lowl-ftdi.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. /*
  2. * Copyright 2012-2014 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <errno.h>
  11. #include <stdbool.h>
  12. #include <stdint.h>
  13. #include <string.h>
  14. #include <libusb.h>
  15. #include "compat.h"
  16. #include "logging.h"
  17. #include "lowlevel.h"
  18. #include "lowl-ftdi.h"
  19. #include "miner.h"
  20. #define FT232R_IDVENDOR 0x0403
  21. #define FT232R_IDPRODUCT 0x6001
  22. #define FT232H_IDPRODUCT 0x6014
  23. #define FT232H_LATENCY_MS 2
  24. static
  25. void ft232r_devinfo_free(struct lowlevel_device_info * const info)
  26. {
  27. libusb_device * const dev = info->lowl_data;
  28. if (dev)
  29. libusb_unref_device(dev);
  30. }
  31. static
  32. bool _ft232r_devinfo_scan_cb(struct lowlevel_device_info * const usbinfo, void * const userp)
  33. {
  34. struct lowlevel_device_info **devinfo_list_p = userp, *info;
  35. info = malloc(sizeof(*info));
  36. *info = (struct lowlevel_device_info){
  37. .lowl = &lowl_ft232r,
  38. .lowl_data = libusb_ref_device(usbinfo->lowl_data),
  39. };
  40. lowlevel_devinfo_semicpy(info, usbinfo);
  41. LL_PREPEND(*devinfo_list_p, info);
  42. // Never *consume* the lowl_usb entry - especially since this is during the scan!
  43. return false;
  44. }
  45. static
  46. struct lowlevel_device_info *ft232r_devinfo_scan()
  47. {
  48. struct lowlevel_device_info *devinfo_list = NULL;
  49. lowlevel_detect_id(_ft232r_devinfo_scan_cb, &devinfo_list, &lowl_usb, FT232R_IDVENDOR, FT232H_IDPRODUCT);
  50. lowlevel_detect_id(_ft232r_devinfo_scan_cb, &devinfo_list, &lowl_usb, FT232R_IDVENDOR, FT232R_IDPRODUCT);
  51. return devinfo_list;
  52. }
  53. #define FTDI_REQTYPE (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
  54. #define FTDI_REQTYPE_IN (FTDI_REQTYPE | LIBUSB_ENDPOINT_IN)
  55. #define FTDI_REQTYPE_OUT (FTDI_REQTYPE | LIBUSB_ENDPOINT_OUT)
  56. #define FTDI_REQUEST_RESET 0
  57. #define FTDI_REQUEST_SET_BAUDRATE 3
  58. #define FTDI_REQUEST_SET_EVENT_CHAR 0x06
  59. #define FTDI_REQUEST_SET_ERROR_CHAR 0x07
  60. #define FTDI_REQUEST_SET_LATENCY_TIMER 0x09
  61. #define FTDI_REQUEST_SET_BITMODE 0x0b
  62. #define FTDI_REQUEST_GET_PINS 0x0c
  63. #define FTDI_REQUEST_GET_BITMODE 0x0c
  64. #define FTDI_RESET_SIO 0
  65. #define FTDI_BAUDRATE_3M 0,0
  66. #define FTDI_BITMODE_MPSSE 0x02
  67. #define FTDI_INDEX 1
  68. #define FTDI_TIMEOUT 1000
  69. // http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
  70. #define FTDI_ADBUS_SET 0x80
  71. #define FTDI_ACBUS_SET 0x82
  72. #define FTDI_LOOPBACK_DISABLE 0x85
  73. #define FTDI_TCK_DIVISOR 0x86
  74. // Divide-by-five clock prescaler
  75. #define FTDI_DIV5_ENABLE 0x8b
  76. struct ft232r_device_handle {
  77. libusb_device_handle *h;
  78. uint8_t i;
  79. uint8_t o;
  80. int iPktSz;
  81. unsigned char ibuf[0x400];
  82. int ibufLen;
  83. uint16_t osz;
  84. unsigned char *obuf;
  85. uint16_t obufsz;
  86. bool mpsse;
  87. };
  88. static
  89. struct ft232r_device_handle *ftdi_common_open(const struct lowlevel_device_info * const info)
  90. {
  91. libusb_device * const dev = info->lowl_data;
  92. // FIXME: Cleanup on errors
  93. libusb_device_handle *devh;
  94. struct ft232r_device_handle *ftdi;
  95. if (libusb_open(dev, &devh)) {
  96. applog(LOG_ERR, "ft232r_open: Error opening device");
  97. return NULL;
  98. }
  99. libusb_reset_device(devh);
  100. libusb_detach_kernel_driver(devh, 0);
  101. if (libusb_set_configuration(devh, 1)) {
  102. applog(LOG_ERR, "ft232r_open: Error setting configuration");
  103. return NULL;
  104. }
  105. if (libusb_claim_interface(devh, 0)) {
  106. applog(LOG_ERR, "ft232r_open: Error claiming interface");
  107. return NULL;
  108. }
  109. struct libusb_config_descriptor *cfg;
  110. if (libusb_get_config_descriptor(dev, 0, &cfg)) {
  111. applog(LOG_ERR, "ft232r_open: Error getting config descriptor");
  112. return NULL;
  113. }
  114. const struct libusb_interface_descriptor *altcfg = &cfg->interface[0].altsetting[0];
  115. if (altcfg->bNumEndpoints < 2) {
  116. applog(LOG_ERR, "ft232r_open: Too few endpoints");
  117. return NULL;
  118. }
  119. ftdi = calloc(1, sizeof(*ftdi));
  120. ftdi->h = devh;
  121. ftdi->i = altcfg->endpoint[0].bEndpointAddress;
  122. ftdi->iPktSz = altcfg->endpoint[0].wMaxPacketSize;
  123. ftdi->o = altcfg->endpoint[1].bEndpointAddress;
  124. ftdi->osz = 0x1000;
  125. ftdi->obuf = malloc(ftdi->osz);
  126. libusb_free_config_descriptor(cfg);
  127. return ftdi;
  128. }
  129. struct ft232r_device_handle *ft232r_open(const struct lowlevel_device_info * const info)
  130. {
  131. struct ft232r_device_handle * const ftdi = ftdi_common_open(info);
  132. if (!ftdi)
  133. return NULL;
  134. if (libusb_control_transfer(ftdi->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BAUDRATE, FTDI_BAUDRATE_3M, NULL, 0, FTDI_TIMEOUT) < 0) {
  135. applog(LOG_ERR, "ft232r_open: Error performing control transfer");
  136. ft232r_close(ftdi);
  137. return NULL;
  138. }
  139. return ftdi;
  140. }
  141. static
  142. void ft232h_mpsse_clock_divisor(uint8_t * const buf, const unsigned long clock, const unsigned long freq)
  143. {
  144. const uint16_t divisor = (clock / freq / 2) - 1;
  145. buf[0] = divisor & 0xff;
  146. buf[1] = divisor >> 8;
  147. }
  148. static ssize_t ft232r_readwrite(struct ft232r_device_handle *, unsigned char, void *, size_t);
  149. struct ft232r_device_handle *ft232h_open_mpsse(const struct lowlevel_device_info * const info)
  150. {
  151. if (info->pid != FT232H_IDPRODUCT)
  152. return NULL;
  153. struct ft232r_device_handle * const ftdi = ftdi_common_open(info);
  154. uint8_t buf[3];
  155. if (!ftdi)
  156. return NULL;
  157. if (libusb_control_transfer(ftdi->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_RESET_SIO, 1, NULL, 0, FTDI_TIMEOUT) < 0)
  158. {
  159. applog(LOG_ERR, "%s: Error requesting %s", __func__, "SIO reset");
  160. goto err;
  161. }
  162. if (libusb_control_transfer(ftdi->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_LATENCY_TIMER, FT232H_LATENCY_MS, 1, NULL, 0, FTDI_TIMEOUT) < 0)
  163. {
  164. applog(LOG_ERR, "%s: Error setting %s", __func__, "latency timer");
  165. goto err;
  166. }
  167. if (libusb_control_transfer(ftdi->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_EVENT_CHAR, 0, 1, NULL, 0, FTDI_TIMEOUT) < 0)
  168. {
  169. applog(LOG_ERR, "%s: Error setting %s", __func__, "event char");
  170. goto err;
  171. }
  172. if (libusb_control_transfer(ftdi->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_ERROR_CHAR, 0, 1, NULL, 0, FTDI_TIMEOUT) < 0)
  173. {
  174. applog(LOG_ERR, "%s: Error setting %s", __func__, "error char");
  175. goto err;
  176. }
  177. if (!ft232r_set_bitmode(ftdi, 0, FTDI_BITMODE_MPSSE))
  178. {
  179. applog(LOG_ERR, "%s: Error setting %s", __func__, "MPSSE bitmode");
  180. goto err;
  181. }
  182. buf[0] = FTDI_DIV5_ENABLE;
  183. if (ft232r_readwrite(ftdi, ftdi->o, buf, 1) != 1)
  184. {
  185. applog(LOG_ERR, "%s: Error requesting %s", __func__, "divide-by-five clock prescaler");
  186. goto err;
  187. }
  188. buf[0] = FTDI_TCK_DIVISOR;
  189. ft232h_mpsse_clock_divisor(&buf[1], 12000000, 200000);
  190. if (ft232r_readwrite(ftdi, ftdi->o, buf, 3) != 3)
  191. {
  192. applog(LOG_ERR, "%s: Error setting %s", __func__, "MPSSE clock divisor");
  193. goto err;
  194. }
  195. buf[0] = FTDI_LOOPBACK_DISABLE;
  196. if (ft232r_readwrite(ftdi, ftdi->o, buf, 1) != 1)
  197. applog(LOG_WARNING, "%s: Error disabling loopback", __func__);
  198. ftdi->mpsse = true;
  199. return ftdi;
  200. err:
  201. ft232r_close(ftdi);
  202. return NULL;
  203. }
  204. void ft232r_close(struct ft232r_device_handle *dev)
  205. {
  206. libusb_release_interface(dev->h, 0);
  207. libusb_reset_device(dev->h);
  208. libusb_close(dev->h);
  209. }
  210. bool ft232r_purge_buffers(struct ft232r_device_handle *dev, enum ft232r_reset_purge purge)
  211. {
  212. if (ft232r_flush(dev) < 0)
  213. return false;
  214. if (purge & FTDI_PURGE_RX) {
  215. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_RX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  216. return false;
  217. dev->ibufLen = 0;
  218. }
  219. if (purge & FTDI_PURGE_TX)
  220. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_TX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  221. return false;
  222. return true;
  223. }
  224. bool ft232r_set_bitmode(struct ft232r_device_handle *dev, uint8_t mask, uint8_t mode)
  225. {
  226. if (ft232r_flush(dev) < 0)
  227. return false;
  228. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  229. return false;
  230. return !libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, (mode << 8) | mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT);
  231. }
  232. static ssize_t ft232r_readwrite(struct ft232r_device_handle *dev, unsigned char endpoint, void *data, size_t count)
  233. {
  234. int transferred;
  235. switch (libusb_bulk_transfer(dev->h, endpoint, data, count, &transferred, FTDI_TIMEOUT)) {
  236. case LIBUSB_ERROR_TIMEOUT:
  237. if (!transferred) {
  238. errno = ETIMEDOUT;
  239. return -1;
  240. }
  241. // fallthru
  242. case 0:
  243. if (opt_dev_protocol)
  244. {
  245. char x[(transferred * 2) + 1];
  246. bin2hex(x, data, transferred);
  247. applog(LOG_DEBUG, "ft232r %p: %s: %s",
  248. dev,
  249. (endpoint & LIBUSB_ENDPOINT_IN) ? "RECV" : "SEND",
  250. x);
  251. }
  252. return transferred;
  253. default:
  254. errno = EIO;
  255. return -1;
  256. }
  257. }
  258. ssize_t ft232r_flush(struct ft232r_device_handle *dev)
  259. {
  260. if (!dev->obufsz)
  261. return 0;
  262. ssize_t r = ft232r_readwrite(dev, dev->o, dev->obuf, dev->obufsz);
  263. if (r == dev->obufsz) {
  264. dev->obufsz = 0;
  265. } else if (r > 0) {
  266. dev->obufsz -= r;
  267. memmove(dev->obuf, &dev->obuf[r], dev->obufsz);
  268. }
  269. return r;
  270. }
  271. ssize_t ft232r_write(struct ft232r_device_handle * const dev, const void * const data, const size_t count)
  272. {
  273. uint16_t bufleft;
  274. ssize_t r;
  275. bufleft = dev->osz - dev->obufsz;
  276. if (count < bufleft) {
  277. // Just add to output buffer
  278. memcpy(&dev->obuf[dev->obufsz], data, count);
  279. dev->obufsz += count;
  280. return count;
  281. }
  282. // Fill up buffer and flush
  283. memcpy(&dev->obuf[dev->obufsz], data, bufleft);
  284. dev->obufsz += bufleft;
  285. r = ft232r_flush(dev);
  286. if (unlikely(r <= 0)) {
  287. // In this case, no bytes were written supposedly, so remove this data from buffer
  288. dev->obufsz -= bufleft;
  289. return r;
  290. }
  291. // Even if not all <bufleft> bytes from this write got out, the remaining are still buffered
  292. return bufleft;
  293. }
  294. typedef ssize_t (*ft232r_rwfunc_t)(struct ft232r_device_handle *, void*, size_t);
  295. static
  296. ssize_t ft232r_rw_all(const void * const rwfunc_p, struct ft232r_device_handle * const dev, void * const data, size_t count)
  297. {
  298. ft232r_rwfunc_t rwfunc = rwfunc_p;
  299. char *p = data;
  300. ssize_t writ = 0, total = 0;
  301. while (count && (writ = rwfunc(dev, p, count)) > 0) {
  302. p += writ;
  303. count -= writ;
  304. total += writ;
  305. }
  306. return total ?: writ;
  307. }
  308. ssize_t ft232r_write_all(struct ft232r_device_handle * const dev, const void * const data_p, size_t count)
  309. {
  310. const uint8_t *data = data_p;
  311. if (dev->mpsse)
  312. {
  313. ssize_t e;
  314. while (count > 0x10000)
  315. {
  316. e = ft232r_write_all(dev, data, 0x10000);
  317. if (e != 0x10000)
  318. return e;
  319. data += 0x10000;
  320. count -= 0x10000;
  321. }
  322. const uint16_t ftdilen = count - 1;
  323. const uint8_t cmd[] = { 0x11, ftdilen & 0xff, ftdilen >> 8 };
  324. e = ft232r_rw_all(ft232r_write, dev, (void*)cmd, 3);
  325. if (e != 3)
  326. return e;
  327. }
  328. return ft232r_rw_all(ft232r_write, dev, (void*)data, count) + (data - (uint8_t*)data_p);
  329. }
  330. ssize_t ft232r_read(struct ft232r_device_handle *dev, void *data, size_t count)
  331. {
  332. ssize_t r;
  333. int adj;
  334. // Flush any pending output before reading
  335. r = ft232r_flush(dev);
  336. if (r < 0)
  337. return r;
  338. // First 2 bytes of every packet are FTDI status or something
  339. while (dev->ibufLen <= 2) {
  340. // TODO: Implement a timeout for status byte repeating
  341. int transferred = ft232r_readwrite(dev, dev->i, dev->ibuf, sizeof(dev->ibuf));
  342. if (transferred <= 0)
  343. return transferred;
  344. dev->ibufLen = transferred;
  345. for (adj = dev->iPktSz; dev->ibufLen > adj; adj += dev->iPktSz - 2) {
  346. dev->ibufLen -= 2;
  347. memmove(&dev->ibuf[adj], &dev->ibuf[adj+2], dev->ibufLen - adj);
  348. }
  349. }
  350. unsigned char *ibufs = &dev->ibuf[2];
  351. size_t ibufsLen = dev->ibufLen - 2;
  352. if (count > ibufsLen)
  353. count = ibufsLen;
  354. memcpy(data, ibufs, count);
  355. dev->ibufLen -= count;
  356. ibufsLen -= count;
  357. if (ibufsLen) {
  358. memmove(ibufs, &ibufs[count], ibufsLen);
  359. applog(LOG_DEBUG, "ft232r_read: %"PRIu64" bytes extra", (uint64_t)ibufsLen);
  360. }
  361. return count;
  362. }
  363. ssize_t ft232r_read_all(struct ft232r_device_handle *dev, void *data, size_t count)
  364. {
  365. return ft232r_rw_all(ft232r_read, dev, data, count);
  366. }
  367. bool ft232r_get_pins(struct ft232r_device_handle *dev, uint8_t *pins)
  368. {
  369. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_PINS, 0, FTDI_INDEX, pins, 1, FTDI_TIMEOUT) == 1;
  370. }
  371. bool ft232r_get_bitmode(struct ft232r_device_handle *dev, uint8_t *out_mode)
  372. {
  373. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_BITMODE, 0, FTDI_INDEX, out_mode, 1, FTDI_TIMEOUT) == 1;
  374. }
  375. bool ft232r_set_cbus_bits(struct ft232r_device_handle *dev, bool sc, bool cs)
  376. {
  377. uint8_t pin_state = (cs ? (1<<2) : 0)
  378. | (sc ? (1<<3) : 0);
  379. return ft232r_set_bitmode(dev, 0xc0 | pin_state, 0x20);
  380. }
  381. bool ft232r_get_cbus_bits(struct ft232r_device_handle *dev, bool *out_sio0, bool *out_sio1)
  382. {
  383. uint8_t data;
  384. if (!ft232r_get_bitmode(dev, &data))
  385. return false;
  386. *out_sio0 = data & 1;
  387. *out_sio1 = data & 2;
  388. return true;
  389. }
  390. bool ft232h_mpsse_set_axbus(struct ft232r_device_handle * const ftdi, const uint8_t value, const uint8_t directions, const bool adbus)
  391. {
  392. if (ft232r_flush(ftdi))
  393. cgsleep_ms(1);
  394. const uint8_t buf[] = { adbus ? FTDI_ADBUS_SET : FTDI_ACBUS_SET, value, directions };
  395. return (ft232r_write(ftdi, buf, 3) == 3) && (ft232r_flush(ftdi) == 3);
  396. }
  397. ssize_t ft232h_mpsse_readwrite_all(struct ft232r_device_handle * const dev, void * const read_data_p, const void * const write_data_p, size_t count)
  398. {
  399. uint8_t *read_data = read_data_p;
  400. const uint8_t *write_data = write_data_p;
  401. while (count > 0x10000)
  402. {
  403. ft232h_mpsse_readwrite_all(dev, read_data, write_data, 0x10000);
  404. read_data += 0x10000;
  405. write_data += 0x10000;
  406. count -= 0x10000;
  407. }
  408. const uint16_t ftdilen = count - 1;
  409. const uint8_t cmd[] = { 0x31, ftdilen & 0xff, ftdilen >> 8 };
  410. ssize_t e;
  411. e = ft232r_rw_all(ft232r_write, dev, (void*)cmd, 3);
  412. if (e != 3)
  413. return e;
  414. e = ft232r_rw_all(ft232r_write, dev, (void*)write_data, count);
  415. if (e != count)
  416. return e;
  417. return ft232r_read_all(dev, read_data, count) + (read_data - (uint8_t*)read_data_p);
  418. }
  419. struct lowlevel_driver lowl_ft232r = {
  420. .dname = "ft232r",
  421. .devinfo_scan = ft232r_devinfo_scan,
  422. .devinfo_free = ft232r_devinfo_free,
  423. };
  424. #if 0
  425. int main() {
  426. libusb_init(NULL);
  427. ft232r_scan();
  428. ft232r_scan_free();
  429. libusb_exit(NULL);
  430. }
  431. void applog(int prio, const char *fmt, ...)
  432. {
  433. va_list ap;
  434. va_start(ap, fmt);
  435. vprintf(fmt, ap);
  436. puts("");
  437. va_end(ap);
  438. }
  439. #endif