driver-x6500.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #ifdef WIN32
  11. #include <winsock2.h>
  12. #endif
  13. #include <math.h>
  14. #include <stdbool.h>
  15. #include <stdint.h>
  16. #include <sys/time.h>
  17. #include <libusb.h>
  18. #include "compat.h"
  19. #include "deviceapi.h"
  20. #include "dynclock.h"
  21. #include "jtag.h"
  22. #include "logging.h"
  23. #include "miner.h"
  24. #include "fpgautils.h"
  25. #include "ft232r.h"
  26. extern pthread_mutex_t stats_lock;
  27. #define X6500_USB_PRODUCT "X6500 FPGA Miner"
  28. #define X6500_BITSTREAM_FILENAME "fpgaminer_x6500-overclocker-0402.bit"
  29. // NOTE: X6500_BITSTREAM_USERID is bitflipped
  30. #define X6500_BITSTREAM_USERID "\x40\x20\x24\x42"
  31. #define X6500_MINIMUM_CLOCK 2
  32. #define X6500_DEFAULT_CLOCK 200
  33. #define X6500_MAXIMUM_CLOCK 250
  34. struct device_api x6500_api;
  35. #define fromlebytes(ca, j) (ca[j] | (((uint16_t)ca[j+1])<<8) | (((uint32_t)ca[j+2])<<16) | (((uint32_t)ca[j+3])<<24))
  36. static
  37. void int2bits(uint32_t n, uint8_t *b, uint8_t bits)
  38. {
  39. uint8_t i;
  40. for (i = (bits + 7) / 8; i > 0; )
  41. b[--i] = 0;
  42. for (i = 0; i < bits; ++i) {
  43. if (n & 1)
  44. b[i/8] |= 0x80 >> (i % 8);
  45. n >>= 1;
  46. }
  47. }
  48. static
  49. uint32_t bits2int(uint8_t *b, uint8_t bits)
  50. {
  51. uint32_t n, i;
  52. n = 0;
  53. for (i = 0; i < bits; ++i)
  54. if (b[i/8] & (0x80 >> (i % 8)))
  55. n |= 1<<i;
  56. return n;
  57. }
  58. static
  59. void checksum(uint8_t *b, uint8_t bits)
  60. {
  61. uint8_t i;
  62. uint8_t checksum = 1;
  63. for(i = 0; i < bits; ++i)
  64. checksum ^= (b[i/8] & (0x80 >> (i % 8))) ? 1 : 0;
  65. if (checksum)
  66. b[i/8] |= 0x80 >> (i % 8);
  67. }
  68. static
  69. void x6500_jtag_set(struct jtag_port *jp, uint8_t pinoffset)
  70. {
  71. jp->tck = pinoffset << 3;
  72. jp->tms = pinoffset << 2;
  73. jp->tdi = pinoffset << 1;
  74. jp->tdo = pinoffset << 0;
  75. jp->ignored = ~(jp->tdo | jp->tdi | jp->tms | jp->tck);
  76. }
  77. static uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr);
  78. static
  79. void x6500_set_register(struct jtag_port *jp, uint8_t addr, uint32_t nv)
  80. {
  81. uint8_t buf[38];
  82. retry:
  83. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  84. int2bits(nv, &buf[0], 32);
  85. int2bits(addr, &buf[4], 4);
  86. buf[4] |= 8;
  87. checksum(buf, 37);
  88. jtag_write(jp, JTAG_REG_DR, buf, 38);
  89. jtag_run(jp);
  90. #ifdef DEBUG_X6500_SET_REGISTER
  91. if (x6500_get_register(jp, addr) != nv)
  92. #else
  93. if (0)
  94. #endif
  95. {
  96. applog(LOG_WARNING, "x6500_set_register failed %x=%08x", addr, nv);
  97. goto retry;
  98. }
  99. }
  100. static
  101. uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr)
  102. {
  103. uint8_t buf[4] = {0};
  104. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  105. int2bits(addr, &buf[0], 4);
  106. checksum(buf, 5);
  107. jtag_write(jp, JTAG_REG_DR, buf, 6);
  108. jtag_read (jp, JTAG_REG_DR, buf, 32);
  109. jtag_reset(jp);
  110. return bits2int(buf, 32);
  111. }
  112. static bool x6500_foundusb(libusb_device *dev, const char *product, const char *serial)
  113. {
  114. struct cgpu_info *x6500;
  115. x6500 = calloc(1, sizeof(*x6500));
  116. x6500->api = &x6500_api;
  117. mutex_init(&x6500->device_mutex);
  118. x6500->device_path = strdup(serial);
  119. x6500->deven = DEV_ENABLED;
  120. x6500->threads = 1;
  121. x6500->procs = 2;
  122. x6500->name = strdup(product);
  123. x6500->cutofftemp = 85;
  124. x6500->cgpu_data = dev;
  125. return add_cgpu(x6500);
  126. }
  127. static bool x6500_detect_one(const char *serial)
  128. {
  129. return ft232r_detect(X6500_USB_PRODUCT, serial, x6500_foundusb);
  130. }
  131. static int x6500_detect_auto()
  132. {
  133. return ft232r_detect(X6500_USB_PRODUCT, NULL, x6500_foundusb);
  134. }
  135. static void x6500_detect()
  136. {
  137. serial_detect_auto(&x6500_api, x6500_detect_one, x6500_detect_auto);
  138. }
  139. static bool x6500_prepare(struct thr_info *thr)
  140. {
  141. struct cgpu_info *x6500 = thr->cgpu;
  142. if (x6500->proc_id)
  143. return true;
  144. struct ft232r_device_handle *ftdi = ft232r_open(x6500->cgpu_data);
  145. x6500->device_ft232r = NULL;
  146. if (!ftdi)
  147. return false;
  148. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  149. return false;
  150. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  151. return false;
  152. x6500->device_ft232r = ftdi;
  153. struct jtag_port_a *jtag_a;
  154. unsigned char *pdone = calloc(1, sizeof(*jtag_a) + 1);
  155. *pdone = 101;
  156. jtag_a = (void*)(pdone + 1);
  157. jtag_a->ftdi = ftdi;
  158. x6500->cgpu_data = jtag_a;
  159. for (struct cgpu_info *slave = x6500->next_proc; slave; slave = slave->next_proc)
  160. {
  161. slave->device_ft232r = x6500->device_ft232r;
  162. slave->cgpu_data = x6500->cgpu_data;
  163. }
  164. return true;
  165. }
  166. struct x6500_fpga_data {
  167. struct jtag_port jtag;
  168. struct timeval tv_hashstart;
  169. int64_t hashes_left;
  170. struct dclk_data dclk;
  171. uint8_t freqMaxMaxM;
  172. // Time the clock was last reduced due to temperature
  173. time_t last_cutoff_reduced;
  174. uint32_t prepwork_last_register;
  175. };
  176. #define bailout2(...) do { \
  177. applog(__VA_ARGS__); \
  178. return false; \
  179. } while(0)
  180. static bool
  181. x6500_fpga_upload_bitstream(struct cgpu_info *x6500, struct jtag_port *jp1)
  182. {
  183. char buf[0x100];
  184. unsigned long len, flen;
  185. unsigned char *pdone = (unsigned char*)x6500->cgpu_data - 1;
  186. struct ft232r_device_handle *ftdi = jp1->a->ftdi;
  187. FILE *f = open_xilinx_bitstream(x6500->api->dname, x6500->dev_repr, X6500_BITSTREAM_FILENAME, &len);
  188. if (!f)
  189. return false;
  190. flen = len;
  191. applog(LOG_WARNING, "%s: Programming %s...",
  192. x6500->dev_repr, x6500->device_path);
  193. x6500->status = LIFE_INIT2;
  194. // "Magic" jtag_port configured to access both FPGAs concurrently
  195. struct jtag_port jpt = {
  196. .a = jp1->a,
  197. };
  198. struct jtag_port *jp = &jpt;
  199. uint8_t i, j;
  200. x6500_jtag_set(jp, 0x11);
  201. // Need to reset here despite previous FPGA state, since we are programming all at once
  202. jtag_reset(jp);
  203. jtag_write(jp, JTAG_REG_IR, "\xd0", 6); // JPROGRAM
  204. // Poll each FPGA status individually since they might not be ready at the same time
  205. for (j = 0; j < 2; ++j) {
  206. x6500_jtag_set(jp, j ? 0x10 : 1);
  207. do {
  208. i = 0xd0; // Re-set JPROGRAM while reading status
  209. jtag_read(jp, JTAG_REG_IR, &i, 6);
  210. } while (i & 8);
  211. applog(LOG_DEBUG, "%s%c: JPROGRAM ready",
  212. x6500->dev_repr, 'a' + j);
  213. }
  214. x6500_jtag_set(jp, 0x11);
  215. jtag_write(jp, JTAG_REG_IR, "\xa0", 6); // CFG_IN
  216. nmsleep(1000);
  217. if (fread(buf, 32, 1, f) != 1)
  218. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  219. jtag_swrite(jp, JTAG_REG_DR, buf, 256);
  220. len -= 32;
  221. // Put ft232r chip in asynchronous bitbang mode so we don't need to read back tdo
  222. // This takes upload time down from about an hour to about 3 minutes
  223. if (!ft232r_set_bitmode(ftdi, 0xee, 1))
  224. return false;
  225. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  226. return false;
  227. jp->a->bufread = 0;
  228. jp->a->async = true;
  229. ssize_t buflen;
  230. char nextstatus = 25;
  231. while (len) {
  232. buflen = len < 32 ? len : 32;
  233. if (fread(buf, buflen, 1, f) != 1)
  234. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  235. jtag_swrite_more(jp, buf, buflen * 8, len == (unsigned long)buflen);
  236. *pdone = 100 - ((len * 100) / flen);
  237. if (*pdone >= nextstatus)
  238. {
  239. nextstatus += 25;
  240. applog(LOG_WARNING, "%s: Programming %s... %d%% complete...", x6500->dev_repr, x6500->device_path, *pdone);
  241. }
  242. len -= buflen;
  243. }
  244. // Switch back to synchronous bitbang mode
  245. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  246. return false;
  247. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  248. return false;
  249. jp->a->bufread = 0;
  250. jp->a->async = false;
  251. jp->a->bufread = 0;
  252. jtag_write(jp, JTAG_REG_IR, "\x30", 6); // JSTART
  253. for (i=0; i<16; ++i)
  254. jtag_run(jp);
  255. i = 0xff; // BYPASS
  256. jtag_read(jp, JTAG_REG_IR, &i, 6);
  257. if (!(i & 4))
  258. return false;
  259. applog(LOG_WARNING, "%s: Done programming %s", x6500->dev_repr, x6500->device_path);
  260. *pdone = 101;
  261. return true;
  262. }
  263. static bool x6500_change_clock(struct thr_info *thr, int multiplier)
  264. {
  265. struct x6500_fpga_data *fpga = thr->cgpu_data;
  266. struct jtag_port *jp = &fpga->jtag;
  267. x6500_set_register(jp, 0xD, multiplier * 2);
  268. ft232r_flush(jp->a->ftdi);
  269. fpga->dclk.freqM = multiplier;
  270. return true;
  271. }
  272. static bool x6500_dclk_change_clock(struct thr_info *thr, int multiplier)
  273. {
  274. struct cgpu_info *x6500 = thr->cgpu;
  275. struct x6500_fpga_data *fpga = thr->cgpu_data;
  276. uint8_t oldFreq = fpga->dclk.freqM;
  277. if (!x6500_change_clock(thr, multiplier)) {
  278. return false;
  279. }
  280. dclk_msg_freqchange(x6500->proc_repr, oldFreq * 2, fpga->dclk.freqM * 2, NULL);
  281. return true;
  282. }
  283. static bool x6500_thread_init(struct thr_info *thr)
  284. {
  285. struct cgpu_info *x6500 = thr->cgpu;
  286. struct ft232r_device_handle *ftdi = x6500->device_ft232r;
  287. // Setup mutex request based on notifier and pthread cond
  288. notifier_init(thr->mutex_request);
  289. pthread_cond_init(&x6500->device_cond, NULL);
  290. // This works because x6500_thread_init is only called for the first processor now that they're all using the same thread
  291. for ( ; x6500; x6500 = x6500->next_proc)
  292. {
  293. thr = x6500->thr[0];
  294. struct x6500_fpga_data *fpga;
  295. struct jtag_port *jp;
  296. int fpgaid = x6500->proc_id;
  297. uint8_t pinoffset = fpgaid ? 0x10 : 1;
  298. unsigned char buf[4] = {0};
  299. int i;
  300. if (!ftdi)
  301. return false;
  302. fpga = calloc(1, sizeof(*fpga));
  303. jp = &fpga->jtag;
  304. jp->a = x6500->cgpu_data;
  305. x6500_jtag_set(jp, pinoffset);
  306. thr->cgpu_data = fpga;
  307. x6500->status = LIFE_INIT2;
  308. if (!jtag_reset(jp)) {
  309. applog(LOG_ERR, "%s: JTAG reset failed",
  310. x6500->dev_repr);
  311. return false;
  312. }
  313. i = jtag_detect(jp);
  314. if (i != 1) {
  315. applog(LOG_ERR, "%s: JTAG detect returned %d",
  316. x6500->dev_repr, i);
  317. return false;
  318. }
  319. if (!(1
  320. && jtag_write(jp, JTAG_REG_IR, "\x10", 6)
  321. && jtag_read (jp, JTAG_REG_DR, buf, 32)
  322. && jtag_reset(jp)
  323. )) {
  324. applog(LOG_ERR, "%s: JTAG error reading user code",
  325. x6500->dev_repr);
  326. return false;
  327. }
  328. if (memcmp(buf, X6500_BITSTREAM_USERID, 4)) {
  329. applog(LOG_ERR, "%"PRIprepr": FPGA not programmed",
  330. x6500->proc_repr);
  331. if (!x6500_fpga_upload_bitstream(x6500, jp))
  332. return false;
  333. } else if (opt_force_dev_init && x6500 == x6500->device) {
  334. applog(LOG_DEBUG, "%"PRIprepr": FPGA is already programmed, but --force-dev-init is set",
  335. x6500->proc_repr);
  336. if (!x6500_fpga_upload_bitstream(x6500, jp))
  337. return false;
  338. } else
  339. applog(LOG_DEBUG, "%s"PRIprepr": FPGA is already programmed :)",
  340. x6500->proc_repr);
  341. dclk_prepare(&fpga->dclk);
  342. fpga->dclk.freqMinM = X6500_MINIMUM_CLOCK / 2;
  343. x6500_change_clock(thr, X6500_DEFAULT_CLOCK / 2);
  344. for (i = 0; 0xffffffff != x6500_get_register(jp, 0xE); ++i)
  345. {}
  346. if (i)
  347. applog(LOG_WARNING, "%"PRIprepr": Flushed %d nonces from buffer at init",
  348. x6500->proc_repr, i);
  349. fpga->dclk.minGoodSamples = 3;
  350. fpga->freqMaxMaxM =
  351. fpga->dclk.freqMaxM = X6500_MAXIMUM_CLOCK / 2;
  352. fpga->dclk.freqMDefault = fpga->dclk.freqM;
  353. applog(LOG_WARNING, "%"PRIprepr": Frequency set to %u MHz (range: %u-%u)",
  354. x6500->proc_repr,
  355. fpga->dclk.freqM * 2,
  356. X6500_MINIMUM_CLOCK,
  357. fpga->dclk.freqMaxM * 2);
  358. }
  359. return true;
  360. }
  361. static
  362. void x6500_get_temperature(struct cgpu_info *x6500)
  363. {
  364. struct x6500_fpga_data *fpga = x6500->thr[0]->cgpu_data;
  365. struct jtag_port *jp = &fpga->jtag;
  366. struct ft232r_device_handle *ftdi = jp->a->ftdi;
  367. int i, code[2];
  368. bool sio[2];
  369. code[0] = 0;
  370. code[1] = 0;
  371. ft232r_flush(ftdi);
  372. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  373. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  374. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  375. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  376. if (!(ft232r_set_cbus_bits(ftdi, false, false))) return;
  377. for (i = 16; i--; ) {
  378. if (ft232r_set_cbus_bits(ftdi, true, false)) {
  379. if (!(ft232r_get_cbus_bits(ftdi, &sio[0], &sio[1]))) {
  380. return;
  381. }
  382. } else {
  383. return;
  384. }
  385. code[0] |= sio[0] << i;
  386. code[1] |= sio[1] << i;
  387. if (!ft232r_set_cbus_bits(ftdi, false, false)) {
  388. return;
  389. }
  390. }
  391. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  392. return;
  393. }
  394. if (!(ft232r_set_cbus_bits(ftdi, true, true))) {
  395. return;
  396. }
  397. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  398. return;
  399. }
  400. if (!ft232r_set_bitmode(ftdi, 0xee, 4)) {
  401. return;
  402. }
  403. ft232r_purge_buffers(jp->a->ftdi, FTDI_PURGE_BOTH);
  404. jp->a->bufread = 0;
  405. x6500 = x6500->device;
  406. for (i = 0; i < 2; ++i, x6500 = x6500->next_proc) {
  407. struct thr_info *thr = x6500->thr[0];
  408. fpga = thr->cgpu_data;
  409. if (!fpga) continue;
  410. if (code[i] == 0xffff || !code[i]) {
  411. x6500->temp = 0;
  412. continue;
  413. }
  414. if ((code[i] >> 15) & 1)
  415. code[i] -= 0x10000;
  416. x6500->temp = (float)(code[i] >> 2) * 0.03125f;
  417. applog(LOG_DEBUG,"x6500_get_temperature: fpga[%d]->temp=%.1fC",
  418. i, x6500->temp);
  419. int temperature = round(x6500->temp);
  420. if (temperature > x6500->targettemp + opt_hysteresis) {
  421. time_t now = time(NULL);
  422. if (fpga->last_cutoff_reduced != now) {
  423. fpga->last_cutoff_reduced = now;
  424. int oldFreq = fpga->dclk.freqM;
  425. if (x6500_change_clock(thr, oldFreq - 1))
  426. applog(LOG_NOTICE, "%"PRIprepr": Frequency dropped from %u to %u MHz (temp: %.1fC)",
  427. x6500->proc_repr,
  428. oldFreq * 2, fpga->dclk.freqM * 2,
  429. x6500->temp
  430. );
  431. fpga->dclk.freqMaxM = fpga->dclk.freqM;
  432. }
  433. }
  434. else
  435. if (fpga->dclk.freqMaxM < fpga->freqMaxMaxM && temperature < x6500->targettemp) {
  436. if (temperature < x6500->targettemp - opt_hysteresis) {
  437. fpga->dclk.freqMaxM = fpga->freqMaxMaxM;
  438. } else if (fpga->dclk.freqM == fpga->dclk.freqMaxM) {
  439. ++fpga->dclk.freqMaxM;
  440. }
  441. }
  442. }
  443. }
  444. static
  445. bool x6500_all_idle(struct cgpu_info *any_proc)
  446. {
  447. for (struct cgpu_info *proc = any_proc->device; proc; proc = proc->next_proc)
  448. if (proc->thr[0]->tv_poll.tv_sec != -1 || proc->deven == DEV_ENABLED)
  449. return false;
  450. return true;
  451. }
  452. static bool x6500_get_stats(struct cgpu_info *x6500)
  453. {
  454. if (x6500_all_idle(x6500)) {
  455. struct cgpu_info *cgpu = x6500->device;
  456. // Getting temperature more efficiently while running
  457. pthread_mutex_t *mutexp = &cgpu->device_mutex;
  458. mutex_lock(mutexp);
  459. notifier_wake(cgpu->thr[0]->mutex_request);
  460. pthread_cond_wait(&cgpu->device_cond, mutexp);
  461. x6500_get_temperature(x6500);
  462. pthread_cond_signal(&cgpu->device_cond);
  463. mutex_unlock(mutexp);
  464. }
  465. return true;
  466. }
  467. static
  468. bool get_x6500_upload_percent(char *buf, struct cgpu_info *x6500)
  469. {
  470. char info[18] = " | ";
  471. unsigned char pdone = *((unsigned char*)x6500->cgpu_data - 1);
  472. if (pdone != 101) {
  473. sprintf(&info[1], "%3d%%", pdone);
  474. info[5] = ' ';
  475. strcat(buf, info);
  476. return true;
  477. }
  478. return false;
  479. }
  480. static
  481. void get_x6500_statline_before(char *buf, struct cgpu_info *x6500)
  482. {
  483. if (get_x6500_upload_percent(buf, x6500))
  484. return;
  485. char info[18] = " | ";
  486. if (x6500->temp) {
  487. sprintf(&info[1], "%.1fC", x6500->temp);
  488. info[strlen(info)] = ' ';
  489. strcat(buf, info);
  490. return;
  491. }
  492. strcat(buf, " | ");
  493. }
  494. static
  495. void get_x6500_dev_statline_before(char *buf, struct cgpu_info *x6500)
  496. {
  497. if (get_x6500_upload_percent(buf, x6500))
  498. return;
  499. char info[18] = " | ";
  500. struct cgpu_info *fpga0 = x6500;
  501. struct cgpu_info *fpga1 = x6500->next_proc;
  502. if (x6500->temp) {
  503. sprintf(&info[1], "%.1fC/%.1fC", fpga0->temp, fpga1->temp);
  504. info[strlen(info)] = ' ';
  505. strcat(buf, info);
  506. return;
  507. }
  508. strcat(buf, " | ");
  509. }
  510. static struct api_data*
  511. get_x6500_api_extra_device_status(struct cgpu_info *x6500)
  512. {
  513. struct api_data *root = NULL;
  514. struct thr_info *thr = x6500->thr[0];
  515. struct x6500_fpga_data *fpga = thr->cgpu_data;
  516. double d;
  517. d = (double)fpga->dclk.freqM * 2;
  518. root = api_add_freq(root, "Frequency", &d, true);
  519. d = (double)fpga->dclk.freqMaxM * 2;
  520. root = api_add_freq(root, "Cool Max Frequency", &d, true);
  521. d = (double)fpga->freqMaxMaxM * 2;
  522. root = api_add_freq(root, "Max Frequency", &d, true);
  523. return root;
  524. }
  525. static
  526. bool x6500_job_prepare(struct thr_info *thr, struct work *work, __maybe_unused uint64_t max_nonce)
  527. {
  528. struct cgpu_info *x6500 = thr->cgpu;
  529. struct x6500_fpga_data *fpga = thr->cgpu_data;
  530. struct jtag_port *jp = &fpga->jtag;
  531. for (int i = 1, j = 0; i < 9; ++i, j += 4)
  532. x6500_set_register(jp, i, fromlebytes(work->midstate, j));
  533. for (int i = 9, j = 64; i < 11; ++i, j += 4)
  534. x6500_set_register(jp, i, fromlebytes(work->data, j));
  535. x6500_get_temperature(x6500);
  536. ft232r_flush(jp->a->ftdi);
  537. fpga->prepwork_last_register = fromlebytes(work->data, 72);
  538. work->blk.nonce = 0xffffffff;
  539. return true;
  540. }
  541. static int64_t calc_hashes(struct thr_info *, struct timeval *);
  542. static
  543. void x6500_job_start(struct thr_info *thr)
  544. {
  545. struct cgpu_info *x6500 = thr->cgpu;
  546. struct x6500_fpga_data *fpga = thr->cgpu_data;
  547. struct jtag_port *jp = &fpga->jtag;
  548. struct timeval tv_now;
  549. if (thr->prev_work)
  550. {
  551. dclk_preUpdate(&fpga->dclk);
  552. dclk_updateFreq(&fpga->dclk, x6500_dclk_change_clock, thr);
  553. }
  554. x6500_set_register(jp, 11, fpga->prepwork_last_register);
  555. ft232r_flush(jp->a->ftdi);
  556. gettimeofday(&tv_now, NULL);
  557. if (!thr->prev_work)
  558. fpga->tv_hashstart = tv_now;
  559. else
  560. if (thr->prev_work != thr->work)
  561. calc_hashes(thr, &tv_now);
  562. fpga->hashes_left = 0x100000000;
  563. mt_job_transition(thr);
  564. if (opt_debug) {
  565. char *xdata = bin2hex(thr->work->data, 80);
  566. applog(LOG_DEBUG, "%"PRIprepr": Started work: %s",
  567. x6500->proc_repr, xdata);
  568. free(xdata);
  569. }
  570. uint32_t usecs = 0x80000000 / fpga->dclk.freqM;
  571. usecs -= 1000000;
  572. timer_set_delay(&thr->tv_morework, &tv_now, usecs);
  573. timer_set_delay(&thr->tv_poll, &tv_now, 10000);
  574. job_start_complete(thr);
  575. }
  576. static
  577. int64_t calc_hashes(struct thr_info *thr, struct timeval *tv_now)
  578. {
  579. struct x6500_fpga_data *fpga = thr->cgpu_data;
  580. struct timeval tv_delta;
  581. int64_t hashes, hashes_left;
  582. timersub(tv_now, &fpga->tv_hashstart, &tv_delta);
  583. hashes = (((int64_t)tv_delta.tv_sec * 1000000) + tv_delta.tv_usec) * fpga->dclk.freqM * 2;
  584. hashes_left = fpga->hashes_left;
  585. if (unlikely(hashes > hashes_left))
  586. hashes = hashes_left;
  587. fpga->hashes_left -= hashes;
  588. hashes_done(thr, hashes, &tv_delta, NULL);
  589. fpga->tv_hashstart = *tv_now;
  590. return hashes;
  591. }
  592. static
  593. int64_t x6500_process_results(struct thr_info *thr, struct work *work)
  594. {
  595. struct cgpu_info *x6500 = thr->cgpu;
  596. struct x6500_fpga_data *fpga = thr->cgpu_data;
  597. struct jtag_port *jtag = &fpga->jtag;
  598. struct timeval tv_now;
  599. int64_t hashes;
  600. uint32_t nonce;
  601. bool bad;
  602. while (1) {
  603. gettimeofday(&tv_now, NULL);
  604. nonce = x6500_get_register(jtag, 0xE);
  605. if (nonce != 0xffffffff) {
  606. bad = !(work && test_nonce(work, nonce, false));
  607. if (!bad) {
  608. submit_nonce(thr, work, nonce);
  609. applog(LOG_DEBUG, "%"PRIprepr": Nonce for current work: %08lx",
  610. x6500->proc_repr,
  611. (unsigned long)nonce);
  612. dclk_gotNonces(&fpga->dclk);
  613. } else if (likely(thr->prev_work) && test_nonce(thr->prev_work, nonce, false)) {
  614. submit_nonce(thr, thr->prev_work, nonce);
  615. applog(LOG_DEBUG, "%"PRIprepr": Nonce for PREVIOUS work: %08lx",
  616. x6500->proc_repr,
  617. (unsigned long)nonce);
  618. } else {
  619. applog(LOG_DEBUG, "%"PRIprepr": Nonce with H not zero : %08lx",
  620. x6500->proc_repr,
  621. (unsigned long)nonce);
  622. mutex_lock(&stats_lock);
  623. ++total_diff1;
  624. ++x6500->diff1;
  625. ++work->pool->diff1;
  626. ++hw_errors;
  627. ++x6500->hw_errors;
  628. mutex_unlock(&stats_lock);
  629. dclk_gotNonces(&fpga->dclk);
  630. dclk_errorCount(&fpga->dclk, 1.);
  631. }
  632. // Keep reading nonce buffer until it's empty
  633. // This is necessary to avoid getting hw errors from Freq B after we've moved on to Freq A
  634. continue;
  635. }
  636. hashes = calc_hashes(thr, &tv_now);
  637. break;
  638. }
  639. return hashes;
  640. }
  641. static
  642. void x6500_fpga_poll(struct thr_info *thr)
  643. {
  644. struct x6500_fpga_data *fpga = thr->cgpu_data;
  645. x6500_process_results(thr, thr->work);
  646. if (unlikely(!fpga->hashes_left))
  647. {
  648. mt_disable_start(thr);
  649. thr->tv_poll.tv_sec = -1;
  650. }
  651. else
  652. timer_set_delay_from_now(&thr->tv_poll, 10000);
  653. }
  654. struct device_api x6500_api = {
  655. .dname = "x6500",
  656. .name = "XBS",
  657. .api_detect = x6500_detect,
  658. .get_dev_statline_before = get_x6500_dev_statline_before,
  659. .thread_prepare = x6500_prepare,
  660. .thread_init = x6500_thread_init,
  661. .get_stats = x6500_get_stats,
  662. .get_statline_before = get_x6500_statline_before,
  663. .get_api_extra_device_status = get_x6500_api_extra_device_status,
  664. .poll = x6500_fpga_poll,
  665. .minerloop = minerloop_async,
  666. .job_prepare = x6500_job_prepare,
  667. .job_start = x6500_job_start,
  668. // .thread_shutdown = x6500_fpga_shutdown,
  669. };