driver-x6500.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872
  1. /*
  2. * Copyright 2012-2014 Luke Dashjr
  3. * Copyright 2013 Nate Woolls
  4. * Copyright 2012 Andrew Smith
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 3 of the License, or (at your option)
  9. * any later version. See COPYING for more details.
  10. */
  11. #include "config.h"
  12. #include <limits.h>
  13. #include <math.h>
  14. #include <stdbool.h>
  15. #include <stdint.h>
  16. #include <sys/time.h>
  17. #include <libusb.h>
  18. #include "binloader.h"
  19. #include "compat.h"
  20. #include "deviceapi.h"
  21. #include "dynclock.h"
  22. #include "jtag.h"
  23. #include "logging.h"
  24. #include "miner.h"
  25. #include "lowlevel.h"
  26. #include "lowl-ftdi.h"
  27. #include "lowl-usb.h"
  28. #define X6500_USB_PRODUCT "X6500 FPGA Miner"
  29. #define X6500_BITSTREAM_FILENAME "fpgaminer_x6500-overclocker-0402.bit"
  30. // NOTE: X6500_BITSTREAM_USERID is bitflipped
  31. #define X6500_BITSTREAM_USERID "\x40\x20\x24\x42"
  32. #define X6500_MINIMUM_CLOCK 2
  33. #define X6500_DEFAULT_CLOCK 190
  34. #define X6500_MAXIMUM_CLOCK 250
  35. BFG_REGISTER_DRIVER(x6500_api)
  36. #define fromlebytes(ca, j) (ca[j] | (((uint16_t)ca[j+1])<<8) | (((uint32_t)ca[j+2])<<16) | (((uint32_t)ca[j+3])<<24))
  37. static
  38. void int2bits(uint32_t n, uint8_t *b, uint8_t bits)
  39. {
  40. uint8_t i;
  41. for (i = (bits + 7) / 8; i > 0; )
  42. b[--i] = 0;
  43. for (i = 0; i < bits; ++i) {
  44. if (n & 1)
  45. b[i/8] |= 0x80 >> (i % 8);
  46. n >>= 1;
  47. }
  48. }
  49. static
  50. uint32_t bits2int(uint8_t *b, uint8_t bits)
  51. {
  52. uint32_t n, i;
  53. n = 0;
  54. for (i = 0; i < bits; ++i)
  55. if (b[i/8] & (0x80 >> (i % 8)))
  56. n |= 1<<i;
  57. return n;
  58. }
  59. static
  60. void checksum(uint8_t *b, uint8_t bits)
  61. {
  62. uint8_t i;
  63. uint8_t checksum = 1;
  64. for(i = 0; i < bits; ++i)
  65. checksum ^= (b[i/8] & (0x80 >> (i % 8))) ? 1 : 0;
  66. if (checksum)
  67. b[i/8] |= 0x80 >> (i % 8);
  68. }
  69. static
  70. void x6500_jtag_set(struct jtag_port *jp, uint8_t pinoffset)
  71. {
  72. jp->tck = pinoffset << 3;
  73. jp->tms = pinoffset << 2;
  74. jp->tdi = pinoffset << 1;
  75. jp->tdo = pinoffset << 0;
  76. jp->ignored = ~(jp->tdo | jp->tdi | jp->tms | jp->tck);
  77. }
  78. static uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr);
  79. static
  80. void x6500_set_register(struct jtag_port *jp, uint8_t addr, uint32_t nv)
  81. {
  82. uint8_t buf[38];
  83. retry:
  84. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  85. int2bits(nv, &buf[0], 32);
  86. int2bits(addr, &buf[4], 4);
  87. buf[4] |= 8;
  88. checksum(buf, 37);
  89. jtag_write(jp, JTAG_REG_DR, buf, 38);
  90. jtag_run(jp);
  91. #ifdef DEBUG_X6500_SET_REGISTER
  92. if (x6500_get_register(jp, addr) != nv)
  93. #else
  94. if (0)
  95. #endif
  96. {
  97. applog(LOG_WARNING, "x6500_set_register failed %x=%08x", addr, nv);
  98. goto retry;
  99. }
  100. }
  101. static
  102. uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr)
  103. {
  104. uint8_t buf[4] = {0};
  105. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  106. int2bits(addr, &buf[0], 4);
  107. checksum(buf, 5);
  108. jtag_write(jp, JTAG_REG_DR, buf, 6);
  109. jtag_read (jp, JTAG_REG_DR, buf, 32);
  110. jtag_reset(jp);
  111. return bits2int(buf, 32);
  112. }
  113. static
  114. bool x6500_lowl_match(const struct lowlevel_device_info * const info)
  115. {
  116. return lowlevel_match_lowlproduct(info, &lowl_ft232r, X6500_USB_PRODUCT);
  117. }
  118. static
  119. bool x6500_lowl_probe(const struct lowlevel_device_info * const info)
  120. {
  121. const char * const product = info->product;
  122. const char * const serial = info->serial;
  123. if (info->lowl != &lowl_ft232r)
  124. {
  125. bfg_probe_result_flags = BPR_WRONG_DEVTYPE;
  126. if (info->lowl != &lowl_usb)
  127. applog(LOG_DEBUG, "%s: Matched \"%s\" serial \"%s\", but lowlevel driver is not ft232r!",
  128. __func__, product, serial);
  129. return false;
  130. }
  131. libusb_device * const dev = info->lowl_data;
  132. if (bfg_claim_libusb(&x6500_api, true, dev))
  133. return false;
  134. struct cgpu_info *x6500;
  135. x6500 = calloc(1, sizeof(*x6500));
  136. x6500->drv = &x6500_api;
  137. x6500->device_path = strdup(serial);
  138. x6500->deven = DEV_ENABLED;
  139. x6500->threads = 1;
  140. x6500->procs = 2;
  141. x6500->name = strdup(product);
  142. x6500->cutofftemp = 85;
  143. x6500->device_data = lowlevel_ref(info);
  144. cgpu_copy_libusb_strings(x6500, dev);
  145. return add_cgpu(x6500);
  146. }
  147. static bool x6500_prepare(struct thr_info *thr)
  148. {
  149. struct cgpu_info *x6500 = thr->cgpu;
  150. if (x6500->proc_id)
  151. return true;
  152. struct ft232r_device_handle *ftdi = ft232r_open(x6500->device_data);
  153. lowlevel_devinfo_free(x6500->device_data);
  154. x6500->device_ft232r = NULL;
  155. if (!ftdi)
  156. return false;
  157. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  158. return false;
  159. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  160. return false;
  161. x6500->device_ft232r = ftdi;
  162. struct jtag_port_a *jtag_a;
  163. unsigned char *pdone = calloc(1, sizeof(*jtag_a) + 1);
  164. *pdone = 101;
  165. jtag_a = (void*)(pdone + 1);
  166. jtag_a->ftdi = ftdi;
  167. x6500->device_data = jtag_a;
  168. for (struct cgpu_info *slave = x6500->next_proc; slave; slave = slave->next_proc)
  169. {
  170. slave->device_ft232r = x6500->device_ft232r;
  171. slave->device_data = x6500->device_data;
  172. }
  173. return true;
  174. }
  175. struct x6500_fpga_data {
  176. struct jtag_port jtag;
  177. struct timeval tv_hashstart;
  178. int64_t hashes_left;
  179. struct dclk_data dclk;
  180. uint8_t freqMaxMaxM;
  181. // Time the clock was last reduced due to temperature
  182. struct timeval tv_last_cutoff_reduced;
  183. uint32_t prepwork_last_register;
  184. };
  185. #define bailout2(...) do { \
  186. applog(__VA_ARGS__); \
  187. return false; \
  188. } while(0)
  189. static bool
  190. x6500_fpga_upload_bitstream(struct cgpu_info *x6500, struct jtag_port *jp1)
  191. {
  192. char buf[0x100];
  193. unsigned long len, flen;
  194. unsigned char *pdone = (unsigned char*)x6500->device_data - 1;
  195. struct ft232r_device_handle *ftdi = jp1->a->ftdi;
  196. FILE *f = open_xilinx_bitstream(x6500->drv->dname, x6500->dev_repr, X6500_BITSTREAM_FILENAME, &len);
  197. if (!f)
  198. return false;
  199. flen = len;
  200. applog(LOG_WARNING, "%s: Programming %s...",
  201. x6500->dev_repr, x6500->device_path);
  202. x6500->status = LIFE_INIT2;
  203. // "Magic" jtag_port configured to access both FPGAs concurrently
  204. struct jtag_port jpt = {
  205. .a = jp1->a,
  206. };
  207. struct jtag_port *jp = &jpt;
  208. uint8_t i, j;
  209. x6500_jtag_set(jp, 0x11);
  210. // Need to reset here despite previous FPGA state, since we are programming all at once
  211. jtag_reset(jp);
  212. jtag_write(jp, JTAG_REG_IR, "\xd0", 6); // JPROGRAM
  213. // Poll each FPGA status individually since they might not be ready at the same time
  214. for (j = 0; j < 2; ++j) {
  215. x6500_jtag_set(jp, j ? 0x10 : 1);
  216. do {
  217. i = 0xd0; // Re-set JPROGRAM while reading status
  218. jtag_read(jp, JTAG_REG_IR, &i, 6);
  219. } while (i & 8);
  220. applog(LOG_DEBUG, "%s%c: JPROGRAM ready",
  221. x6500->dev_repr, 'a' + j);
  222. }
  223. x6500_jtag_set(jp, 0x11);
  224. jtag_write(jp, JTAG_REG_IR, "\xa0", 6); // CFG_IN
  225. cgsleep_ms(1000);
  226. if (fread(buf, 32, 1, f) != 1)
  227. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  228. jtag_swrite(jp, JTAG_REG_DR, buf, 256);
  229. len -= 32;
  230. // Put ft232r chip in asynchronous bitbang mode so we don't need to read back tdo
  231. // This takes upload time down from about an hour to about 3 minutes
  232. if (!ft232r_set_bitmode(ftdi, 0xee, 1))
  233. return false;
  234. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  235. return false;
  236. jp->a->bufread = 0;
  237. jp->a->async = true;
  238. ssize_t buflen;
  239. char nextstatus = 25;
  240. while (len) {
  241. buflen = len < 32 ? len : 32;
  242. if (fread(buf, buflen, 1, f) != 1)
  243. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  244. jtag_swrite_more(jp, buf, buflen * 8, len == (unsigned long)buflen);
  245. *pdone = 100 - ((len * 100) / flen);
  246. if (*pdone >= nextstatus)
  247. {
  248. nextstatus += 25;
  249. applog(LOG_WARNING, "%s: Programming %s... %d%% complete...", x6500->dev_repr, x6500->device_path, *pdone);
  250. }
  251. len -= buflen;
  252. }
  253. // Switch back to synchronous bitbang mode
  254. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  255. return false;
  256. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  257. return false;
  258. jp->a->bufread = 0;
  259. jp->a->async = false;
  260. jp->a->bufread = 0;
  261. jtag_write(jp, JTAG_REG_IR, "\x30", 6); // JSTART
  262. for (i=0; i<16; ++i)
  263. jtag_run(jp);
  264. i = 0xff; // BYPASS
  265. jtag_read(jp, JTAG_REG_IR, &i, 6);
  266. if (!(i & 4))
  267. return false;
  268. applog(LOG_WARNING, "%s: Done programming %s", x6500->dev_repr, x6500->device_path);
  269. *pdone = 101;
  270. return true;
  271. }
  272. static bool x6500_change_clock(struct thr_info *thr, int multiplier)
  273. {
  274. struct x6500_fpga_data *fpga = thr->cgpu_data;
  275. struct jtag_port *jp = &fpga->jtag;
  276. x6500_set_register(jp, 0xD, multiplier * 2);
  277. ft232r_flush(jp->a->ftdi);
  278. fpga->dclk.freqM = multiplier;
  279. return true;
  280. }
  281. static bool x6500_dclk_change_clock(struct thr_info *thr, int multiplier)
  282. {
  283. struct cgpu_info *x6500 = thr->cgpu;
  284. struct x6500_fpga_data *fpga = thr->cgpu_data;
  285. uint8_t oldFreq = fpga->dclk.freqM;
  286. if (!x6500_change_clock(thr, multiplier)) {
  287. return false;
  288. }
  289. dclk_msg_freqchange(x6500->proc_repr, oldFreq * 2, fpga->dclk.freqM * 2, NULL);
  290. return true;
  291. }
  292. static bool x6500_thread_init(struct thr_info *thr)
  293. {
  294. struct cgpu_info *x6500 = thr->cgpu;
  295. struct ft232r_device_handle *ftdi = x6500->device_ft232r;
  296. cgpu_setup_control_requests(x6500);
  297. // This works because x6500_thread_init is only called for the first processor now that they're all using the same thread
  298. for ( ; x6500; x6500 = x6500->next_proc)
  299. {
  300. thr = x6500->thr[0];
  301. struct x6500_fpga_data *fpga;
  302. struct jtag_port *jp;
  303. int fpgaid = x6500->proc_id;
  304. uint8_t pinoffset = fpgaid ? 0x10 : 1;
  305. unsigned char buf[4] = {0};
  306. int i;
  307. if (!ftdi)
  308. return false;
  309. fpga = calloc(1, sizeof(*fpga));
  310. jp = &fpga->jtag;
  311. jp->a = x6500->device_data;
  312. x6500_jtag_set(jp, pinoffset);
  313. thr->cgpu_data = fpga;
  314. x6500->status = LIFE_INIT2;
  315. if (!jtag_reset(jp)) {
  316. applog(LOG_ERR, "%s: JTAG reset failed",
  317. x6500->dev_repr);
  318. return false;
  319. }
  320. i = jtag_detect(jp);
  321. if (i != 1) {
  322. applog(LOG_ERR, "%s: JTAG detect returned %d",
  323. x6500->dev_repr, i);
  324. return false;
  325. }
  326. if (!(1
  327. && jtag_write(jp, JTAG_REG_IR, "\x10", 6)
  328. && jtag_read (jp, JTAG_REG_DR, buf, 32)
  329. && jtag_reset(jp)
  330. )) {
  331. applog(LOG_ERR, "%s: JTAG error reading user code",
  332. x6500->dev_repr);
  333. return false;
  334. }
  335. if (memcmp(buf, X6500_BITSTREAM_USERID, 4)) {
  336. applog(LOG_ERR, "%"PRIprepr": FPGA not programmed",
  337. x6500->proc_repr);
  338. if (!x6500_fpga_upload_bitstream(x6500, jp))
  339. return false;
  340. } else if (opt_force_dev_init && x6500 == x6500->device) {
  341. applog(LOG_DEBUG, "%"PRIprepr": FPGA is already programmed, but --force-dev-init is set",
  342. x6500->proc_repr);
  343. if (!x6500_fpga_upload_bitstream(x6500, jp))
  344. return false;
  345. } else
  346. applog(LOG_DEBUG, "%s"PRIprepr": FPGA is already programmed :)",
  347. x6500->proc_repr);
  348. dclk_prepare(&fpga->dclk);
  349. fpga->dclk.freqMinM = X6500_MINIMUM_CLOCK / 2;
  350. x6500_change_clock(thr, X6500_DEFAULT_CLOCK / 2);
  351. for (i = 0; 0xffffffff != x6500_get_register(jp, 0xE); ++i)
  352. {}
  353. if (i)
  354. applog(LOG_WARNING, "%"PRIprepr": Flushed %d nonces from buffer at init",
  355. x6500->proc_repr, i);
  356. fpga->dclk.minGoodSamples = 3;
  357. fpga->freqMaxMaxM =
  358. fpga->dclk.freqMaxM = X6500_MAXIMUM_CLOCK / 2;
  359. fpga->dclk.freqMDefault = fpga->dclk.freqM;
  360. applog(LOG_WARNING, "%"PRIprepr": Frequency set to %u MHz (range: %u-%u)",
  361. x6500->proc_repr,
  362. fpga->dclk.freqM * 2,
  363. X6500_MINIMUM_CLOCK,
  364. fpga->dclk.freqMaxM * 2);
  365. }
  366. return true;
  367. }
  368. static
  369. void x6500_get_temperature(struct cgpu_info *x6500)
  370. {
  371. struct x6500_fpga_data *fpga = x6500->thr[0]->cgpu_data;
  372. struct jtag_port *jp = &fpga->jtag;
  373. struct ft232r_device_handle *ftdi = jp->a->ftdi;
  374. int i, code[2];
  375. bool sio[2];
  376. code[0] = 0;
  377. code[1] = 0;
  378. ft232r_flush(ftdi);
  379. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  380. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  381. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  382. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  383. if (!(ft232r_set_cbus_bits(ftdi, false, false))) return;
  384. for (i = 16; i--; ) {
  385. if (ft232r_set_cbus_bits(ftdi, true, false)) {
  386. if (!(ft232r_get_cbus_bits(ftdi, &sio[0], &sio[1]))) {
  387. return;
  388. }
  389. } else {
  390. return;
  391. }
  392. code[0] |= sio[0] << i;
  393. code[1] |= sio[1] << i;
  394. if (!ft232r_set_cbus_bits(ftdi, false, false)) {
  395. return;
  396. }
  397. }
  398. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  399. return;
  400. }
  401. if (!(ft232r_set_cbus_bits(ftdi, true, true))) {
  402. return;
  403. }
  404. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  405. return;
  406. }
  407. if (!ft232r_set_bitmode(ftdi, 0xee, 4)) {
  408. return;
  409. }
  410. ft232r_purge_buffers(jp->a->ftdi, FTDI_PURGE_BOTH);
  411. jp->a->bufread = 0;
  412. x6500 = x6500->device;
  413. for (i = 0; i < 2; ++i, x6500 = x6500->next_proc) {
  414. struct thr_info *thr = x6500->thr[0];
  415. fpga = thr->cgpu_data;
  416. if (!fpga) continue;
  417. if (code[i] == 0xffff || !code[i]) {
  418. x6500->temp = 0;
  419. continue;
  420. }
  421. if ((code[i] >> 15) & 1)
  422. code[i] -= 0x10000;
  423. x6500->temp = (float)(code[i] >> 2) * 0.03125f;
  424. applog(LOG_DEBUG,"x6500_get_temperature: fpga[%d]->temp=%.1fC",
  425. i, x6500->temp);
  426. int temperature = round(x6500->temp);
  427. if (temperature > x6500->targettemp + opt_hysteresis) {
  428. struct timeval now;
  429. cgtime(&now);
  430. if (timer_elapsed(&fpga->tv_last_cutoff_reduced, &now)) {
  431. fpga->tv_last_cutoff_reduced = now;
  432. int oldFreq = fpga->dclk.freqM;
  433. if (x6500_change_clock(thr, oldFreq - 1))
  434. applog(LOG_NOTICE, "%"PRIprepr": Frequency dropped from %u to %u MHz (temp: %.1fC)",
  435. x6500->proc_repr,
  436. oldFreq * 2, fpga->dclk.freqM * 2,
  437. x6500->temp
  438. );
  439. fpga->dclk.freqMaxM = fpga->dclk.freqM;
  440. }
  441. }
  442. else
  443. if (fpga->dclk.freqMaxM < fpga->freqMaxMaxM && temperature < x6500->targettemp) {
  444. if (temperature < x6500->targettemp - opt_hysteresis) {
  445. fpga->dclk.freqMaxM = fpga->freqMaxMaxM;
  446. } else if (fpga->dclk.freqM == fpga->dclk.freqMaxM) {
  447. ++fpga->dclk.freqMaxM;
  448. }
  449. }
  450. }
  451. }
  452. static
  453. bool x6500_all_idle(struct cgpu_info *any_proc)
  454. {
  455. for (struct cgpu_info *proc = any_proc->device; proc; proc = proc->next_proc)
  456. if (proc->thr[0]->tv_poll.tv_sec != -1 || proc->deven == DEV_ENABLED)
  457. return false;
  458. return true;
  459. }
  460. static bool x6500_get_stats(struct cgpu_info *x6500)
  461. {
  462. if (x6500_all_idle(x6500)) {
  463. struct cgpu_info *cgpu = x6500->device;
  464. // Getting temperature more efficiently while running
  465. cgpu_request_control(cgpu);
  466. x6500_get_temperature(x6500);
  467. cgpu_release_control(cgpu);
  468. }
  469. return true;
  470. }
  471. static
  472. bool get_x6500_upload_percent(char *buf, size_t bufsz, struct cgpu_info *x6500, __maybe_unused bool per_processor)
  473. {
  474. unsigned char pdone = *((unsigned char*)x6500->device_data - 1);
  475. if (pdone != 101) {
  476. tailsprintf(buf, bufsz, "%3d%% ", pdone);
  477. return true;
  478. }
  479. return false;
  480. }
  481. static struct api_data*
  482. get_x6500_api_extra_device_status(struct cgpu_info *x6500)
  483. {
  484. struct api_data *root = NULL;
  485. struct thr_info *thr = x6500->thr[0];
  486. struct x6500_fpga_data *fpga = thr->cgpu_data;
  487. double d;
  488. d = (double)fpga->dclk.freqM * 2;
  489. root = api_add_freq(root, "Frequency", &d, true);
  490. d = (double)fpga->dclk.freqMaxM * 2;
  491. root = api_add_freq(root, "Cool Max Frequency", &d, true);
  492. d = (double)fpga->freqMaxMaxM * 2;
  493. root = api_add_freq(root, "Max Frequency", &d, true);
  494. return root;
  495. }
  496. static
  497. bool x6500_job_prepare(struct thr_info *thr, struct work *work, __maybe_unused uint64_t max_nonce)
  498. {
  499. struct cgpu_info *x6500 = thr->cgpu;
  500. struct x6500_fpga_data *fpga = thr->cgpu_data;
  501. struct jtag_port *jp = &fpga->jtag;
  502. for (int i = 1, j = 0; i < 9; ++i, j += 4)
  503. x6500_set_register(jp, i, fromlebytes(work->midstate, j));
  504. for (int i = 9, j = 64; i < 11; ++i, j += 4)
  505. x6500_set_register(jp, i, fromlebytes(work->data, j));
  506. x6500_get_temperature(x6500);
  507. ft232r_flush(jp->a->ftdi);
  508. fpga->prepwork_last_register = fromlebytes(work->data, 72);
  509. work->blk.nonce = 0xffffffff;
  510. return true;
  511. }
  512. static int64_t calc_hashes(struct thr_info *, struct timeval *);
  513. static
  514. void x6500_job_start(struct thr_info *thr)
  515. {
  516. struct cgpu_info *x6500 = thr->cgpu;
  517. struct x6500_fpga_data *fpga = thr->cgpu_data;
  518. struct jtag_port *jp = &fpga->jtag;
  519. struct timeval tv_now;
  520. if (thr->prev_work)
  521. {
  522. dclk_preUpdate(&fpga->dclk);
  523. dclk_updateFreq(&fpga->dclk, x6500_dclk_change_clock, thr);
  524. }
  525. x6500_set_register(jp, 11, fpga->prepwork_last_register);
  526. ft232r_flush(jp->a->ftdi);
  527. timer_set_now(&tv_now);
  528. if (!thr->prev_work)
  529. fpga->tv_hashstart = tv_now;
  530. else
  531. if (thr->prev_work != thr->work)
  532. calc_hashes(thr, &tv_now);
  533. fpga->hashes_left = 0x100000000;
  534. mt_job_transition(thr);
  535. if (opt_debug) {
  536. char xdata[161];
  537. bin2hex(xdata, thr->work->data, 80);
  538. applog(LOG_DEBUG, "%"PRIprepr": Started work: %s",
  539. x6500->proc_repr, xdata);
  540. }
  541. uint32_t usecs = 0x80000000 / fpga->dclk.freqM;
  542. usecs -= 1000000;
  543. timer_set_delay(&thr->tv_morework, &tv_now, usecs);
  544. timer_set_delay(&thr->tv_poll, &tv_now, 10000);
  545. job_start_complete(thr);
  546. }
  547. static
  548. int64_t calc_hashes(struct thr_info *thr, struct timeval *tv_now)
  549. {
  550. struct x6500_fpga_data *fpga = thr->cgpu_data;
  551. struct timeval tv_delta;
  552. int64_t hashes, hashes_left;
  553. timersub(tv_now, &fpga->tv_hashstart, &tv_delta);
  554. hashes = (((int64_t)tv_delta.tv_sec * 1000000) + tv_delta.tv_usec) * fpga->dclk.freqM * 2;
  555. hashes_left = fpga->hashes_left;
  556. if (unlikely(hashes > hashes_left))
  557. hashes = hashes_left;
  558. fpga->hashes_left -= hashes;
  559. hashes_done(thr, hashes, &tv_delta, NULL);
  560. fpga->tv_hashstart = *tv_now;
  561. return hashes;
  562. }
  563. static
  564. int64_t x6500_process_results(struct thr_info *thr, struct work *work)
  565. {
  566. struct cgpu_info *x6500 = thr->cgpu;
  567. struct x6500_fpga_data *fpga = thr->cgpu_data;
  568. struct jtag_port *jtag = &fpga->jtag;
  569. struct timeval tv_now;
  570. int64_t hashes;
  571. uint32_t nonce;
  572. bool bad;
  573. while (1) {
  574. timer_set_now(&tv_now);
  575. nonce = x6500_get_register(jtag, 0xE);
  576. if (nonce != 0xffffffff) {
  577. bad = !(work && test_nonce(work, nonce, false));
  578. if (!bad) {
  579. submit_nonce(thr, work, nonce);
  580. applog(LOG_DEBUG, "%"PRIprepr": Nonce for current work: %08lx",
  581. x6500->proc_repr,
  582. (unsigned long)nonce);
  583. dclk_gotNonces(&fpga->dclk);
  584. } else if (likely(thr->prev_work) && test_nonce(thr->prev_work, nonce, false)) {
  585. submit_nonce(thr, thr->prev_work, nonce);
  586. applog(LOG_DEBUG, "%"PRIprepr": Nonce for PREVIOUS work: %08lx",
  587. x6500->proc_repr,
  588. (unsigned long)nonce);
  589. } else {
  590. inc_hw_errors(thr, work, nonce);
  591. dclk_gotNonces(&fpga->dclk);
  592. dclk_errorCount(&fpga->dclk, 1.);
  593. }
  594. // Keep reading nonce buffer until it's empty
  595. // This is necessary to avoid getting hw errors from Freq B after we've moved on to Freq A
  596. continue;
  597. }
  598. hashes = calc_hashes(thr, &tv_now);
  599. break;
  600. }
  601. return hashes;
  602. }
  603. static
  604. void x6500_fpga_poll(struct thr_info *thr)
  605. {
  606. struct x6500_fpga_data *fpga = thr->cgpu_data;
  607. x6500_process_results(thr, thr->work);
  608. if (unlikely(!fpga->hashes_left))
  609. {
  610. mt_disable_start__async(thr);
  611. thr->tv_poll.tv_sec = -1;
  612. }
  613. else
  614. timer_set_delay_from_now(&thr->tv_poll, 10000);
  615. }
  616. static
  617. void x6500_user_set_clock(struct cgpu_info *cgpu, const int val)
  618. {
  619. struct thr_info * const thr = cgpu->thr[0];
  620. struct x6500_fpga_data *fpga = thr->cgpu_data;
  621. const int multiplier = val / 2;
  622. fpga->dclk.freqMDefault = multiplier;
  623. }
  624. static
  625. void x6500_user_set_max_clock(struct cgpu_info *cgpu, const int val)
  626. {
  627. struct thr_info * const thr = cgpu->thr[0];
  628. struct x6500_fpga_data *fpga = thr->cgpu_data;
  629. const int multiplier = val / 2;
  630. fpga->freqMaxMaxM =
  631. fpga->dclk.freqMaxM = multiplier;
  632. }
  633. static
  634. char *x6500_set_device(struct cgpu_info *cgpu, char *option, char *setting, char *replybuf)
  635. {
  636. int val;
  637. if (strcasecmp(option, "help") == 0) {
  638. sprintf(replybuf, "clock: range %d-%d and a multiple of 2\nmaxclock: default %d, range %d-%d and a multiple of 2",
  639. X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK, X6500_MAXIMUM_CLOCK, X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  640. return replybuf;
  641. }
  642. if (strcasecmp(option, "clock") == 0) {
  643. if (!setting || !*setting) {
  644. sprintf(replybuf, "missing clock setting");
  645. return replybuf;
  646. }
  647. val = atoi(setting);
  648. if (val < X6500_MINIMUM_CLOCK || val > X6500_MAXIMUM_CLOCK || (val & 1) != 0) {
  649. sprintf(replybuf, "invalid clock: '%s' valid range %d-%d and a multiple of 2",
  650. setting, X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  651. return replybuf;
  652. }
  653. x6500_user_set_clock(cgpu, val);
  654. return NULL;
  655. }
  656. if (strcasecmp(option, "maxclock") == 0) {
  657. if (!setting || !*setting) {
  658. sprintf(replybuf, "missing maxclock setting");
  659. return replybuf;
  660. }
  661. val = atoi(setting);
  662. if (val < X6500_MINIMUM_CLOCK || val > X6500_MAXIMUM_CLOCK || (val & 1) != 0) {
  663. sprintf(replybuf, "invalid maxclock: '%s' valid range %d-%d and a multiple of 2",
  664. setting, X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  665. return replybuf;
  666. }
  667. x6500_user_set_max_clock(cgpu, val);
  668. applog(LOG_NOTICE, "%"PRIpreprv": Maximum frequency reset to %u MHz",
  669. cgpu->proc_repr,
  670. val
  671. );
  672. return NULL;
  673. }
  674. sprintf(replybuf, "Unknown option: %s", option);
  675. return replybuf;
  676. }
  677. #ifdef HAVE_CURSES
  678. static
  679. void x6500_tui_wlogprint_choices(struct cgpu_info *cgpu)
  680. {
  681. wlogprint("[C]lock speed ");
  682. }
  683. static
  684. const char *x6500_tui_handle_choice(struct cgpu_info *cgpu, int input)
  685. {
  686. static char buf[0x100]; // Static for replies
  687. switch (input)
  688. {
  689. case 'c': case 'C':
  690. {
  691. int val;
  692. char *intvar;
  693. sprintf(buf, "Set clock speed (range %d-%d, multiple of 2)", X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  694. intvar = curses_input(buf);
  695. if (!intvar)
  696. return "Invalid clock speed\n";
  697. val = atoi(intvar);
  698. free(intvar);
  699. if (val < X6500_MINIMUM_CLOCK || val > X6500_MAXIMUM_CLOCK || (val & 1) != 0)
  700. return "Invalid clock speed\n";
  701. x6500_user_set_clock(cgpu, val);
  702. return "Clock speed changed\n";
  703. }
  704. }
  705. return NULL;
  706. }
  707. static
  708. void x6500_wlogprint_status(struct cgpu_info *cgpu)
  709. {
  710. struct x6500_fpga_data *fpga = cgpu->thr[0]->cgpu_data;
  711. wlogprint("Clock speed: %d\n", (int)(fpga->dclk.freqM * 2));
  712. }
  713. #endif
  714. struct device_drv x6500_api = {
  715. .dname = "x6500",
  716. .name = "XBS",
  717. .lowl_match = x6500_lowl_match,
  718. .lowl_probe = x6500_lowl_probe,
  719. .thread_prepare = x6500_prepare,
  720. .thread_init = x6500_thread_init,
  721. .get_stats = x6500_get_stats,
  722. .override_statline_temp2 = get_x6500_upload_percent,
  723. .get_api_extra_device_status = get_x6500_api_extra_device_status,
  724. .set_device = x6500_set_device,
  725. #ifdef HAVE_CURSES
  726. .proc_wlogprint_status = x6500_wlogprint_status,
  727. .proc_tui_wlogprint_choices = x6500_tui_wlogprint_choices,
  728. .proc_tui_handle_choice = x6500_tui_handle_choice,
  729. #endif
  730. .poll = x6500_fpga_poll,
  731. .minerloop = minerloop_async,
  732. .job_prepare = x6500_job_prepare,
  733. .job_start = x6500_job_start,
  734. // .thread_shutdown = x6500_fpga_shutdown,
  735. };