driver-avalon.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /*
  2. * Copyright 2012-2013 Xiangfu
  3. * Copyright 2013 Con Kolivas <kernel@kolivas.org>
  4. * Copyright 2012 Luke Dashjr
  5. * Copyright 2012 Andrew Smith
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the Free
  9. * Software Foundation; either version 3 of the License, or (at your option)
  10. * any later version. See COPYING for more details.
  11. */
  12. #include "config.h"
  13. #include <limits.h>
  14. #include <pthread.h>
  15. #include <stdio.h>
  16. #include <sys/time.h>
  17. #include <sys/types.h>
  18. #include <dirent.h>
  19. #include <unistd.h>
  20. #ifndef WIN32
  21. #include <sys/select.h>
  22. #include <termios.h>
  23. #include <sys/stat.h>
  24. #include <fcntl.h>
  25. #ifndef O_CLOEXEC
  26. #define O_CLOEXEC 0
  27. #endif
  28. #else
  29. #include "compat.h"
  30. #include <windows.h>
  31. #include <io.h>
  32. #endif
  33. #include "deviceapi.h"
  34. #include "elist.h"
  35. #include "miner.h"
  36. #include "fpgautils.h"
  37. #include "driver-avalon.h"
  38. #include "hexdump.c"
  39. static int option_offset = -1;
  40. struct avalon_info **avalon_infos;
  41. struct device_drv avalon_drv;
  42. static int avalon_init_task(struct avalon_task *at,
  43. uint8_t reset, uint8_t ff, uint8_t fan,
  44. uint8_t timeout, uint8_t asic_num,
  45. uint8_t miner_num, uint8_t nonce_elf,
  46. uint8_t gate_miner, int frequency)
  47. {
  48. uint8_t *buf;
  49. static bool first = true;
  50. if (unlikely(!at))
  51. return -1;
  52. if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0))
  53. return -1;
  54. memset(at, 0, sizeof(struct avalon_task));
  55. if (unlikely(reset)) {
  56. at->reset = 1;
  57. at->fan_eft = 1;
  58. at->timer_eft = 1;
  59. first = true;
  60. }
  61. at->flush_fifo = (ff ? 1 : 0);
  62. at->fan_eft = (fan ? 1 : 0);
  63. if (unlikely(first && !at->reset)) {
  64. at->fan_eft = 1;
  65. at->timer_eft = 1;
  66. first = false;
  67. }
  68. at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM);
  69. at->timeout_data = timeout;
  70. at->asic_num = asic_num;
  71. at->miner_num = miner_num;
  72. at->nonce_elf = nonce_elf;
  73. at->gate_miner_elf = 1;
  74. at->asic_pll = 1;
  75. if (unlikely(gate_miner)) {
  76. at-> gate_miner = 1;
  77. at->asic_pll = 0;
  78. }
  79. buf = (uint8_t *)at;
  80. buf[5] = 0x00;
  81. buf[8] = 0x74;
  82. buf[9] = 0x01;
  83. buf[10] = 0x00;
  84. buf[11] = 0x00;
  85. if (frequency == 256) {
  86. buf[6] = 0x03;
  87. buf[7] = 0x08;
  88. } else if (frequency == 270) {
  89. buf[6] = 0x73;
  90. buf[7] = 0x08;
  91. } else if (frequency == 282) {
  92. buf[6] = 0xd3;
  93. buf[7] = 0x08;
  94. } else if (frequency == 300) {
  95. buf[6] = 0x63;
  96. buf[7] = 0x09;
  97. }
  98. return 0;
  99. }
  100. static inline void avalon_create_task(struct avalon_task *at,
  101. struct work *work)
  102. {
  103. memcpy(at->midstate, work->midstate, 32);
  104. memcpy(at->data, work->data + 64, 12);
  105. }
  106. static int avalon_send_task(int fd, const struct avalon_task *at,
  107. struct cgpu_info *avalon)
  108. {
  109. size_t ret;
  110. int full;
  111. struct timespec p;
  112. uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM];
  113. size_t nr_len;
  114. struct avalon_info *info;
  115. uint64_t delay = 32000000; /* Default 32ms for B19200 */
  116. uint32_t nonce_range;
  117. int i;
  118. if (at->nonce_elf)
  119. nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num;
  120. else
  121. nr_len = AVALON_WRITE_SIZE;
  122. memcpy(buf, at, AVALON_WRITE_SIZE);
  123. if (at->nonce_elf) {
  124. nonce_range = (uint32_t)0xffffffff / at->asic_num;
  125. for (i = 0; i < at->asic_num; i++) {
  126. buf[AVALON_WRITE_SIZE + (i * 4) + 3] =
  127. (i * nonce_range & 0xff000000) >> 24;
  128. buf[AVALON_WRITE_SIZE + (i * 4) + 2] =
  129. (i * nonce_range & 0x00ff0000) >> 16;
  130. buf[AVALON_WRITE_SIZE + (i * 4) + 1] =
  131. (i * nonce_range & 0x0000ff00) >> 8;
  132. buf[AVALON_WRITE_SIZE + (i * 4) + 0] =
  133. (i * nonce_range & 0x000000ff) >> 0;
  134. }
  135. }
  136. #if defined(__BIG_ENDIAN__) || defined(MIPSEB)
  137. uint8_t tt = 0;
  138. tt = (buf[0] & 0x0f) << 4;
  139. tt |= ((buf[0] & 0x10) ? (1 << 3) : 0);
  140. tt |= ((buf[0] & 0x20) ? (1 << 2) : 0);
  141. tt |= ((buf[0] & 0x40) ? (1 << 1) : 0);
  142. tt |= ((buf[0] & 0x80) ? (1 << 0) : 0);
  143. buf[0] = tt;
  144. tt = (buf[4] & 0x0f) << 4;
  145. tt |= ((buf[4] & 0x10) ? (1 << 3) : 0);
  146. tt |= ((buf[4] & 0x20) ? (1 << 2) : 0);
  147. tt |= ((buf[4] & 0x40) ? (1 << 1) : 0);
  148. tt |= ((buf[4] & 0x80) ? (1 << 0) : 0);
  149. buf[4] = tt;
  150. #endif
  151. if (likely(avalon)) {
  152. info = avalon_infos[avalon->device_id];
  153. delay = nr_len * 10 * 1000000000ULL;
  154. delay = delay / info->baud;
  155. }
  156. if (at->reset)
  157. nr_len = 1;
  158. if (opt_debug) {
  159. applog(LOG_DEBUG, "Avalon: Sent(%d):", nr_len);
  160. hexdump((uint8_t *)buf, nr_len);
  161. }
  162. ret = write(fd, buf, nr_len);
  163. if (unlikely(ret != nr_len))
  164. return AVA_SEND_ERROR;
  165. p.tv_sec = 0;
  166. p.tv_nsec = (long)delay + 4000000;
  167. nanosleep(&p, NULL);
  168. applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %ld", p.tv_nsec);
  169. full = avalon_buffer_full(fd);
  170. applog(LOG_DEBUG, "Avalon: Sent: Buffer full: %s",
  171. ((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
  172. if (unlikely(full == AVA_BUFFER_FULL))
  173. return AVA_SEND_BUFFER_FULL;
  174. return AVA_SEND_BUFFER_EMPTY;
  175. }
  176. static inline int avalon_gets(int fd, uint8_t *buf, struct thr_info *thr,
  177. struct timeval *tv_finish)
  178. {
  179. int read_amount = AVALON_READ_SIZE;
  180. bool first = true;
  181. ssize_t ret = 0;
  182. while (true) {
  183. struct timeval timeout;
  184. fd_set rd;
  185. if (unlikely(thr->work_restart)) {
  186. applog(LOG_DEBUG, "Avalon: Work restart");
  187. return AVA_GETS_RESTART;
  188. }
  189. timeout.tv_sec = 0;
  190. timeout.tv_usec = 100000;
  191. FD_ZERO(&rd);
  192. FD_SET(fd, &rd);
  193. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  194. if (unlikely(ret < 0)) {
  195. applog(LOG_ERR, "Avalon: Error %d on select in avalon_gets", errno);
  196. return AVA_GETS_ERROR;
  197. }
  198. if (ret) {
  199. ret = read(fd, buf, read_amount);
  200. if (unlikely(ret < 0)) {
  201. applog(LOG_ERR, "Avalon: Error %d on read in avalon_gets", errno);
  202. return AVA_GETS_ERROR;
  203. }
  204. if (likely(first)) {
  205. gettimeofday(tv_finish, NULL);
  206. first = false;
  207. }
  208. if (likely(ret >= read_amount))
  209. return AVA_GETS_OK;
  210. buf += ret;
  211. read_amount -= ret;
  212. continue;
  213. }
  214. if (unlikely(thr->work_restart)) {
  215. applog(LOG_DEBUG, "Avalon: Work restart");
  216. return AVA_GETS_RESTART;
  217. }
  218. return AVA_GETS_TIMEOUT;
  219. }
  220. }
  221. static int avalon_get_result(int fd, struct avalon_result *ar,
  222. struct thr_info *thr, struct timeval *tv_finish)
  223. {
  224. uint8_t result[AVALON_READ_SIZE];
  225. int ret;
  226. memset(result, 0, AVALON_READ_SIZE);
  227. ret = avalon_gets(fd, result, thr, tv_finish);
  228. if (ret == AVA_GETS_OK) {
  229. if (opt_debug) {
  230. applog(LOG_DEBUG, "Avalon: get:");
  231. hexdump((uint8_t *)result, AVALON_READ_SIZE);
  232. }
  233. memcpy((uint8_t *)ar, result, AVALON_READ_SIZE);
  234. }
  235. return ret;
  236. }
  237. static bool avalon_decode_nonce(struct thr_info *thr, struct avalon_result *ar,
  238. uint32_t *nonce)
  239. {
  240. struct cgpu_info *avalon;
  241. struct avalon_info *info;
  242. struct work *work;
  243. avalon = thr->cgpu;
  244. if (unlikely(!avalon->works))
  245. return false;
  246. work = find_queued_work_bymidstate(avalon, (char *)ar->midstate, 32,
  247. (char *)ar->data, 64, 12);
  248. if (!work)
  249. return false;
  250. info = avalon_infos[avalon->device_id];
  251. info->matching_work[work->subid]++;
  252. *nonce = htole32(ar->nonce);
  253. submit_nonce(thr, work, *nonce);
  254. return true;
  255. }
  256. static void avalon_get_reset(int fd, struct avalon_result *ar)
  257. {
  258. int read_amount = AVALON_READ_SIZE;
  259. uint8_t result[AVALON_READ_SIZE];
  260. struct timeval timeout = {1, 0};
  261. ssize_t ret = 0, offset = 0;
  262. fd_set rd;
  263. memset(result, 0, AVALON_READ_SIZE);
  264. memset(ar, 0, AVALON_READ_SIZE);
  265. FD_ZERO(&rd);
  266. FD_SET(fd, &rd);
  267. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  268. if (unlikely(ret < 0)) {
  269. applog(LOG_WARNING, "Avalon: Error %d on select in avalon_get_reset", errno);
  270. return;
  271. }
  272. if (!ret) {
  273. applog(LOG_WARNING, "Avalon: Timeout on select in avalon_get_reset");
  274. return;
  275. }
  276. do {
  277. ret = read(fd, result + offset, read_amount);
  278. if (unlikely(ret < 0)) {
  279. applog(LOG_WARNING, "Avalon: Error %d on read in avalon_get_reset", errno);
  280. return;
  281. }
  282. read_amount -= ret;
  283. offset += ret;
  284. } while (read_amount > 0);
  285. if (opt_debug) {
  286. applog(LOG_DEBUG, "Avalon: get:");
  287. hexdump((uint8_t *)result, AVALON_READ_SIZE);
  288. }
  289. memcpy((uint8_t *)ar, result, AVALON_READ_SIZE);
  290. }
  291. static int avalon_reset(int fd, struct avalon_result *ar)
  292. {
  293. struct avalon_task at;
  294. uint8_t *buf;
  295. int ret, i = 0;
  296. struct timespec p;
  297. avalon_init_task(&at, 1, 0,
  298. AVALON_DEFAULT_FAN_MAX_PWM,
  299. AVALON_DEFAULT_TIMEOUT,
  300. AVALON_DEFAULT_ASIC_NUM,
  301. AVALON_DEFAULT_MINER_NUM,
  302. 0, 0,
  303. AVALON_DEFAULT_FREQUENCY);
  304. ret = avalon_send_task(fd, &at, NULL);
  305. if (ret == AVA_SEND_ERROR)
  306. return 1;
  307. avalon_get_reset(fd, ar);
  308. buf = (uint8_t *)ar;
  309. /* Sometimes there is one extra 0 byte for some reason in the buffer,
  310. * so work around it. */
  311. if (buf[0] == 0)
  312. buf = (uint8_t *)(ar + 1);
  313. if (buf[0] == 0xAA && buf[1] == 0x55 &&
  314. buf[2] == 0xAA && buf[3] == 0x55) {
  315. for (i = 4; i < 11; i++)
  316. if (buf[i] != 0)
  317. break;
  318. }
  319. p.tv_sec = 0;
  320. p.tv_nsec = AVALON_RESET_PITCH;
  321. nanosleep(&p, NULL);
  322. if (i != 11) {
  323. applog(LOG_ERR, "Avalon: Reset failed! not an Avalon?"
  324. " (%d: %02x %02x %02x %02x)",
  325. i, buf[0], buf[1], buf[2], buf[3]);
  326. /* FIXME: return 1; */
  327. } else
  328. applog(LOG_WARNING, "Avalon: Reset succeeded");
  329. return 0;
  330. }
  331. static void avalon_idle(struct cgpu_info *avalon)
  332. {
  333. int i, ret;
  334. struct avalon_task at;
  335. int fd = avalon->device_fd;
  336. struct avalon_info *info = avalon_infos[avalon->device_id];
  337. int avalon_get_work_count = info->miner_count;
  338. i = 0;
  339. while (true) {
  340. avalon_init_task(&at, 0, 0, info->fan_pwm,
  341. info->timeout, info->asic_count,
  342. info->miner_count, 1, 1, info->frequency);
  343. ret = avalon_send_task(fd, &at, avalon);
  344. if (unlikely(ret == AVA_SEND_ERROR ||
  345. (ret == AVA_SEND_BUFFER_EMPTY &&
  346. (i + 1 == avalon_get_work_count * 2)))) {
  347. applog(LOG_ERR, "AVA%i: Comms error", avalon->device_id);
  348. return;
  349. }
  350. if (i + 1 == avalon_get_work_count * 2)
  351. break;
  352. if (ret == AVA_SEND_BUFFER_FULL)
  353. break;
  354. i++;
  355. }
  356. applog(LOG_ERR, "Avalon: Goto idle mode");
  357. }
  358. static void get_options(int this_option_offset, int *baud, int *miner_count,
  359. int *asic_count, int *timeout, int *frequency)
  360. {
  361. char buf[BUFSIZ+1];
  362. char *ptr, *comma, *colon, *colon2, *colon3, *colon4;
  363. size_t max;
  364. int i, tmp;
  365. if (opt_avalon_options == NULL)
  366. buf[0] = '\0';
  367. else {
  368. ptr = opt_avalon_options;
  369. for (i = 0; i < this_option_offset; i++) {
  370. comma = strchr(ptr, ',');
  371. if (comma == NULL)
  372. break;
  373. ptr = comma + 1;
  374. }
  375. comma = strchr(ptr, ',');
  376. if (comma == NULL)
  377. max = strlen(ptr);
  378. else
  379. max = comma - ptr;
  380. if (max > BUFSIZ)
  381. max = BUFSIZ;
  382. strncpy(buf, ptr, max);
  383. buf[max] = '\0';
  384. }
  385. *baud = AVALON_IO_SPEED;
  386. *miner_count = AVALON_DEFAULT_MINER_NUM - 8;
  387. *asic_count = AVALON_DEFAULT_ASIC_NUM;
  388. *timeout = AVALON_DEFAULT_TIMEOUT;
  389. *frequency = AVALON_DEFAULT_FREQUENCY;
  390. if (!(*buf))
  391. return;
  392. colon = strchr(buf, ':');
  393. if (colon)
  394. *(colon++) = '\0';
  395. tmp = atoi(buf);
  396. switch (tmp) {
  397. case 115200:
  398. *baud = 115200;
  399. break;
  400. case 57600:
  401. *baud = 57600;
  402. break;
  403. case 38400:
  404. *baud = 38400;
  405. break;
  406. case 19200:
  407. *baud = 19200;
  408. break;
  409. default:
  410. quit(1,
  411. "Invalid avalon-options for baud (%s) "
  412. "must be 115200, 57600, 38400 or 19200", buf);
  413. }
  414. if (colon && *colon) {
  415. colon2 = strchr(colon, ':');
  416. if (colon2)
  417. *(colon2++) = '\0';
  418. if (*colon) {
  419. tmp = atoi(colon);
  420. if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) {
  421. *miner_count = tmp;
  422. } else {
  423. quit(1,
  424. "Invalid avalon-options for "
  425. "miner_count (%s) must be 1 ~ %d",
  426. colon, AVALON_DEFAULT_MINER_NUM);
  427. }
  428. }
  429. if (colon2 && *colon2) {
  430. colon3 = strchr(colon2, ':');
  431. if (colon3)
  432. *(colon3++) = '\0';
  433. tmp = atoi(colon2);
  434. if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM)
  435. *asic_count = tmp;
  436. else {
  437. quit(1,
  438. "Invalid avalon-options for "
  439. "asic_count (%s) must be 1 ~ %d",
  440. colon2, AVALON_DEFAULT_ASIC_NUM);
  441. }
  442. if (colon3 && *colon3) {
  443. colon4 = strchr(colon3, ':');
  444. if (colon4)
  445. *(colon4++) = '\0';
  446. tmp = atoi(colon3);
  447. if (tmp > 0 && tmp <= 0xff)
  448. *timeout = tmp;
  449. else {
  450. quit(1,
  451. "Invalid avalon-options for "
  452. "timeout (%s) must be 1 ~ %d",
  453. colon3, 0xff);
  454. }
  455. if (colon4 && *colon4) {
  456. tmp = atoi(colon4);
  457. switch (tmp) {
  458. case 256:
  459. case 270:
  460. case 282:
  461. case 300:
  462. *frequency = tmp;
  463. break;
  464. default:
  465. quit(1,
  466. "Invalid avalon-options for "
  467. "frequency must be 256/270/282/300");
  468. }
  469. }
  470. }
  471. }
  472. }
  473. }
  474. static bool avalon_detect_one(const char *devpath)
  475. {
  476. struct avalon_info *info;
  477. struct avalon_result ar;
  478. int fd, ret;
  479. int baud, miner_count, asic_count, timeout, frequency = 0;
  480. struct cgpu_info *avalon;
  481. int this_option_offset = ++option_offset;
  482. get_options(this_option_offset, &baud, &miner_count, &asic_count,
  483. &timeout, &frequency);
  484. applog(LOG_DEBUG, "Avalon Detect: Attempting to open %s "
  485. "(baud=%d miner_count=%d asic_count=%d timeout=%d frequency=%d)",
  486. devpath, baud, miner_count, asic_count, timeout, frequency);
  487. fd = avalon_open2(devpath, baud, true);
  488. if (unlikely(fd == -1)) {
  489. applog(LOG_ERR, "Avalon Detect: Failed to open %s", devpath);
  490. return false;
  491. }
  492. /* We have a real Avalon! */
  493. avalon = calloc(1, sizeof(struct cgpu_info));
  494. avalon->drv = &avalon_drv;
  495. avalon->device_path = strdup(devpath);
  496. avalon->device_fd = fd;
  497. avalon->threads = AVALON_MINER_THREADS;
  498. add_cgpu(avalon);
  499. ret = avalon_reset(fd, &ar);
  500. if (ret) {
  501. ; /* FIXME: I think IT IS avalon and wait on reset;
  502. * avalon_close(fd);
  503. * return false; */
  504. }
  505. avalon_infos = realloc(avalon_infos,
  506. sizeof(struct avalon_info *) *
  507. (total_devices + 1));
  508. applog(LOG_INFO, "Avalon Detect: Found at %s, mark as %d",
  509. devpath, avalon->device_id);
  510. avalon_infos[avalon->device_id] = (struct avalon_info *)
  511. malloc(sizeof(struct avalon_info));
  512. if (unlikely(!(avalon_infos[avalon->device_id])))
  513. quit(1, "Failed to malloc avalon_infos");
  514. info = avalon_infos[avalon->device_id];
  515. memset(info, 0, sizeof(struct avalon_info));
  516. info->baud = baud;
  517. info->miner_count = miner_count;
  518. info->asic_count = asic_count;
  519. info->timeout = timeout;
  520. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
  521. info->temp_max = 0;
  522. /* This is for check the temp/fan every 3~4s */
  523. info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1;
  524. if (info->temp_history_count <= 0)
  525. info->temp_history_count = 1;
  526. info->temp_history_index = 0;
  527. info->temp_sum = 0;
  528. info->temp_old = 0;
  529. info->frequency = frequency;
  530. /* Set asic to idle mode after detect */
  531. avalon_idle(avalon);
  532. avalon->device_fd = -1;
  533. avalon_close(fd);
  534. return true;
  535. }
  536. static inline void avalon_detect()
  537. {
  538. serial_detect(&avalon_drv, avalon_detect_one);
  539. }
  540. static void __avalon_init(struct cgpu_info *avalon)
  541. {
  542. applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path);
  543. }
  544. static void avalon_init(struct cgpu_info *avalon)
  545. {
  546. struct avalon_result ar;
  547. int fd, ret;
  548. avalon->device_fd = -1;
  549. fd = avalon_open(avalon->device_path,
  550. avalon_infos[avalon->device_id]->baud);
  551. if (unlikely(fd == -1)) {
  552. applog(LOG_ERR, "Avalon: Failed to open on %s",
  553. avalon->device_path);
  554. return;
  555. }
  556. ret = avalon_reset(fd, &ar);
  557. if (ret) {
  558. avalon_close(fd);
  559. return;
  560. }
  561. avalon->device_fd = fd;
  562. __avalon_init(avalon);
  563. }
  564. static bool avalon_prepare(struct thr_info *thr)
  565. {
  566. struct cgpu_info *avalon = thr->cgpu;
  567. struct avalon_info *info = avalon_infos[avalon->device_id];
  568. struct timeval now;
  569. free(avalon->works);
  570. avalon->works = calloc(info->miner_count * sizeof(struct work *),
  571. AVALON_ARRAY_SIZE);
  572. if (!avalon->works)
  573. quit(1, "Failed to calloc avalon works in avalon_prepare");
  574. if (avalon->device_fd == -1)
  575. avalon_init(avalon);
  576. else
  577. __avalon_init(avalon);
  578. gettimeofday(&now, NULL);
  579. get_datestamp(avalon->init, &now);
  580. return true;
  581. }
  582. static void avalon_free_work(struct thr_info *thr)
  583. {
  584. struct cgpu_info *avalon;
  585. struct avalon_info *info;
  586. struct work **works;
  587. int i;
  588. avalon = thr->cgpu;
  589. avalon->queued = 0;
  590. if (unlikely(!avalon->works))
  591. return;
  592. works = avalon->works;
  593. info = avalon_infos[avalon->device_id];
  594. for (i = 0; i < info->miner_count * 4; i++) {
  595. if (works[i]) {
  596. work_completed(avalon, works[i]);
  597. works[i] = NULL;
  598. }
  599. }
  600. }
  601. static void do_avalon_close(struct thr_info *thr)
  602. {
  603. struct avalon_result ar;
  604. struct cgpu_info *avalon = thr->cgpu;
  605. struct avalon_info *info = avalon_infos[avalon->device_id];
  606. avalon_free_work(thr);
  607. nmsleep(1000);
  608. avalon_reset(avalon->device_fd, &ar);
  609. avalon_idle(avalon);
  610. avalon_close(avalon->device_fd);
  611. avalon->device_fd = -1;
  612. info->no_matching_work = 0;
  613. }
  614. static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg)
  615. {
  616. info->fan0 = ar->fan0 * AVALON_FAN_FACTOR;
  617. info->fan1 = ar->fan1 * AVALON_FAN_FACTOR;
  618. info->fan2 = ar->fan2 * AVALON_FAN_FACTOR;
  619. info->temp0 = ar->temp0;
  620. info->temp1 = ar->temp1;
  621. info->temp2 = ar->temp2;
  622. if (ar->temp0 & 0x80) {
  623. ar->temp0 &= 0x7f;
  624. info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1);
  625. }
  626. if (ar->temp1 & 0x80) {
  627. ar->temp1 &= 0x7f;
  628. info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1);
  629. }
  630. if (ar->temp2 & 0x80) {
  631. ar->temp2 &= 0x7f;
  632. info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1);
  633. }
  634. *temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1;
  635. if (info->temp0 > info->temp_max)
  636. info->temp_max = info->temp0;
  637. if (info->temp1 > info->temp_max)
  638. info->temp_max = info->temp1;
  639. if (info->temp2 > info->temp_max)
  640. info->temp_max = info->temp2;
  641. }
  642. static inline void adjust_fan(struct avalon_info *info)
  643. {
  644. int temp_new;
  645. temp_new = info->temp_sum / info->temp_history_count;
  646. if (temp_new < 35) {
  647. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
  648. info->temp_old = temp_new;
  649. } else if (temp_new > 55) {
  650. info->fan_pwm = AVALON_DEFAULT_FAN_MAX_PWM;
  651. info->temp_old = temp_new;
  652. } else if (abs(temp_new - info->temp_old) >= 2) {
  653. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM + (temp_new - 35) * 6.4;
  654. info->temp_old = temp_new;
  655. }
  656. }
  657. /* We use a replacement algorithm to only remove references to work done from
  658. * the buffer when we need the extra space for new work. */
  659. static bool avalon_fill(struct cgpu_info *avalon)
  660. {
  661. int subid, slot, mc = avalon_infos[avalon->device_id]->miner_count;
  662. struct work *work;
  663. if (avalon->queued >= mc)
  664. return true;
  665. work = get_queued(avalon);
  666. if (unlikely(!work))
  667. return false;
  668. subid = avalon->queued++;
  669. work->subid = subid;
  670. slot = avalon->work_array * mc + subid;
  671. if (likely(avalon->works[slot]))
  672. work_completed(avalon, avalon->works[slot]);
  673. avalon->works[slot] = work;
  674. if (avalon->queued >= mc)
  675. return true;
  676. return false;
  677. }
  678. static void avalon_rotate_array(struct cgpu_info *avalon)
  679. {
  680. avalon->queued = 0;
  681. if (++avalon->work_array >= AVALON_ARRAY_SIZE)
  682. avalon->work_array = 0;
  683. }
  684. static int64_t avalon_scanhash(struct thr_info *thr)
  685. {
  686. struct cgpu_info *avalon;
  687. struct work **works;
  688. int fd, ret = AVA_GETS_OK, full;
  689. struct avalon_info *info;
  690. struct avalon_task at;
  691. struct avalon_result ar;
  692. int i;
  693. int avalon_get_work_count;
  694. int start_count, end_count;
  695. struct timeval tv_start, tv_finish, elapsed;
  696. uint32_t nonce;
  697. int64_t hash_count;
  698. static int first_try = 0;
  699. int result_wrong;
  700. avalon = thr->cgpu;
  701. works = avalon->works;
  702. info = avalon_infos[avalon->device_id];
  703. avalon_get_work_count = info->miner_count;
  704. if (unlikely(avalon->device_fd == -1)) {
  705. if (!avalon_prepare(thr)) {
  706. applog(LOG_ERR, "AVA%i: Comms error(open)",
  707. avalon->device_id);
  708. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  709. /* fail the device if the reopen attempt fails */
  710. return -1;
  711. }
  712. }
  713. fd = avalon->device_fd;
  714. #ifndef WIN32
  715. tcflush(fd, TCOFLUSH);
  716. #endif
  717. start_count = avalon->work_array * avalon_get_work_count;
  718. end_count = start_count + avalon_get_work_count;
  719. i = start_count;
  720. while (true) {
  721. avalon_init_task(&at, 0, 0, info->fan_pwm,
  722. info->timeout, info->asic_count,
  723. info->miner_count, 1, 0, info->frequency);
  724. avalon_create_task(&at, works[i]);
  725. ret = avalon_send_task(fd, &at, avalon);
  726. if (unlikely(ret == AVA_SEND_ERROR ||
  727. (ret == AVA_SEND_BUFFER_EMPTY &&
  728. (i + 1 == end_count) &&
  729. first_try))) {
  730. do_avalon_close(thr);
  731. applog(LOG_ERR, "AVA%i: Comms error(buffer)",
  732. avalon->device_id);
  733. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  734. first_try = 0;
  735. nmsleep(1000);
  736. avalon_init(avalon);
  737. return 0; /* This should never happen */
  738. }
  739. if (ret == AVA_SEND_BUFFER_EMPTY && (i + 1 == end_count)) {
  740. first_try = 1;
  741. avalon_rotate_array(avalon);
  742. return 0xffffffff;
  743. }
  744. works[i]->blk.nonce = 0xffffffff;
  745. if (ret == AVA_SEND_BUFFER_FULL)
  746. break;
  747. i++;
  748. }
  749. if (unlikely(first_try))
  750. first_try = 0;
  751. elapsed.tv_sec = elapsed.tv_usec = 0;
  752. gettimeofday(&tv_start, NULL);
  753. result_wrong = 0;
  754. hash_count = 0;
  755. while (true) {
  756. full = avalon_buffer_full(fd);
  757. applog(LOG_DEBUG, "Avalon: Buffer full: %s",
  758. ((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
  759. if (unlikely(full == AVA_BUFFER_EMPTY))
  760. break;
  761. ret = avalon_get_result(fd, &ar, thr, &tv_finish);
  762. if (unlikely(ret == AVA_GETS_ERROR)) {
  763. do_avalon_close(thr);
  764. applog(LOG_ERR,
  765. "AVA%i: Comms error(read)", avalon->device_id);
  766. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  767. return 0;
  768. }
  769. if (unlikely(ret == AVA_GETS_RESTART))
  770. break;
  771. if (unlikely(ret == AVA_GETS_TIMEOUT)) {
  772. timersub(&tv_finish, &tv_start, &elapsed);
  773. applog(LOG_DEBUG, "Avalon: no nonce in (%ld.%06lds)",
  774. elapsed.tv_sec, elapsed.tv_usec);
  775. continue;
  776. }
  777. if (!avalon_decode_nonce(thr, &ar, &nonce)) {
  778. info->no_matching_work++;
  779. result_wrong++;
  780. if (unlikely(result_wrong >= avalon_get_work_count))
  781. break;
  782. if (opt_debug) {
  783. timersub(&tv_finish, &tv_start, &elapsed);
  784. applog(LOG_DEBUG,"Avalon: no matching work: %d"
  785. " (%ld.%06lds)", info->no_matching_work,
  786. elapsed.tv_sec, elapsed.tv_usec);
  787. }
  788. continue;
  789. }
  790. hash_count += 0xffffffff;
  791. if (opt_debug) {
  792. timersub(&tv_finish, &tv_start, &elapsed);
  793. applog(LOG_DEBUG,
  794. "Avalon: nonce = 0x%08x = 0x%08llx hashes "
  795. "(%ld.%06lds)", nonce, hash_count,
  796. elapsed.tv_sec, elapsed.tv_usec);
  797. }
  798. }
  799. if (hash_count && avalon->results < AVALON_ARRAY_SIZE)
  800. avalon->results++;
  801. if (unlikely((result_wrong >= avalon_get_work_count) ||
  802. (!hash_count && ret != AVA_GETS_RESTART && --avalon->results < 0))) {
  803. /* Look for all invalid results, or consecutive failure
  804. * to generate any results suggesting the FPGA
  805. * controller has screwed up. */
  806. do_avalon_close(thr);
  807. applog(LOG_ERR,
  808. "AVA%i: FPGA controller messed up, %d wrong results",
  809. avalon->device_id, result_wrong);
  810. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  811. nmsleep(1000);
  812. avalon_init(avalon);
  813. return 0;
  814. }
  815. avalon_rotate_array(avalon);
  816. if (hash_count) {
  817. record_temp_fan(info, &ar, &(avalon->temp));
  818. applog(LOG_INFO,
  819. "Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t"
  820. "Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC",
  821. info->fan0, info->fan1, info->fan2,
  822. info->temp0, info->temp1, info->temp2, info->temp_max);
  823. info->temp_history_index++;
  824. info->temp_sum += avalon->temp;
  825. applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d",
  826. info->temp_history_index, info->temp_history_count, info->temp_old);
  827. if (info->temp_history_index == info->temp_history_count) {
  828. adjust_fan(info);
  829. info->temp_history_index = 0;
  830. info->temp_sum = 0;
  831. }
  832. }
  833. /* This hashmeter is just a utility counter based on returned shares */
  834. return hash_count;
  835. }
  836. static struct api_data *avalon_api_stats(struct cgpu_info *cgpu)
  837. {
  838. struct api_data *root = NULL;
  839. struct avalon_info *info = avalon_infos[cgpu->device_id];
  840. root = api_add_int(root, "baud", &(info->baud), false);
  841. root = api_add_int(root, "miner_count", &(info->miner_count),false);
  842. root = api_add_int(root, "asic_count", &(info->asic_count), false);
  843. root = api_add_int(root, "timeout", &(info->timeout), false);
  844. root = api_add_int(root, "frequency", &(info->frequency), false);
  845. root = api_add_int(root, "fan1", &(info->fan0), false);
  846. root = api_add_int(root, "fan2", &(info->fan1), false);
  847. root = api_add_int(root, "fan3", &(info->fan2), false);
  848. root = api_add_int(root, "temp1", &(info->temp0), false);
  849. root = api_add_int(root, "temp2", &(info->temp1), false);
  850. root = api_add_int(root, "temp3", &(info->temp2), false);
  851. root = api_add_int(root, "temp_max", &(info->temp_max), false);
  852. root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false);
  853. root = api_add_int(root, "matching_work_count1", &(info->matching_work[0]), false);
  854. root = api_add_int(root, "matching_work_count2", &(info->matching_work[1]), false);
  855. root = api_add_int(root, "matching_work_count3", &(info->matching_work[2]), false);
  856. root = api_add_int(root, "matching_work_count4", &(info->matching_work[3]), false);
  857. root = api_add_int(root, "matching_work_count5", &(info->matching_work[4]), false);
  858. root = api_add_int(root, "matching_work_count6", &(info->matching_work[5]), false);
  859. root = api_add_int(root, "matching_work_count7", &(info->matching_work[6]), false);
  860. root = api_add_int(root, "matching_work_count8", &(info->matching_work[7]), false);
  861. root = api_add_int(root, "matching_work_count9", &(info->matching_work[8]), false);
  862. root = api_add_int(root, "matching_work_count10", &(info->matching_work[9]), false);
  863. root = api_add_int(root, "matching_work_count11", &(info->matching_work[10]), false);
  864. root = api_add_int(root, "matching_work_count12", &(info->matching_work[11]), false);
  865. root = api_add_int(root, "matching_work_count13", &(info->matching_work[12]), false);
  866. root = api_add_int(root, "matching_work_count14", &(info->matching_work[13]), false);
  867. root = api_add_int(root, "matching_work_count15", &(info->matching_work[14]), false);
  868. root = api_add_int(root, "matching_work_count16", &(info->matching_work[15]), false);
  869. root = api_add_int(root, "matching_work_count17", &(info->matching_work[16]), false);
  870. root = api_add_int(root, "matching_work_count18", &(info->matching_work[17]), false);
  871. root = api_add_int(root, "matching_work_count19", &(info->matching_work[18]), false);
  872. root = api_add_int(root, "matching_work_count20", &(info->matching_work[19]), false);
  873. root = api_add_int(root, "matching_work_count21", &(info->matching_work[20]), false);
  874. root = api_add_int(root, "matching_work_count22", &(info->matching_work[21]), false);
  875. root = api_add_int(root, "matching_work_count23", &(info->matching_work[22]), false);
  876. root = api_add_int(root, "matching_work_count24", &(info->matching_work[23]), false);
  877. return root;
  878. }
  879. static void avalon_shutdown(struct thr_info *thr)
  880. {
  881. do_avalon_close(thr);
  882. }
  883. struct device_drv avalon_drv = {
  884. .dname = "avalon",
  885. .name = "AVA",
  886. .drv_detect = avalon_detect,
  887. .thread_prepare = avalon_prepare,
  888. .minerloop = hash_queued_work,
  889. .queue_full = avalon_fill,
  890. .scanwork = avalon_scanhash,
  891. .get_api_stats = avalon_api_stats,
  892. .reinit_device = avalon_init,
  893. .thread_shutdown = avalon_shutdown,
  894. };