };