driver-x6500.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. * Copyright 2012 Andrew Smith
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the Free
  7. * Software Foundation; either version 3 of the License, or (at your option)
  8. * any later version. See COPYING for more details.
  9. */
  10. #include "config.h"
  11. #ifdef WIN32
  12. #include <winsock2.h>
  13. #endif
  14. #include <limits.h>
  15. #include <math.h>
  16. #include <stdbool.h>
  17. #include <stdint.h>
  18. #include <sys/time.h>
  19. #include <libusb.h>
  20. #include "binloader.h"
  21. #include "compat.h"
  22. #include "deviceapi.h"
  23. #include "dynclock.h"
  24. #include "jtag.h"
  25. #include "logging.h"
  26. #include "miner.h"
  27. #include "ft232r.h"
  28. #include "lowlevel.h"
  29. #include "lowl-usb.h"
  30. #define X6500_USB_PRODUCT "X6500 FPGA Miner"
  31. #define X6500_BITSTREAM_FILENAME "fpgaminer_x6500-overclocker-0402.bit"
  32. // NOTE: X6500_BITSTREAM_USERID is bitflipped
  33. #define X6500_BITSTREAM_USERID "\x40\x20\x24\x42"
  34. #define X6500_MINIMUM_CLOCK 2
  35. #define X6500_DEFAULT_CLOCK 190
  36. #define X6500_MAXIMUM_CLOCK 250
  37. BFG_REGISTER_DRIVER(x6500_api)
  38. #define fromlebytes(ca, j) (ca[j] | (((uint16_t)ca[j+1])<<8) | (((uint32_t)ca[j+2])<<16) | (((uint32_t)ca[j+3])<<24))
  39. static
  40. void int2bits(uint32_t n, uint8_t *b, uint8_t bits)
  41. {
  42. uint8_t i;
  43. for (i = (bits + 7) / 8; i > 0; )
  44. b[--i] = 0;
  45. for (i = 0; i < bits; ++i) {
  46. if (n & 1)
  47. b[i/8] |= 0x80 >> (i % 8);
  48. n >>= 1;
  49. }
  50. }
  51. static
  52. uint32_t bits2int(uint8_t *b, uint8_t bits)
  53. {
  54. uint32_t n, i;
  55. n = 0;
  56. for (i = 0; i < bits; ++i)
  57. if (b[i/8] & (0x80 >> (i % 8)))
  58. n |= 1<<i;
  59. return n;
  60. }
  61. static
  62. void checksum(uint8_t *b, uint8_t bits)
  63. {
  64. uint8_t i;
  65. uint8_t checksum = 1;
  66. for(i = 0; i < bits; ++i)
  67. checksum ^= (b[i/8] & (0x80 >> (i % 8))) ? 1 : 0;
  68. if (checksum)
  69. b[i/8] |= 0x80 >> (i % 8);
  70. }
  71. static
  72. void x6500_jtag_set(struct jtag_port *jp, uint8_t pinoffset)
  73. {
  74. jp->tck = pinoffset << 3;
  75. jp->tms = pinoffset << 2;
  76. jp->tdi = pinoffset << 1;
  77. jp->tdo = pinoffset << 0;
  78. jp->ignored = ~(jp->tdo | jp->tdi | jp->tms | jp->tck);
  79. }
  80. static uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr);
  81. static
  82. void x6500_set_register(struct jtag_port *jp, uint8_t addr, uint32_t nv)
  83. {
  84. uint8_t buf[38];
  85. retry:
  86. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  87. int2bits(nv, &buf[0], 32);
  88. int2bits(addr, &buf[4], 4);
  89. buf[4] |= 8;
  90. checksum(buf, 37);
  91. jtag_write(jp, JTAG_REG_DR, buf, 38);
  92. jtag_run(jp);
  93. #ifdef DEBUG_X6500_SET_REGISTER
  94. if (x6500_get_register(jp, addr) != nv)
  95. #else
  96. if (0)
  97. #endif
  98. {
  99. applog(LOG_WARNING, "x6500_set_register failed %x=%08x", addr, nv);
  100. goto retry;
  101. }
  102. }
  103. static
  104. uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr)
  105. {
  106. uint8_t buf[4] = {0};
  107. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  108. int2bits(addr, &buf[0], 4);
  109. checksum(buf, 5);
  110. jtag_write(jp, JTAG_REG_DR, buf, 6);
  111. jtag_read (jp, JTAG_REG_DR, buf, 32);
  112. jtag_reset(jp);
  113. return bits2int(buf, 32);
  114. }
  115. static
  116. bool x6500_lowl_match(const struct lowlevel_device_info * const info)
  117. {
  118. return lowlevel_match_lowlproduct(info, &lowl_ft232r, X6500_USB_PRODUCT);
  119. }
  120. static
  121. bool x6500_lowl_probe(const struct lowlevel_device_info * const info)
  122. {
  123. const char * const product = info->product;
  124. const char * const serial = info->serial;
  125. if (info->lowl != &lowl_ft232r)
  126. {
  127. if (info->lowl != &lowl_usb)
  128. applog(LOG_WARNING, "%s: Matched \"%s\" serial \"%s\", but lowlevel driver is not ft232r!",
  129. __func__, product, serial);
  130. return false;
  131. }
  132. libusb_device * const dev = info->lowl_data;
  133. if (bfg_claim_libusb(&x6500_api, true, dev))
  134. return false;
  135. struct cgpu_info *x6500;
  136. x6500 = calloc(1, sizeof(*x6500));
  137. x6500->drv = &x6500_api;
  138. mutex_init(&x6500->device_mutex);
  139. x6500->device_path = strdup(serial);
  140. x6500->deven = DEV_ENABLED;
  141. x6500->threads = 1;
  142. x6500->procs = 2;
  143. x6500->name = strdup(product);
  144. x6500->cutofftemp = 85;
  145. x6500->device_data = lowlevel_ref(info);
  146. cgpu_copy_libusb_strings(x6500, dev);
  147. return add_cgpu(x6500);
  148. }
  149. static bool x6500_prepare(struct thr_info *thr)
  150. {
  151. struct cgpu_info *x6500 = thr->cgpu;
  152. if (x6500->proc_id)
  153. return true;
  154. struct ft232r_device_handle *ftdi = ft232r_open(x6500->device_data);
  155. lowlevel_devinfo_free(x6500->device_data);
  156. x6500->device_ft232r = NULL;
  157. if (!ftdi)
  158. return false;
  159. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  160. return false;
  161. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  162. return false;
  163. x6500->device_ft232r = ftdi;
  164. struct jtag_port_a *jtag_a;
  165. unsigned char *pdone = calloc(1, sizeof(*jtag_a) + 1);
  166. *pdone = 101;
  167. jtag_a = (void*)(pdone + 1);
  168. jtag_a->ftdi = ftdi;
  169. x6500->device_data = jtag_a;
  170. for (struct cgpu_info *slave = x6500->next_proc; slave; slave = slave->next_proc)
  171. {
  172. slave->device_ft232r = x6500->device_ft232r;
  173. slave->device_data = x6500->device_data;
  174. }
  175. return true;
  176. }
  177. struct x6500_fpga_data {
  178. struct jtag_port jtag;
  179. struct timeval tv_hashstart;
  180. int64_t hashes_left;
  181. struct dclk_data dclk;
  182. uint8_t freqMaxMaxM;
  183. // Time the clock was last reduced due to temperature
  184. struct timeval tv_last_cutoff_reduced;
  185. uint32_t prepwork_last_register;
  186. };
  187. #define bailout2(...) do { \
  188. applog(__VA_ARGS__); \
  189. return false; \
  190. } while(0)
  191. static bool
  192. x6500_fpga_upload_bitstream(struct cgpu_info *x6500, struct jtag_port *jp1)
  193. {
  194. char buf[0x100];
  195. unsigned long len, flen;
  196. unsigned char *pdone = (unsigned char*)x6500->device_data - 1;
  197. struct ft232r_device_handle *ftdi = jp1->a->ftdi;
  198. FILE *f = open_xilinx_bitstream(x6500->drv->dname, x6500->dev_repr, X6500_BITSTREAM_FILENAME, &len);
  199. if (!f)
  200. return false;
  201. flen = len;
  202. applog(LOG_WARNING, "%s: Programming %s...",
  203. x6500->dev_repr, x6500->device_path);
  204. x6500->status = LIFE_INIT2;
  205. // "Magic" jtag_port configured to access both FPGAs concurrently
  206. struct jtag_port jpt = {
  207. .a = jp1->a,
  208. };
  209. struct jtag_port *jp = &jpt;
  210. uint8_t i, j;
  211. x6500_jtag_set(jp, 0x11);
  212. // Need to reset here despite previous FPGA state, since we are programming all at once
  213. jtag_reset(jp);
  214. jtag_write(jp, JTAG_REG_IR, "\xd0", 6); // JPROGRAM
  215. // Poll each FPGA status individually since they might not be ready at the same time
  216. for (j = 0; j < 2; ++j) {
  217. x6500_jtag_set(jp, j ? 0x10 : 1);
  218. do {
  219. i = 0xd0; // Re-set JPROGRAM while reading status
  220. jtag_read(jp, JTAG_REG_IR, &i, 6);
  221. } while (i & 8);
  222. applog(LOG_DEBUG, "%s%c: JPROGRAM ready",
  223. x6500->dev_repr, 'a' + j);
  224. }
  225. x6500_jtag_set(jp, 0x11);
  226. jtag_write(jp, JTAG_REG_IR, "\xa0", 6); // CFG_IN
  227. cgsleep_ms(1000);
  228. if (fread(buf, 32, 1, f) != 1)
  229. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  230. jtag_swrite(jp, JTAG_REG_DR, buf, 256);
  231. len -= 32;
  232. // Put ft232r chip in asynchronous bitbang mode so we don't need to read back tdo
  233. // This takes upload time down from about an hour to about 3 minutes
  234. if (!ft232r_set_bitmode(ftdi, 0xee, 1))
  235. return false;
  236. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  237. return false;
  238. jp->a->bufread = 0;
  239. jp->a->async = true;
  240. ssize_t buflen;
  241. char nextstatus = 25;
  242. while (len) {
  243. buflen = len < 32 ? len : 32;
  244. if (fread(buf, buflen, 1, f) != 1)
  245. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  246. jtag_swrite_more(jp, buf, buflen * 8, len == (unsigned long)buflen);
  247. *pdone = 100 - ((len * 100) / flen);
  248. if (*pdone >= nextstatus)
  249. {
  250. nextstatus += 25;
  251. applog(LOG_WARNING, "%s: Programming %s... %d%% complete...", x6500->dev_repr, x6500->device_path, *pdone);
  252. }
  253. len -= buflen;
  254. }
  255. // Switch back to synchronous bitbang mode
  256. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  257. return false;
  258. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  259. return false;
  260. jp->a->bufread = 0;
  261. jp->a->async = false;
  262. jp->a->bufread = 0;
  263. jtag_write(jp, JTAG_REG_IR, "\x30", 6); // JSTART
  264. for (i=0; i<16; ++i)
  265. jtag_run(jp);
  266. i = 0xff; // BYPASS
  267. jtag_read(jp, JTAG_REG_IR, &i, 6);
  268. if (!(i & 4))
  269. return false;
  270. applog(LOG_WARNING, "%s: Done programming %s", x6500->dev_repr, x6500->device_path);
  271. *pdone = 101;
  272. return true;
  273. }
  274. static bool x6500_change_clock(struct thr_info *thr, int multiplier)
  275. {
  276. struct x6500_fpga_data *fpga = thr->cgpu_data;
  277. struct jtag_port *jp = &fpga->jtag;
  278. x6500_set_register(jp, 0xD, multiplier * 2);
  279. ft232r_flush(jp->a->ftdi);
  280. fpga->dclk.freqM = multiplier;
  281. return true;
  282. }
  283. static bool x6500_dclk_change_clock(struct thr_info *thr, int multiplier)
  284. {
  285. struct cgpu_info *x6500 = thr->cgpu;
  286. struct x6500_fpga_data *fpga = thr->cgpu_data;
  287. uint8_t oldFreq = fpga->dclk.freqM;
  288. if (!x6500_change_clock(thr, multiplier)) {
  289. return false;
  290. }
  291. dclk_msg_freqchange(x6500->proc_repr, oldFreq * 2, fpga->dclk.freqM * 2, NULL);
  292. return true;
  293. }
  294. static bool x6500_thread_init(struct thr_info *thr)
  295. {
  296. struct cgpu_info *x6500 = thr->cgpu;
  297. struct ft232r_device_handle *ftdi = x6500->device_ft232r;
  298. // Setup mutex request based on notifier and pthread cond
  299. notifier_init(thr->mutex_request);
  300. pthread_cond_init(&x6500->device_cond, NULL);
  301. // This works because x6500_thread_init is only called for the first processor now that they're all using the same thread
  302. for ( ; x6500; x6500 = x6500->next_proc)
  303. {
  304. thr = x6500->thr[0];
  305. struct x6500_fpga_data *fpga;
  306. struct jtag_port *jp;
  307. int fpgaid = x6500->proc_id;
  308. uint8_t pinoffset = fpgaid ? 0x10 : 1;
  309. unsigned char buf[4] = {0};
  310. int i;
  311. if (!ftdi)
  312. return false;
  313. fpga = calloc(1, sizeof(*fpga));
  314. jp = &fpga->jtag;
  315. jp->a = x6500->device_data;
  316. x6500_jtag_set(jp, pinoffset);
  317. thr->cgpu_data = fpga;
  318. x6500->status = LIFE_INIT2;
  319. if (!jtag_reset(jp)) {
  320. applog(LOG_ERR, "%s: JTAG reset failed",
  321. x6500->dev_repr);
  322. return false;
  323. }
  324. i = jtag_detect(jp);
  325. if (i != 1) {
  326. applog(LOG_ERR, "%s: JTAG detect returned %d",
  327. x6500->dev_repr, i);
  328. return false;
  329. }
  330. if (!(1
  331. && jtag_write(jp, JTAG_REG_IR, "\x10", 6)
  332. && jtag_read (jp, JTAG_REG_DR, buf, 32)
  333. && jtag_reset(jp)
  334. )) {
  335. applog(LOG_ERR, "%s: JTAG error reading user code",
  336. x6500->dev_repr);
  337. return false;
  338. }
  339. if (memcmp(buf, X6500_BITSTREAM_USERID, 4)) {
  340. applog(LOG_ERR, "%"PRIprepr": FPGA not programmed",
  341. x6500->proc_repr);
  342. if (!x6500_fpga_upload_bitstream(x6500, jp))
  343. return false;
  344. } else if (opt_force_dev_init && x6500 == x6500->device) {
  345. applog(LOG_DEBUG, "%"PRIprepr": FPGA is already programmed, but --force-dev-init is set",
  346. x6500->proc_repr);
  347. if (!x6500_fpga_upload_bitstream(x6500, jp))
  348. return false;
  349. } else
  350. applog(LOG_DEBUG, "%s"PRIprepr": FPGA is already programmed :)",
  351. x6500->proc_repr);
  352. dclk_prepare(&fpga->dclk);
  353. fpga->dclk.freqMinM = X6500_MINIMUM_CLOCK / 2;
  354. x6500_change_clock(thr, X6500_DEFAULT_CLOCK / 2);
  355. for (i = 0; 0xffffffff != x6500_get_register(jp, 0xE); ++i)
  356. {}
  357. if (i)
  358. applog(LOG_WARNING, "%"PRIprepr": Flushed %d nonces from buffer at init",
  359. x6500->proc_repr, i);
  360. fpga->dclk.minGoodSamples = 3;
  361. fpga->freqMaxMaxM =
  362. fpga->dclk.freqMaxM = X6500_MAXIMUM_CLOCK / 2;
  363. fpga->dclk.freqMDefault = fpga->dclk.freqM;
  364. applog(LOG_WARNING, "%"PRIprepr": Frequency set to %u MHz (range: %u-%u)",
  365. x6500->proc_repr,
  366. fpga->dclk.freqM * 2,
  367. X6500_MINIMUM_CLOCK,
  368. fpga->dclk.freqMaxM * 2);
  369. }
  370. return true;
  371. }
  372. static
  373. void x6500_get_temperature(struct cgpu_info *x6500)
  374. {
  375. struct x6500_fpga_data *fpga = x6500->thr[0]->cgpu_data;
  376. struct jtag_port *jp = &fpga->jtag;
  377. struct ft232r_device_handle *ftdi = jp->a->ftdi;
  378. int i, code[2];
  379. bool sio[2];
  380. code[0] = 0;
  381. code[1] = 0;
  382. ft232r_flush(ftdi);
  383. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  384. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  385. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  386. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  387. if (!(ft232r_set_cbus_bits(ftdi, false, false))) return;
  388. for (i = 16; i--; ) {
  389. if (ft232r_set_cbus_bits(ftdi, true, false)) {
  390. if (!(ft232r_get_cbus_bits(ftdi, &sio[0], &sio[1]))) {
  391. return;
  392. }
  393. } else {
  394. return;
  395. }
  396. code[0] |= sio[0] << i;
  397. code[1] |= sio[1] << i;
  398. if (!ft232r_set_cbus_bits(ftdi, false, false)) {
  399. return;
  400. }
  401. }
  402. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  403. return;
  404. }
  405. if (!(ft232r_set_cbus_bits(ftdi, true, true))) {
  406. return;
  407. }
  408. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  409. return;
  410. }
  411. if (!ft232r_set_bitmode(ftdi, 0xee, 4)) {
  412. return;
  413. }
  414. ft232r_purge_buffers(jp->a->ftdi, FTDI_PURGE_BOTH);
  415. jp->a->bufread = 0;
  416. x6500 = x6500->device;
  417. for (i = 0; i < 2; ++i, x6500 = x6500->next_proc) {
  418. struct thr_info *thr = x6500->thr[0];
  419. fpga = thr->cgpu_data;
  420. if (!fpga) continue;
  421. if (code[i] == 0xffff || !code[i]) {
  422. x6500->temp = 0;
  423. continue;
  424. }
  425. if ((code[i] >> 15) & 1)
  426. code[i] -= 0x10000;
  427. x6500->temp = (float)(code[i] >> 2) * 0.03125f;
  428. applog(LOG_DEBUG,"x6500_get_temperature: fpga[%d]->temp=%.1fC",
  429. i, x6500->temp);
  430. int temperature = round(x6500->temp);
  431. if (temperature > x6500->targettemp + opt_hysteresis) {
  432. struct timeval now;
  433. cgtime(&now);
  434. if (timer_elapsed(&fpga->tv_last_cutoff_reduced, &now)) {
  435. fpga->tv_last_cutoff_reduced = now;
  436. int oldFreq = fpga->dclk.freqM;
  437. if (x6500_change_clock(thr, oldFreq - 1))
  438. applog(LOG_NOTICE, "%"PRIprepr": Frequency dropped from %u to %u MHz (temp: %.1fC)",
  439. x6500->proc_repr,
  440. oldFreq * 2, fpga->dclk.freqM * 2,
  441. x6500->temp
  442. );
  443. fpga->dclk.freqMaxM = fpga->dclk.freqM;
  444. }
  445. }
  446. else
  447. if (fpga->dclk.freqMaxM < fpga->freqMaxMaxM && temperature < x6500->targettemp) {
  448. if (temperature < x6500->targettemp - opt_hysteresis) {
  449. fpga->dclk.freqMaxM = fpga->freqMaxMaxM;
  450. } else if (fpga->dclk.freqM == fpga->dclk.freqMaxM) {
  451. ++fpga->dclk.freqMaxM;
  452. }
  453. }
  454. }
  455. }
  456. static
  457. bool x6500_all_idle(struct cgpu_info *any_proc)
  458. {
  459. for (struct cgpu_info *proc = any_proc->device; proc; proc = proc->next_proc)
  460. if (proc->thr[0]->tv_poll.tv_sec != -1 || proc->deven == DEV_ENABLED)
  461. return false;
  462. return true;
  463. }
  464. static bool x6500_get_stats(struct cgpu_info *x6500)
  465. {
  466. if (x6500_all_idle(x6500)) {
  467. struct cgpu_info *cgpu = x6500->device;
  468. // Getting temperature more efficiently while running
  469. pthread_mutex_t *mutexp = &cgpu->device_mutex;
  470. mutex_lock(mutexp);
  471. notifier_wake(cgpu->thr[0]->mutex_request);
  472. pthread_cond_wait(&cgpu->device_cond, mutexp);
  473. x6500_get_temperature(x6500);
  474. pthread_cond_signal(&cgpu->device_cond);
  475. mutex_unlock(mutexp);
  476. }
  477. return true;
  478. }
  479. static
  480. bool get_x6500_upload_percent(char *buf, size_t bufsz, struct cgpu_info *x6500, __maybe_unused bool per_processor)
  481. {
  482. unsigned char pdone = *((unsigned char*)x6500->device_data - 1);
  483. if (pdone != 101) {
  484. tailsprintf(buf, bufsz, "%3d%% ", pdone);
  485. return true;
  486. }
  487. return false;
  488. }
  489. static struct api_data*
  490. get_x6500_api_extra_device_status(struct cgpu_info *x6500)
  491. {
  492. struct api_data *root = NULL;
  493. struct thr_info *thr = x6500->thr[0];
  494. struct x6500_fpga_data *fpga = thr->cgpu_data;
  495. double d;
  496. d = (double)fpga->dclk.freqM * 2;
  497. root = api_add_freq(root, "Frequency", &d, true);
  498. d = (double)fpga->dclk.freqMaxM * 2;
  499. root = api_add_freq(root, "Cool Max Frequency", &d, true);
  500. d = (double)fpga->freqMaxMaxM * 2;
  501. root = api_add_freq(root, "Max Frequency", &d, true);
  502. return root;
  503. }
  504. static
  505. bool x6500_job_prepare(struct thr_info *thr, struct work *work, __maybe_unused uint64_t max_nonce)
  506. {
  507. struct cgpu_info *x6500 = thr->cgpu;
  508. struct x6500_fpga_data *fpga = thr->cgpu_data;
  509. struct jtag_port *jp = &fpga->jtag;
  510. for (int i = 1, j = 0; i < 9; ++i, j += 4)
  511. x6500_set_register(jp, i, fromlebytes(work->midstate, j));
  512. for (int i = 9, j = 64; i < 11; ++i, j += 4)
  513. x6500_set_register(jp, i, fromlebytes(work->data, j));
  514. x6500_get_temperature(x6500);
  515. ft232r_flush(jp->a->ftdi);
  516. fpga->prepwork_last_register = fromlebytes(work->data, 72);
  517. work->blk.nonce = 0xffffffff;
  518. return true;
  519. }
  520. static int64_t calc_hashes(struct thr_info *, struct timeval *);
  521. static
  522. void x6500_job_start(struct thr_info *thr)
  523. {
  524. struct cgpu_info *x6500 = thr->cgpu;
  525. struct x6500_fpga_data *fpga = thr->cgpu_data;
  526. struct jtag_port *jp = &fpga->jtag;
  527. struct timeval tv_now;
  528. if (thr->prev_work)
  529. {
  530. dclk_preUpdate(&fpga->dclk);
  531. dclk_updateFreq(&fpga->dclk, x6500_dclk_change_clock, thr);
  532. }
  533. x6500_set_register(jp, 11, fpga->prepwork_last_register);
  534. ft232r_flush(jp->a->ftdi);
  535. timer_set_now(&tv_now);
  536. if (!thr->prev_work)
  537. fpga->tv_hashstart = tv_now;
  538. else
  539. if (thr->prev_work != thr->work)
  540. calc_hashes(thr, &tv_now);
  541. fpga->hashes_left = 0x100000000;
  542. mt_job_transition(thr);
  543. if (opt_debug) {
  544. char xdata[161];
  545. bin2hex(xdata, thr->work->data, 80);
  546. applog(LOG_DEBUG, "%"PRIprepr": Started work: %s",
  547. x6500->proc_repr, xdata);
  548. }
  549. uint32_t usecs = 0x80000000 / fpga->dclk.freqM;
  550. usecs -= 1000000;
  551. timer_set_delay(&thr->tv_morework, &tv_now, usecs);
  552. timer_set_delay(&thr->tv_poll, &tv_now, 10000);
  553. job_start_complete(thr);
  554. }
  555. static
  556. int64_t calc_hashes(struct thr_info *thr, struct timeval *tv_now)
  557. {
  558. struct x6500_fpga_data *fpga = thr->cgpu_data;
  559. struct timeval tv_delta;
  560. int64_t hashes, hashes_left;
  561. timersub(tv_now, &fpga->tv_hashstart, &tv_delta);
  562. hashes = (((int64_t)tv_delta.tv_sec * 1000000) + tv_delta.tv_usec) * fpga->dclk.freqM * 2;
  563. hashes_left = fpga->hashes_left;
  564. if (unlikely(hashes > hashes_left))
  565. hashes = hashes_left;
  566. fpga->hashes_left -= hashes;
  567. hashes_done(thr, hashes, &tv_delta, NULL);
  568. fpga->tv_hashstart = *tv_now;
  569. return hashes;
  570. }
  571. static
  572. int64_t x6500_process_results(struct thr_info *thr, struct work *work)
  573. {
  574. struct cgpu_info *x6500 = thr->cgpu;
  575. struct x6500_fpga_data *fpga = thr->cgpu_data;
  576. struct jtag_port *jtag = &fpga->jtag;
  577. struct timeval tv_now;
  578. int64_t hashes;
  579. uint32_t nonce;
  580. bool bad;
  581. while (1) {
  582. timer_set_now(&tv_now);
  583. nonce = x6500_get_register(jtag, 0xE);
  584. if (nonce != 0xffffffff) {
  585. bad = !(work && test_nonce(work, nonce, false));
  586. if (!bad) {
  587. submit_nonce(thr, work, nonce);
  588. applog(LOG_DEBUG, "%"PRIprepr": Nonce for current work: %08lx",
  589. x6500->proc_repr,
  590. (unsigned long)nonce);
  591. dclk_gotNonces(&fpga->dclk);
  592. } else if (likely(thr->prev_work) && test_nonce(thr->prev_work, nonce, false)) {
  593. submit_nonce(thr, thr->prev_work, nonce);
  594. applog(LOG_DEBUG, "%"PRIprepr": Nonce for PREVIOUS work: %08lx",
  595. x6500->proc_repr,
  596. (unsigned long)nonce);
  597. } else {
  598. inc_hw_errors(thr, work, nonce);
  599. dclk_gotNonces(&fpga->dclk);
  600. dclk_errorCount(&fpga->dclk, 1.);
  601. }
  602. // Keep reading nonce buffer until it's empty
  603. // This is necessary to avoid getting hw errors from Freq B after we've moved on to Freq A
  604. continue;
  605. }
  606. hashes = calc_hashes(thr, &tv_now);
  607. break;
  608. }
  609. return hashes;
  610. }
  611. static
  612. void x6500_fpga_poll(struct thr_info *thr)
  613. {
  614. struct x6500_fpga_data *fpga = thr->cgpu_data;
  615. x6500_process_results(thr, thr->work);
  616. if (unlikely(!fpga->hashes_left))
  617. {
  618. mt_disable_start(thr);
  619. thr->tv_poll.tv_sec = -1;
  620. }
  621. else
  622. timer_set_delay_from_now(&thr->tv_poll, 10000);
  623. }
  624. static
  625. void x6500_user_set_clock(struct cgpu_info *cgpu, const int val)
  626. {
  627. struct thr_info * const thr = cgpu->thr[0];
  628. struct x6500_fpga_data *fpga = thr->cgpu_data;
  629. const int multiplier = val / 2;
  630. fpga->dclk.freqMDefault = multiplier;
  631. }
  632. static
  633. char *x6500_set_device(struct cgpu_info *cgpu, char *option, char *setting, char *replybuf)
  634. {
  635. int val;
  636. if (strcasecmp(option, "help") == 0) {
  637. sprintf(replybuf, "clock: range %d-%d and a multiple of 2",
  638. X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  639. return replybuf;
  640. }
  641. if (strcasecmp(option, "clock") == 0) {
  642. if (!setting || !*setting) {
  643. sprintf(replybuf, "missing clock setting");
  644. return replybuf;
  645. }
  646. val = atoi(setting);
  647. if (val < X6500_MINIMUM_CLOCK || val > X6500_MAXIMUM_CLOCK || (val & 1) != 0) {
  648. sprintf(replybuf, "invalid clock: '%s' valid range %d-%d and a multiple of 2",
  649. setting, X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  650. return replybuf;
  651. }
  652. x6500_user_set_clock(cgpu, val);
  653. return NULL;
  654. }
  655. sprintf(replybuf, "Unknown option: %s", option);
  656. return replybuf;
  657. }
  658. #ifdef HAVE_CURSES
  659. static
  660. void x6500_tui_wlogprint_choices(struct cgpu_info *cgpu)
  661. {
  662. wlogprint("[C]lock speed ");
  663. }
  664. static
  665. const char *x6500_tui_handle_choice(struct cgpu_info *cgpu, int input)
  666. {
  667. static char buf[0x100]; // Static for replies
  668. switch (input)
  669. {
  670. case 'c': case 'C':
  671. {
  672. int val;
  673. char *intvar;
  674. sprintf(buf, "Set clock speed (range %d-%d, multiple of 2)", X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  675. intvar = curses_input(buf);
  676. if (!intvar)
  677. return "Invalid clock speed\n";
  678. val = atoi(intvar);
  679. free(intvar);
  680. if (val < X6500_MINIMUM_CLOCK || val > X6500_MAXIMUM_CLOCK || (val & 1) != 0)
  681. return "Invalid clock speed\n";
  682. x6500_user_set_clock(cgpu, val);
  683. return "Clock speed changed\n";
  684. }
  685. }
  686. return NULL;
  687. }
  688. static
  689. void x6500_wlogprint_status(struct cgpu_info *cgpu)
  690. {
  691. struct x6500_fpga_data *fpga = cgpu->thr[0]->cgpu_data;
  692. wlogprint("Clock speed: %d\n", (int)(fpga->dclk.freqM * 2));
  693. }
  694. #endif
  695. struct device_drv x6500_api = {
  696. .dname = "x6500",
  697. .name = "XBS",
  698. .lowl_match = x6500_lowl_match,
  699. .lowl_probe = x6500_lowl_probe,
  700. .thread_prepare = x6500_prepare,
  701. .thread_init = x6500_thread_init,
  702. .get_stats = x6500_get_stats,
  703. .override_statline_temp2 = get_x6500_upload_percent,
  704. .get_api_extra_device_status = get_x6500_api_extra_device_status,
  705. .set_device = x6500_set_device,
  706. #ifdef HAVE_CURSES
  707. .proc_wlogprint_status = x6500_wlogprint_status,
  708. .proc_tui_wlogprint_choices = x6500_tui_wlogprint_choices,
  709. .proc_tui_handle_choice = x6500_tui_handle_choice,
  710. #endif
  711. .poll = x6500_fpga_poll,
  712. .minerloop = minerloop_async,
  713. .job_prepare = x6500_job_prepare,
  714. .job_start = x6500_job_start,
  715. // .thread_shutdown = x6500_fpga_shutdown,
  716. };