driver-avalonmm.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562
  1. /*
  2. * Copyright 2014 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <stdbool.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <unistd.h>
  15. #include <utlist.h>
  16. #include "deviceapi.h"
  17. #include "logging.h"
  18. #include "lowlevel.h"
  19. #include "lowl-vcom.h"
  20. #include "miner.h"
  21. #include "util.h"
  22. #include "work2d.h"
  23. #define AVALONMM_MAX_MODULES 4
  24. #define AVALONMM_MAX_COINBASE_SIZE (6 * 1024)
  25. #define AVALONMM_MAX_MERKLES 20
  26. // Must be a power of two
  27. #define AVALONMM_CACHED_JOBS 2
  28. #define AVALONMM_NONCE_OFFSET 0x180
  29. BFG_REGISTER_DRIVER(avalonmm_drv)
  30. #define AVALONMM_PKT_DATA_SIZE 0x20
  31. #define AVALONMM_PKT_SIZE (AVALONMM_PKT_DATA_SIZE + 7)
  32. enum avalonmm_cmd {
  33. AMC_DETECT = 0x0a,
  34. AMC_NEW_JOB = 0x0b,
  35. AMC_JOB_ID = 0x0c,
  36. AMC_COINBASE = 0x0d,
  37. AMC_MERKLES = 0x0e,
  38. AMC_BLKHDR = 0x0f,
  39. AMC_POLL = 0x10,
  40. AMC_TARGET = 0x11,
  41. AMC_START = 0x13,
  42. };
  43. enum avalonmm_reply {
  44. AMR_NONCE = 0x17,
  45. AMR_STATUS = 0x18,
  46. AMR_DETECT_ACK = 0x19,
  47. };
  48. static
  49. bool avalonmm_write_cmd(const int fd, const enum avalonmm_cmd cmd, const void *data, size_t datasz)
  50. {
  51. uint8_t packets = ((datasz + AVALONMM_PKT_DATA_SIZE - 1) / AVALONMM_PKT_DATA_SIZE) ?: 1;
  52. uint8_t pkt[AVALONMM_PKT_SIZE] = {'A', 'V', cmd, 1, packets};
  53. uint16_t crc;
  54. ssize_t r;
  55. while (true)
  56. {
  57. size_t copysz = AVALONMM_PKT_DATA_SIZE;
  58. if (datasz < copysz)
  59. {
  60. copysz = datasz;
  61. memset(&pkt[5 + copysz], '\0', AVALONMM_PKT_DATA_SIZE - copysz);
  62. }
  63. if (copysz)
  64. memcpy(&pkt[5], data, copysz);
  65. crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  66. pk_u16be(pkt, 5 + AVALONMM_PKT_DATA_SIZE, crc);
  67. r = write(fd, pkt, sizeof(pkt));
  68. if (opt_dev_protocol)
  69. {
  70. char hex[(sizeof(pkt) * 2) + 1];
  71. bin2hex(hex, pkt, sizeof(pkt));
  72. applog(LOG_DEBUG, "DEVPROTO fd=%d SEND: %s => %d", fd, hex, (int)r);
  73. }
  74. if (sizeof(pkt) != r)
  75. return false;
  76. datasz -= copysz;
  77. if (!datasz)
  78. break;
  79. data += copysz;
  80. ++pkt[3];
  81. }
  82. return true;
  83. }
  84. static
  85. ssize_t avalonmm_read(const int fd, const int logprio, enum avalonmm_reply *out_reply, void * const bufp, size_t bufsz)
  86. {
  87. uint8_t *buf = bufp;
  88. uint8_t pkt[AVALONMM_PKT_SIZE];
  89. uint8_t packets = 0, got = 0;
  90. uint16_t good_crc, actual_crc;
  91. ssize_t r;
  92. while (true)
  93. {
  94. r = serial_read(fd, pkt, sizeof(pkt));
  95. if (opt_dev_protocol)
  96. {
  97. if (r >= 0)
  98. {
  99. char hex[(r * 2) + 1];
  100. bin2hex(hex, pkt, r);
  101. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV: %s", fd, hex);
  102. }
  103. else
  104. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV (%d)", fd, (int)r);
  105. }
  106. if (r != sizeof(pkt))
  107. return -1;
  108. if (memcmp(pkt, "AV", 2))
  109. applogr(-1, logprio, "%s: bad header", __func__);
  110. good_crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  111. actual_crc = upk_u16le(pkt, 5 + AVALONMM_PKT_DATA_SIZE);
  112. if (good_crc != actual_crc)
  113. applogr(-1, logprio, "%s: bad CRC (good=%04x actual=%04x)", __func__, good_crc, actual_crc);
  114. *out_reply = pkt[2];
  115. if (!got)
  116. {
  117. if (pkt[3] != 1)
  118. applogr(-1, logprio, "%s: first packet is not index 1", __func__);
  119. ++got;
  120. packets = pkt[4];
  121. }
  122. else
  123. {
  124. if (pkt[3] != ++got)
  125. applogr(-1, logprio, "%s: packet %d is not index %d", __func__, got, got);
  126. if (pkt[4] != packets)
  127. applogr(-1, logprio, "%s: packet %d total packet count is %d rather than original value of %d", __func__, got, pkt[4], packets);
  128. }
  129. if (bufsz)
  130. {
  131. if (likely(bufsz > AVALONMM_PKT_DATA_SIZE))
  132. {
  133. memcpy(buf, &pkt[5], AVALONMM_PKT_DATA_SIZE);
  134. bufsz -= AVALONMM_PKT_DATA_SIZE;
  135. buf += AVALONMM_PKT_DATA_SIZE;
  136. }
  137. else
  138. {
  139. memcpy(buf, &pkt[5], bufsz);
  140. bufsz = 0;
  141. }
  142. }
  143. if (got == packets)
  144. break;
  145. }
  146. return (((ssize_t)got) * AVALONMM_PKT_DATA_SIZE);
  147. }
  148. static
  149. bool avalonmm_detect_one(const char * const devpath)
  150. {
  151. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  152. enum avalonmm_reply reply;
  153. const int fd = serial_open(devpath, 0, 1, true);
  154. struct cgpu_info *prev_cgpu = NULL;
  155. if (fd == -1)
  156. applogr(false, LOG_DEBUG, "%s: Failed to open %s", __func__, devpath);
  157. for (int i = 0; i < AVALONMM_MAX_MODULES; ++i)
  158. {
  159. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, i);
  160. avalonmm_write_cmd(fd, AMC_DETECT, buf, AVALONMM_PKT_DATA_SIZE);
  161. }
  162. while (avalonmm_read(fd, LOG_DEBUG, &reply, NULL, 0) > 0)
  163. {
  164. if (reply != AMR_DETECT_ACK)
  165. continue;
  166. int moduleno = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  167. struct cgpu_info * const cgpu = malloc(sizeof(*cgpu));
  168. *cgpu = (struct cgpu_info){
  169. .drv = &avalonmm_drv,
  170. .device_path = prev_cgpu ? prev_cgpu->device_path : strdup(devpath),
  171. .device_data = (void*)(intptr_t)moduleno,
  172. .deven = DEV_ENABLED,
  173. .procs = 1,
  174. .threads = prev_cgpu ? 0 : 1,
  175. };
  176. add_cgpu_slave(cgpu, prev_cgpu);
  177. prev_cgpu = cgpu;
  178. }
  179. serial_close(fd);
  180. return prev_cgpu;
  181. }
  182. static
  183. bool avalonmm_lowl_probe(const struct lowlevel_device_info * const info)
  184. {
  185. return vcom_lowl_probe_wrapper(info, avalonmm_detect_one);
  186. }
  187. struct avalonmm_job {
  188. struct stratum_work swork;
  189. uint32_t jobid;
  190. struct timeval tv_prepared;
  191. };
  192. struct avalonmm_chain_state {
  193. uint32_t xnonce1;
  194. struct avalonmm_job *jobs[AVALONMM_CACHED_JOBS];
  195. uint32_t next_jobid;
  196. };
  197. struct avalonmm_module_state {
  198. unsigned module_id;
  199. uint16_t temp[2];
  200. };
  201. static
  202. bool avalonmm_init(struct thr_info * const master_thr)
  203. {
  204. struct cgpu_info * const master_dev = master_thr->cgpu, *dev = NULL;
  205. const char * const devpath = master_dev->device_path;
  206. const int fd = serial_open(devpath, 115200, 1, true);
  207. master_dev->device_fd = fd;
  208. if (unlikely(fd == -1))
  209. applogr(false, LOG_ERR, "%s: Failed to initialise", master_dev->dev_repr);
  210. struct avalonmm_chain_state * const chain = malloc(sizeof(*chain));
  211. *chain = (struct avalonmm_chain_state){
  212. .xnonce1 = 0,
  213. };
  214. work2d_init();
  215. if (!reserve_work2d_(&chain->xnonce1))
  216. {
  217. applog(LOG_ERR, "%s: Failed to reserve 2D work", master_dev->dev_repr);
  218. free(chain);
  219. serial_close(fd);
  220. return false;
  221. }
  222. for_each_managed_proc(proc, master_dev)
  223. {
  224. if (dev == proc->device)
  225. continue;
  226. dev = proc->device;
  227. struct thr_info * const thr = proc->thr[0];
  228. struct avalonmm_module_state * const module = malloc(sizeof(*module));
  229. *module = (struct avalonmm_module_state){
  230. .module_id = (intptr_t)dev->device_data,
  231. };
  232. proc->device_data = chain;
  233. thr->cgpu_data = module;
  234. }
  235. for_each_managed_proc(proc, master_dev)
  236. {
  237. proc->status = LIFE_INIT2;
  238. }
  239. return true;
  240. }
  241. static
  242. bool avalonmm_send_swork(const int fd, struct avalonmm_chain_state * const chain, const struct stratum_work * const swork, uint32_t jobid)
  243. {
  244. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  245. bytes_t coinbase = BYTES_INIT;
  246. int coinbase_len = bytes_len(&swork->coinbase);
  247. if (coinbase_len > AVALONMM_MAX_COINBASE_SIZE)
  248. return false;
  249. if (swork->merkles > AVALONMM_MAX_MERKLES)
  250. return false;
  251. pk_u32be(buf, 0, coinbase_len);
  252. const size_t xnonce2_offset = swork->nonce2_offset + work2d_pad_xnonce_size(swork) + work2d_xnonce1sz;
  253. pk_u32be(buf, 4, xnonce2_offset);
  254. pk_u32be(buf, 8, 4); // extranonce2 size, but only 4 is supported - smaller sizes are handled by limiting the range
  255. pk_u32be(buf, 0x0c, 0x24); // merkle_offset, always 0x24 for Bitcoin
  256. pk_u32be(buf, 0x10, swork->merkles);
  257. pk_u32be(buf, 0x14, 1); // diff? poorly defined
  258. pk_u32be(buf, 0x18, 0); // pool number - none of its business
  259. if (!avalonmm_write_cmd(fd, AMC_NEW_JOB, buf, 0x1c))
  260. return false;
  261. memset(buf, '\xff', 0x1c);
  262. memset(&buf[0x1c], '\0', 4);
  263. if (!avalonmm_write_cmd(fd, AMC_TARGET, buf, 0x20))
  264. return false;
  265. pk_u32be(buf, 0, jobid);
  266. if (!avalonmm_write_cmd(fd, AMC_JOB_ID, buf, 4))
  267. return false;
  268. // Need to add extranonce padding and extranonce2
  269. bytes_cpy(&coinbase, &swork->coinbase);
  270. uint8_t *cbp = bytes_buf(&coinbase);
  271. cbp += swork->nonce2_offset;
  272. work2d_pad_xnonce(cbp, swork, false);
  273. cbp += work2d_pad_xnonce_size(swork);
  274. memcpy(cbp, &chain->xnonce1, work2d_xnonce1sz);
  275. cbp += work2d_xnonce1sz;
  276. if (!avalonmm_write_cmd(fd, AMC_COINBASE, bytes_buf(&coinbase), bytes_len(&coinbase)))
  277. return false;
  278. if (!avalonmm_write_cmd(fd, AMC_MERKLES, bytes_buf(&swork->merkle_bin), bytes_len(&swork->merkle_bin)))
  279. return false;
  280. uint8_t header_bin[0x80];
  281. memcpy(&header_bin[ 0], swork->header1, 0x24);
  282. memset(&header_bin[0x24], '\0', 0x20); // merkle root
  283. pk_u32be(header_bin, 0x44, swork->ntime);
  284. memcpy(&header_bin[0x48], swork->diffbits, 4);
  285. memset(&header_bin[0x4c], '\0', 4); // nonce
  286. memcpy(&header_bin[0x50], bfg_workpadding_bin, 0x30);
  287. if (!avalonmm_write_cmd(fd, AMC_BLKHDR, header_bin, sizeof(header_bin)))
  288. return false;
  289. // Avalon MM cannot handle xnonce2_size other than 4, and works in big endian, so we use a range to ensure the following bytes match
  290. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  291. uint8_t mm_xnonce2_start[4];
  292. uint32_t xnonce2_range;
  293. memset(mm_xnonce2_start, '\0', 4);
  294. cbp += work2d_xnonce2sz;
  295. for (int i = 1; i <= fixed_mm_xnonce2_bytes; ++i)
  296. mm_xnonce2_start[fixed_mm_xnonce2_bytes - i] = cbp++[0];
  297. if (fixed_mm_xnonce2_bytes > 0)
  298. xnonce2_range = (1 << (8 * work2d_xnonce2sz)) - 1;
  299. else
  300. xnonce2_range = 0xffffffff;
  301. pk_u32be(buf, 0, 80); // fan speed %
  302. uint16_t voltcfg = ((uint16_t)bitflip8((0x78 - /*deci-milli-volts*/6625 / 125) << 1 | 1)) << 8;
  303. pk_u32be(buf, 4, voltcfg);
  304. pk_u32be(buf, 8, 450/*freq*/);
  305. memcpy(&buf[0xc], mm_xnonce2_start, 4);
  306. pk_u32be(buf, 0x10, xnonce2_range);
  307. if (!avalonmm_write_cmd(fd, AMC_START, buf, 0x14))
  308. return false;
  309. return true;
  310. }
  311. static
  312. void avalonmm_free_job(struct avalonmm_job * const mmjob)
  313. {
  314. stratum_work_clean(&mmjob->swork);
  315. free(mmjob);
  316. }
  317. static
  318. bool avalonmm_update_swork_from_pool(struct cgpu_info * const master_dev, struct pool * const pool)
  319. {
  320. struct avalonmm_chain_state * const chain = master_dev->device_data;
  321. const int fd = master_dev->device_fd;
  322. struct avalonmm_job *mmjob = malloc(sizeof(*mmjob));
  323. *mmjob = (struct avalonmm_job){
  324. .jobid = chain->next_jobid,
  325. };
  326. cg_rlock(&pool->data_lock);
  327. stratum_work_cpy(&mmjob->swork, &pool->swork);
  328. cg_runlock(&pool->data_lock);
  329. timer_set_now(&mmjob->tv_prepared);
  330. mmjob->swork.data_lock_p = NULL;
  331. if (!avalonmm_send_swork(fd, chain, &mmjob->swork, mmjob->jobid))
  332. {
  333. avalonmm_free_job(mmjob);
  334. return false;
  335. }
  336. applog(LOG_DEBUG, "%s: Upload of job id %08lx complete", master_dev->dev_repr, (unsigned long)mmjob->jobid);
  337. ++chain->next_jobid;
  338. struct avalonmm_job **jobentry = &chain->jobs[mmjob->jobid % AVALONMM_CACHED_JOBS];
  339. if (*jobentry)
  340. avalonmm_free_job(*jobentry);
  341. *jobentry = mmjob;
  342. return true;
  343. }
  344. static
  345. struct cgpu_info *avalonmm_dev_for_module_id(struct cgpu_info * const master_dev, const uint32_t module_id)
  346. {
  347. struct cgpu_info *dev = NULL;
  348. for_each_managed_proc(proc, master_dev)
  349. {
  350. if (dev == proc->device)
  351. continue;
  352. dev = proc->device;
  353. struct thr_info * const thr = dev->thr[0];
  354. struct avalonmm_module_state * const module = thr->cgpu_data;
  355. if (module->module_id == module_id)
  356. return dev;
  357. }
  358. return NULL;
  359. }
  360. static
  361. bool avalonmm_poll_once(struct cgpu_info * const master_dev)
  362. {
  363. struct avalonmm_chain_state * const chain = master_dev->device_data;
  364. const int fd = master_dev->device_fd;
  365. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  366. enum avalonmm_reply reply;
  367. if (avalonmm_read(fd, LOG_ERR, &reply, buf, sizeof(buf)) < 0)
  368. return false;
  369. switch (reply)
  370. {
  371. case AMR_STATUS:
  372. {
  373. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  374. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  375. if (unlikely(!dev))
  376. {
  377. struct thr_info * const master_thr = master_dev->thr[0];
  378. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Status", (unsigned long)module_id);
  379. inc_hw_errors_only(master_thr);
  380. break;
  381. }
  382. struct thr_info * const thr = dev->thr[0];
  383. struct avalonmm_module_state * const module = thr->cgpu_data;
  384. module->temp[0] = upk_u16be(buf, 0);
  385. module->temp[1] = upk_u16be(buf, 2);
  386. #if 0
  387. module->fan [0] = upk_u16be(buf, 4);
  388. module->fan [1] = upk_u16be(buf, 6);
  389. module->freq = upk_u32be(buf, 8);
  390. module->voltage = upk_u32be(buf, 0x0c);
  391. #endif
  392. dev->temp = max(module->temp[0], module->temp[1]);
  393. break;
  394. }
  395. case AMR_NONCE:
  396. {
  397. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  398. const uint8_t * const backward_xnonce2 = &buf[8 + fixed_mm_xnonce2_bytes];
  399. const uint32_t nonce = upk_u32be(buf, 0x10) - AVALONMM_NONCE_OFFSET;
  400. const uint32_t jobid = upk_u32be(buf, 0x14);
  401. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  402. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  403. if (unlikely(!dev))
  404. {
  405. struct thr_info * const master_thr = master_dev->thr[0];
  406. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Nonce", (unsigned long)module_id);
  407. inc_hw_errors_only(master_thr);
  408. break;
  409. }
  410. struct thr_info * const thr = dev->thr[0];
  411. bool invalid_jobid = false;
  412. if (unlikely((uint32_t)(chain->next_jobid - AVALONMM_CACHED_JOBS) > chain->next_jobid))
  413. // Jobs wrap around
  414. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS && jobid >= chain->next_jobid);
  415. else
  416. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS || jobid >= chain->next_jobid);
  417. if (unlikely(invalid_jobid))
  418. {
  419. applog(LOG_ERR, "%s: Bad job id %08lx", dev->dev_repr, (unsigned long)jobid);
  420. inc_hw_errors_only(thr);
  421. break;
  422. }
  423. struct avalonmm_job * const mmjob = chain->jobs[jobid % AVALONMM_CACHED_JOBS];
  424. uint8_t xnonce2[work2d_xnonce2sz];
  425. for (int i = 0; i < work2d_xnonce2sz; ++i)
  426. xnonce2[i] = backward_xnonce2[(work2d_xnonce2sz - 1) - i];
  427. work2d_submit_nonce(thr, &mmjob->swork, &mmjob->tv_prepared, xnonce2, chain->xnonce1, nonce, mmjob->swork.ntime, NULL, 1.);
  428. break;
  429. }
  430. }
  431. return true;
  432. }
  433. static
  434. void avalonmm_poll(struct cgpu_info * const master_dev, int n)
  435. {
  436. while (n > 0)
  437. {
  438. if (avalonmm_poll_once(master_dev))
  439. --n;
  440. }
  441. }
  442. static
  443. void avalonmm_minerloop(struct thr_info * const master_thr)
  444. {
  445. struct cgpu_info * const master_dev = master_thr->cgpu;
  446. const int fd = master_dev->device_fd;
  447. struct pool *nextpool = current_pool(), *pool = NULL;
  448. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  449. while (likely(!master_dev->shutdown))
  450. {
  451. master_thr->work_restart = false;
  452. if (!pool_has_usable_swork(nextpool))
  453. ; // FIXME
  454. else
  455. if (avalonmm_update_swork_from_pool(master_dev, nextpool))
  456. pool = nextpool;
  457. while (likely(!(master_thr->work_restart || ((nextpool = current_pool()) != pool && pool_has_usable_swork(nextpool)))))
  458. {
  459. cgsleep_ms(10);
  460. struct cgpu_info *dev = NULL;
  461. int n = 0;
  462. for_each_managed_proc(proc, master_dev)
  463. {
  464. if (dev == proc->device)
  465. continue;
  466. dev = proc->device;
  467. struct thr_info * const thr = dev->thr[0];
  468. struct avalonmm_module_state * const module = thr->cgpu_data;
  469. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, module->module_id);
  470. avalonmm_write_cmd(fd, AMC_POLL, buf, AVALONMM_PKT_DATA_SIZE);
  471. ++n;
  472. }
  473. avalonmm_poll(master_dev, n);
  474. }
  475. }
  476. }
  477. struct device_drv avalonmm_drv = {
  478. .dname = "avalonmm",
  479. .name = "AVM",
  480. .lowl_probe = avalonmm_lowl_probe,
  481. .thread_init = avalonmm_init,
  482. .minerloop = avalonmm_minerloop,
  483. };