ft232r.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <errno.h>
  11. #include <stdbool.h>
  12. #include <stdint.h>
  13. #include <string.h>
  14. #include <libusb.h>
  15. #include "compat.h"
  16. #include "ft232r.h"
  17. #include "logging.h"
  18. #include "lowlevel.h"
  19. #include "miner.h"
  20. #define FT232R_IDVENDOR 0x0403
  21. #define FT232R_IDPRODUCT 0x6001
  22. static
  23. void ft232r_devinfo_free(struct lowlevel_device_info * const info)
  24. {
  25. libusb_device * const dev = info->lowl_data;
  26. if (dev)
  27. libusb_unref_device(dev);
  28. }
  29. static
  30. bool _ft232r_devinfo_scan_cb(struct lowlevel_device_info * const usbinfo, void * const userp)
  31. {
  32. struct lowlevel_device_info **devinfo_list_p = userp, *info;
  33. info = malloc(sizeof(*info));
  34. *info = (struct lowlevel_device_info){
  35. .lowl = &lowl_ft232r,
  36. .lowl_data = libusb_ref_device(usbinfo->lowl_data),
  37. };
  38. lowlevel_devinfo_semicpy(info, usbinfo);
  39. LL_PREPEND(*devinfo_list_p, info);
  40. // Never *consume* the lowl_usb entry - especially since this is during the scan!
  41. return false;
  42. }
  43. static
  44. struct lowlevel_device_info *ft232r_devinfo_scan()
  45. {
  46. struct lowlevel_device_info *devinfo_list = NULL;
  47. lowlevel_detect_id(_ft232r_devinfo_scan_cb, &devinfo_list, &lowl_usb, FT232R_IDVENDOR, FT232R_IDPRODUCT);
  48. return devinfo_list;
  49. }
  50. #define FTDI_REQTYPE (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
  51. #define FTDI_REQTYPE_IN (FTDI_REQTYPE | LIBUSB_ENDPOINT_IN)
  52. #define FTDI_REQTYPE_OUT (FTDI_REQTYPE | LIBUSB_ENDPOINT_OUT)
  53. #define FTDI_REQUEST_RESET 0
  54. #define FTDI_REQUEST_SET_BAUDRATE 3
  55. #define FTDI_REQUEST_SET_BITMODE 0x0b
  56. #define FTDI_REQUEST_GET_PINS 0x0c
  57. #define FTDI_REQUEST_GET_BITMODE 0x0c
  58. #define FTDI_BAUDRATE_3M 0,0
  59. #define FTDI_INDEX 1
  60. #define FTDI_TIMEOUT 1000
  61. struct ft232r_device_handle {
  62. libusb_device_handle *h;
  63. uint8_t i;
  64. uint8_t o;
  65. unsigned char ibuf[256];
  66. int ibufLen;
  67. uint16_t osz;
  68. unsigned char *obuf;
  69. uint16_t obufsz;
  70. };
  71. struct ft232r_device_handle *ft232r_open(struct lowlevel_device_info *info)
  72. {
  73. libusb_device * const dev = info->lowl_data;
  74. info->lowl_data = NULL;
  75. if (!dev)
  76. return NULL;
  77. // FIXME: Cleanup on errors
  78. libusb_device_handle *devh;
  79. struct ft232r_device_handle *ftdi;
  80. if (libusb_open(dev, &devh)) {
  81. applog(LOG_ERR, "ft232r_open: Error opening device");
  82. return NULL;
  83. }
  84. libusb_reset_device(devh);
  85. libusb_detach_kernel_driver(devh, 0);
  86. if (libusb_set_configuration(devh, 1)) {
  87. applog(LOG_ERR, "ft232r_open: Error setting configuration");
  88. return NULL;
  89. }
  90. if (libusb_claim_interface(devh, 0)) {
  91. applog(LOG_ERR, "ft232r_open: Error claiming interface");
  92. return NULL;
  93. }
  94. if (libusb_control_transfer(devh, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BAUDRATE, FTDI_BAUDRATE_3M, NULL, 0, FTDI_TIMEOUT) < 0) {
  95. applog(LOG_ERR, "ft232r_open: Error performing control transfer");
  96. return NULL;
  97. }
  98. struct libusb_config_descriptor *cfg;
  99. if (libusb_get_config_descriptor(dev, 0, &cfg)) {
  100. applog(LOG_ERR, "ft232r_open: Error getting config descriptor");
  101. return NULL;
  102. }
  103. const struct libusb_interface_descriptor *altcfg = &cfg->interface[0].altsetting[0];
  104. if (altcfg->bNumEndpoints < 2) {
  105. applog(LOG_ERR, "ft232r_open: Too few endpoints");
  106. return NULL;
  107. }
  108. ftdi = calloc(1, sizeof(*ftdi));
  109. ftdi->h = devh;
  110. ftdi->i = altcfg->endpoint[0].bEndpointAddress;
  111. ftdi->o = altcfg->endpoint[1].bEndpointAddress;
  112. ftdi->osz = 0x1000;
  113. ftdi->obuf = malloc(ftdi->osz);
  114. libusb_free_config_descriptor(cfg);
  115. return ftdi;
  116. }
  117. void ft232r_close(struct ft232r_device_handle *dev)
  118. {
  119. libusb_release_interface(dev->h, 0);
  120. libusb_reset_device(dev->h);
  121. libusb_close(dev->h);
  122. }
  123. bool ft232r_purge_buffers(struct ft232r_device_handle *dev, enum ft232r_reset_purge purge)
  124. {
  125. if (ft232r_flush(dev) < 0)
  126. return false;
  127. if (purge & FTDI_PURGE_RX) {
  128. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_RX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  129. return false;
  130. dev->ibufLen = 0;
  131. }
  132. if (purge & FTDI_PURGE_TX)
  133. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_TX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  134. return false;
  135. return true;
  136. }
  137. bool ft232r_set_bitmode(struct ft232r_device_handle *dev, uint8_t mask, uint8_t mode)
  138. {
  139. if (ft232r_flush(dev) < 0)
  140. return false;
  141. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  142. return false;
  143. return !libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, (mode << 8) | mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT);
  144. }
  145. static ssize_t ft232r_readwrite(struct ft232r_device_handle *dev, unsigned char endpoint, void *data, size_t count)
  146. {
  147. int transferred;
  148. switch (libusb_bulk_transfer(dev->h, endpoint, data, count, &transferred, FTDI_TIMEOUT)) {
  149. case LIBUSB_ERROR_TIMEOUT:
  150. if (!transferred) {
  151. errno = ETIMEDOUT;
  152. return -1;
  153. }
  154. case 0:
  155. return transferred;
  156. default:
  157. errno = EIO;
  158. return -1;
  159. }
  160. }
  161. ssize_t ft232r_flush(struct ft232r_device_handle *dev)
  162. {
  163. if (!dev->obufsz)
  164. return 0;
  165. ssize_t r = ft232r_readwrite(dev, dev->o, dev->obuf, dev->obufsz);
  166. if (r == dev->obufsz) {
  167. dev->obufsz = 0;
  168. } else if (r > 0) {
  169. dev->obufsz -= r;
  170. memmove(dev->obuf, &dev->obuf[r], dev->obufsz);
  171. }
  172. return r;
  173. }
  174. ssize_t ft232r_write(struct ft232r_device_handle *dev, void *data, size_t count)
  175. {
  176. uint16_t bufleft;
  177. ssize_t r;
  178. bufleft = dev->osz - dev->obufsz;
  179. if (count < bufleft) {
  180. // Just add to output buffer
  181. memcpy(&dev->obuf[dev->obufsz], data, count);
  182. dev->obufsz += count;
  183. return count;
  184. }
  185. // Fill up buffer and flush
  186. memcpy(&dev->obuf[dev->obufsz], data, bufleft);
  187. dev->obufsz += bufleft;
  188. r = ft232r_flush(dev);
  189. if (unlikely(r <= 0)) {
  190. // In this case, no bytes were written supposedly, so remove this data from buffer
  191. dev->obufsz -= bufleft;
  192. return r;
  193. }
  194. // Even if not all <bufleft> bytes from this write got out, the remaining are still buffered
  195. return bufleft;
  196. }
  197. typedef ssize_t (*ft232r_rwfunc_t)(struct ft232r_device_handle *, void*, size_t);
  198. static ssize_t ft232r_rw_all(ft232r_rwfunc_t rwfunc, struct ft232r_device_handle *dev, void *data, size_t count)
  199. {
  200. char *p = data;
  201. ssize_t writ = 0, total = 0;
  202. while (count && (writ = rwfunc(dev, p, count)) > 0) {
  203. p += writ;
  204. count -= writ;
  205. total += writ;
  206. }
  207. return total ?: writ;
  208. }
  209. ssize_t ft232r_write_all(struct ft232r_device_handle *dev, void *data, size_t count)
  210. {
  211. return ft232r_rw_all(ft232r_write, dev, data, count);
  212. }
  213. ssize_t ft232r_read(struct ft232r_device_handle *dev, void *data, size_t count)
  214. {
  215. ssize_t r;
  216. int adj;
  217. // Flush any pending output before reading
  218. r = ft232r_flush(dev);
  219. if (r < 0)
  220. return r;
  221. // First 2 bytes of every 0x40 are FTDI status or something
  222. while (dev->ibufLen <= 2) {
  223. // TODO: Implement a timeout for status byte repeating
  224. int transferred = ft232r_readwrite(dev, dev->i, dev->ibuf, sizeof(dev->ibuf));
  225. if (transferred <= 0)
  226. return transferred;
  227. dev->ibufLen = transferred;
  228. for (adj = 0x40; dev->ibufLen > adj; adj += 0x40 - 2) {
  229. dev->ibufLen -= 2;
  230. memmove(&dev->ibuf[adj], &dev->ibuf[adj+2], dev->ibufLen - adj);
  231. }
  232. }
  233. unsigned char *ibufs = &dev->ibuf[2];
  234. size_t ibufsLen = dev->ibufLen - 2;
  235. if (count > ibufsLen)
  236. count = ibufsLen;
  237. memcpy(data, ibufs, count);
  238. dev->ibufLen -= count;
  239. ibufsLen -= count;
  240. if (ibufsLen) {
  241. memmove(ibufs, &ibufs[count], ibufsLen);
  242. applog(LOG_DEBUG, "ft232r_read: %"PRIu64" bytes extra", (uint64_t)ibufsLen);
  243. }
  244. return count;
  245. }
  246. ssize_t ft232r_read_all(struct ft232r_device_handle *dev, void *data, size_t count)
  247. {
  248. return ft232r_rw_all(ft232r_read, dev, data, count);
  249. }
  250. bool ft232r_get_pins(struct ft232r_device_handle *dev, uint8_t *pins)
  251. {
  252. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_PINS, 0, FTDI_INDEX, pins, 1, FTDI_TIMEOUT) == 1;
  253. }
  254. bool ft232r_get_bitmode(struct ft232r_device_handle *dev, uint8_t *out_mode)
  255. {
  256. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_BITMODE, 0, FTDI_INDEX, out_mode, 1, FTDI_TIMEOUT) == 1;
  257. }
  258. bool ft232r_set_cbus_bits(struct ft232r_device_handle *dev, bool sc, bool cs)
  259. {
  260. uint8_t pin_state = (cs ? (1<<2) : 0)
  261. | (sc ? (1<<3) : 0);
  262. return ft232r_set_bitmode(dev, 0xc0 | pin_state, 0x20);
  263. }
  264. bool ft232r_get_cbus_bits(struct ft232r_device_handle *dev, bool *out_sio0, bool *out_sio1)
  265. {
  266. uint8_t data;
  267. if (!ft232r_get_bitmode(dev, &data))
  268. return false;
  269. *out_sio0 = data & 1;
  270. *out_sio1 = data & 2;
  271. return true;
  272. }
  273. struct lowlevel_driver lowl_ft232r = {
  274. .dname = "ft232r",
  275. .devinfo_scan = ft232r_devinfo_scan,
  276. .devinfo_free = ft232r_devinfo_free,
  277. };
  278. #if 0
  279. int main() {
  280. libusb_init(NULL);
  281. ft232r_scan();
  282. ft232r_scan_free();
  283. libusb_exit(NULL);
  284. }
  285. void applog(int prio, const char *fmt, ...)
  286. {
  287. va_list ap;
  288. va_start(ap, fmt);
  289. vprintf(fmt, ap);
  290. puts("");
  291. va_end(ap);
  292. }
  293. #endif