phatk110816.cl 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. // This file is taken and modified from the public-domain poclbm project, and
  2. // I have therefore decided to keep it public-domain.
  3. #define VECTORSX
  4. #define BFI_INTX
  5. #define BITALIGNX
  6. #ifdef VECTORS4
  7. typedef uint4 u;
  8. #else
  9. #ifdef VECTORS2
  10. typedef uint2 u;
  11. #else
  12. typedef uint u;
  13. #endif
  14. #endif
  15. __constant uint K[64] = {
  16. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  17. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  18. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  19. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  20. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  21. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  22. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  23. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  24. };
  25. __constant uint ConstW[128] = {
  26. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000U, 0x00000000, 0x00000000, 0x00000000,
  27. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000280U,
  28. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  29. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  30. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  31. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  32. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  33. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  34. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  35. 0x80000000U, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000100U,
  36. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  37. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  38. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  39. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  40. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  41. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000
  42. };
  43. __constant uint H[8] = {
  44. 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
  45. };
  46. #ifdef BITALIGN
  47. #pragma OPENCL EXTENSION cl_amd_media_ops : enable
  48. #define rot(x, y) amd_bitalign(x, x, (uint)(32 - y))
  49. #else
  50. #define rot(x, y) rotate(x, (uint)y)
  51. #endif
  52. // This part is not from the stock poclbm kernel. It's part of an optimization
  53. // added in the Phoenix Miner.
  54. // Some AMD devices have Vals[0] BFI_INT opcode, which behaves exactly like the
  55. // SHA-256 Ch function, but provides it in exactly one instruction. If
  56. // detected, use it for Ch. Otherwise, construct Ch out of simpler logical
  57. // primitives.
  58. #ifdef BFI_INT
  59. // Well, slight problem... It turns out BFI_INT isn't actually exposed to
  60. // OpenCL (or CAL IL for that matter) in any way. However, there is
  61. // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
  62. // amd_bytealign, takes the same inputs, and provides the same output.
  63. // We can use that as a placeholder for BFI_INT and have the application
  64. // patch it after compilation.
  65. // This is the BFI_INT function
  66. #define Ch(x, y, z) amd_bytealign(x,y,z)
  67. // Ma can also be implemented in terms of BFI_INT...
  68. #define Ma(z, x, y) amd_bytealign(z^x,y,x)
  69. #else
  70. #define Ch(x, y, z) bitselect(x,y,z)
  71. // Ma can also be implemented in terms of bitselect
  72. #define Ma(z, x, y) bitselect(z^x,y,x)
  73. #endif
  74. //Various intermediate calculations for each SHA round
  75. #define s0(n) (S0(Vals[(0 + 128 - (n)) % 8]))
  76. #define S0(n) (rot(n, 30u)^rot(n, 19u)^rot(n,10u))
  77. #define s1(n) (S1(Vals[(4 + 128 - (n)) % 8]))
  78. #define S1(n) (rot(n, 26u)^rot(n, 21u)^rot(n, 7u))
  79. #define ch(n) Ch(Vals[(4 + 128 - (n)) % 8],Vals[(5 + 128 - (n)) % 8],Vals[(6 + 128 - (n)) % 8])
  80. #define maj(n) Ma(Vals[(1 + 128 - (n)) % 8],Vals[(2 + 128 - (n)) % 8],Vals[(0 + 128 - (n)) % 8])
  81. //t1 calc when W is already calculated
  82. #define t1(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W[(n)] + s1(n) + ch(n)
  83. //t1 calc which calculates W
  84. #define t1W(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W(n) + s1(n) + ch(n)
  85. //Used for constant W Values (the compiler optimizes out zeros)
  86. #define t1C(n) (K[(n) % 64]+ ConstW[(n)]) + Vals[(7 + 128 - (n)) % 8] + s1(n) + ch(n)
  87. //t2 Calc
  88. #define t2(n) maj(n) + s0(n)
  89. #define rotC(x,n) (x<<n | x >> (32-n))
  90. //W calculation used for SHA round
  91. #define W(n) (W[n] = P4(n) + P3(n) + P2(n) + P1(n))
  92. //Partial W calculations (used for the begining where only some values are nonzero)
  93. #define P1(n) ((rot(W[(n)-2],15u)^rot(W[(n)-2],13u)^((W[(n)-2])>>10U)))
  94. #define P2(n) ((rot(W[(n)-15],25u)^rot(W[(n)-15],14u)^((W[(n)-15])>>3U)))
  95. #define p1(x) ((rot(x,15u)^rot(x,13u)^((x)>>10U)))
  96. #define p2(x) ((rot(x,25u)^rot(x,14u)^((x)>>3U)))
  97. #define P3(n) W[n-7]
  98. #define P4(n) W[n-16]
  99. //Partial Calcs for constant W values
  100. #define P1C(n) ((rotC(ConstW[(n)-2],15)^rotC(ConstW[(n)-2],13)^((ConstW[(n)-2])>>10U)))
  101. #define P2C(n) ((rotC(ConstW[(n)-15],25)^rotC(ConstW[(n)-15],14)^((ConstW[(n)-15])>>3U)))
  102. #define P3C(x) ConstW[x-7]
  103. #define P4C(x) ConstW[x-16]
  104. //SHA round with built in W calc
  105. #define sharoundW(n) Barrier1(n); Vals[(3 + 128 - (n)) % 8] += t1W(n); Vals[(7 + 128 - (n)) % 8] = t1W(n) + t2(n);
  106. //SHA round without W calc
  107. #define sharound(n) Barrier2(n); Vals[(3 + 128 - (n)) % 8] += t1(n); Vals[(7 + 128 - (n)) % 8] = t1(n) + t2(n);
  108. //SHA round for constant W values
  109. #define sharoundC(n) Barrier3(n); Vals[(3 + 128 - (n)) % 8] += t1C(n); Vals[(7 + 128 - (n)) % 8] = t1C(n) + t2(n);
  110. //The compiler is stupid... I put this in there only to stop the compiler from (de)optimizing the order
  111. #define Barrier1(n) t1 = t1C((n+1))
  112. #define Barrier2(n) t1 = t1C((n))
  113. #define Barrier3(n) t1 = t1C((n))
  114. //#define WORKSIZE 256
  115. #define MAXBUFFERS (4095)
  116. __kernel
  117. __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
  118. void search( const uint state0, const uint state1, const uint state2, const uint state3,
  119. const uint state4, const uint state5, const uint state6, const uint state7,
  120. const uint B1, const uint C1, const uint D1,
  121. const uint F1, const uint G1, const uint H1,
  122. const u base,
  123. const uint W16, const uint W17,
  124. const uint PreVal4, const uint PreVal0,
  125. const uint PreW18, const uint PreW19,
  126. const uint PreW31, const uint PreW32,
  127. __global uint * output)
  128. {
  129. u W[124];
  130. u Vals[8];
  131. //Dummy Variable to prevent compiler from reordering between rounds
  132. u t1;
  133. //Vals[0]=state0;
  134. Vals[1]=B1;
  135. Vals[2]=C1;
  136. Vals[3]=D1;
  137. //Vals[4]=PreVal4;
  138. Vals[5]=F1;
  139. Vals[6]=G1;
  140. Vals[7]=H1;
  141. W[16] = W16;
  142. W[17] = W17;
  143. #ifdef VECTORS4
  144. //Less dependencies to get both the local id and group id and then add them
  145. W[3] = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u);
  146. uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U);
  147. //Since only the 2 LSB is opposite between the nonces, we can save an instruction by flipping the 4 bits in W18 rather than the 1 bit in W3
  148. W[18] = PreW18 + (u){r, r ^ 0x2004000U, r ^ 0x4008000U, r ^ 0x600C000U};
  149. #else
  150. #ifdef VECTORS2
  151. W[3] = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u);
  152. uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U);
  153. W[18] = PreW18 + (u){r, r ^ 0x2004000U};
  154. #else
  155. W[3] = base + get_local_id(0) + get_group_id(0) * (WORKSIZE);
  156. u r = rot(W[3],25u)^rot(W[3],14u)^((W[3])>>3U);
  157. W[18] = PreW18 + r;
  158. #endif
  159. #endif
  160. //the order of the W calcs and Rounds is like this because the compiler needs help finding how to order the instructions
  161. Vals[4] = PreVal4 + W[3];
  162. Vals[0] = PreVal0 + W[3];
  163. sharoundC(4);
  164. W[19] = PreW19 + W[3];
  165. sharoundC(5);
  166. W[20] = P4C(20) + P1(20);
  167. sharoundC(6);
  168. W[21] = P1(21);
  169. sharoundC(7);
  170. W[22] = P3C(22) + P1(22);
  171. sharoundC(8);
  172. W[23] = W[16] + P1(23);
  173. sharoundC(9);
  174. W[24] = W[17] + P1(24);
  175. sharoundC(10);
  176. W[25] = P1(25) + P3(25);
  177. W[26] = P1(26) + P3(26);
  178. sharoundC(11);
  179. W[27] = P1(27) + P3(27);
  180. W[28] = P1(28) + P3(28);
  181. sharoundC(12);
  182. W[29] = P1(29) + P3(29);
  183. sharoundC(13);
  184. W[30] = P1(30) + P2C(30) + P3(30);
  185. W[31] = PreW31 + (P1(31) + P3(31));
  186. sharoundC(14);
  187. W[32] = PreW32 + (P1(32) + P3(32));
  188. sharoundC(15);
  189. sharound(16);
  190. sharound(17);
  191. sharound(18);
  192. sharound(19);
  193. sharound(20);
  194. sharound(21);
  195. sharound(22);
  196. sharound(23);
  197. sharound(24);
  198. sharound(25);
  199. sharound(26);
  200. sharound(27);
  201. sharound(28);
  202. sharound(29);
  203. sharound(30);
  204. sharound(31);
  205. sharound(32);
  206. sharoundW(33);
  207. sharoundW(34);
  208. sharoundW(35);
  209. sharoundW(36);
  210. sharoundW(37);
  211. sharoundW(38);
  212. sharoundW(39);
  213. sharoundW(40);
  214. sharoundW(41);
  215. sharoundW(42);
  216. sharoundW(43);
  217. sharoundW(44);
  218. sharoundW(45);
  219. sharoundW(46);
  220. sharoundW(47);
  221. sharoundW(48);
  222. sharoundW(49);
  223. sharoundW(50);
  224. sharoundW(51);
  225. sharoundW(52);
  226. sharoundW(53);
  227. sharoundW(54);
  228. sharoundW(55);
  229. sharoundW(56);
  230. sharoundW(57);
  231. sharoundW(58);
  232. sharoundW(59);
  233. sharoundW(60);
  234. sharoundW(61);
  235. sharoundW(62);
  236. sharoundW(63);
  237. W[64]=state0+Vals[0];
  238. W[65]=state1+Vals[1];
  239. W[66]=state2+Vals[2];
  240. W[67]=state3+Vals[3];
  241. W[68]=state4+Vals[4];
  242. W[69]=state5+Vals[5];
  243. W[70]=state6+Vals[6];
  244. W[71]=state7+Vals[7];
  245. Vals[0]=H[0];
  246. Vals[1]=H[1];
  247. Vals[2]=H[2];
  248. Vals[3]=H[3];
  249. Vals[4]=H[4];
  250. Vals[5]=H[5];
  251. Vals[6]=H[6];
  252. Vals[7]=H[7];
  253. //sharound(64 + 0);
  254. const u Temp = (0xb0edbdd0U + K[0]) + W[64];
  255. Vals[7] = Temp + 0x08909ae5U;
  256. Vals[3] = 0xa54ff53aU + Temp;
  257. #define P124(n) P2(n) + P1(n) + P4(n)
  258. W[64 + 16] = + P2(64 + 16) + P4(64 + 16);
  259. sharound(64 + 1);
  260. W[64 + 17] = P1C(64 + 17) + P2(64 + 17) + P4(64 + 17);
  261. sharound(64 + 2);
  262. W[64 + 18] = P124(64 + 18);
  263. sharound(64 + 3);
  264. W[64 + 19] = P124(64 + 19);
  265. sharound(64 + 4);
  266. W[64 + 20] = P124(64 + 20);
  267. sharound(64 + 5);
  268. W[64 + 21] = P124(64 + 21);
  269. sharound(64 + 6);
  270. W[64 + 22] = P4(64 + 22) + P3C(64 + 22) + P2(64 + 22) + P1(64 + 22);
  271. sharound(64 + 7);
  272. W[64 + 23] = P4(64 + 23) + P3(64 + 23) + P2C(64 + 23) + P1(64 + 23);
  273. sharoundC(64 + 8);
  274. W[64 + 24] = P1(64 + 24) + P4C(64 + 24) + P3(64 + 24);
  275. sharoundC(64 + 9);
  276. W[64 + 25] = P3(64 + 25) + P1(64 + 25);
  277. sharoundC(64 + 10);
  278. W[64 + 26] = P3(64 + 26) + P1(64 + 26);
  279. sharoundC(64 + 11);
  280. W[64 + 27] = P3(64 + 27) + P1(64 + 27);
  281. sharoundC(64 + 12);
  282. W[64 + 28] = P3(64 + 28) + P1(64 + 28);
  283. sharoundC(64 + 13);
  284. W[64 + 29] = P1(64 + 29) + P3(64 + 29);
  285. W[64 + 30] = P3(64 + 30) + P2C(64 + 30) + P1(64 + 30);
  286. sharoundC(64 + 14);
  287. W[64 + 31] = P4C(64 + 31) + P3(64 + 31) + P2(64 + 31) + P1(64 + 31);
  288. sharoundC(64 + 15);
  289. sharound(64 + 16);
  290. sharound(64 + 17);
  291. sharound(64 + 18);
  292. sharound(64 + 19);
  293. sharound(64 + 20);
  294. sharound(64 + 21);
  295. sharound(64 + 22);
  296. sharound(64 + 23);
  297. sharound(64 + 24);
  298. sharound(64 + 25);
  299. sharound(64 + 26);
  300. sharound(64 + 27);
  301. sharound(64 + 28);
  302. sharound(64 + 29);
  303. sharound(64 + 30);
  304. sharound(64 + 31);
  305. sharoundW(64 + 32);
  306. sharoundW(64 + 33);
  307. sharoundW(64 + 34);
  308. sharoundW(64 + 35);
  309. sharoundW(64 + 36);
  310. sharoundW(64 + 37);
  311. sharoundW(64 + 38);
  312. sharoundW(64 + 39);
  313. sharoundW(64 + 40);
  314. sharoundW(64 + 41);
  315. sharoundW(64 + 42);
  316. sharoundW(64 + 43);
  317. sharoundW(64 + 44);
  318. sharoundW(64 + 45);
  319. sharoundW(64 + 46);
  320. sharoundW(64 + 47);
  321. sharoundW(64 + 48);
  322. sharoundW(64 + 49);
  323. sharoundW(64 + 50);
  324. sharoundW(64 + 51);
  325. sharoundW(64 + 52);
  326. sharoundW(64 + 53);
  327. sharoundW(64 + 54);
  328. sharoundW(64 + 55);
  329. sharoundW(64 + 56);
  330. sharoundW(64 + 57);
  331. sharoundW(64 + 58);
  332. u v = W[117] + W[108] + Vals[3] + Vals[7] + P2(124) + P1(124) + Ch((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64),Vals[1],Vals[2]) ^
  333. -(K[60] + H[7]) - S1((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64));
  334. #define FOUND (0x80)
  335. #define NFLAG (0x7F)
  336. #ifdef VECTORS4
  337. bool result = v.x & v.y & v.z & v.w;
  338. if (!result) {
  339. if (!v.x)
  340. output[FOUND] = output[NFLAG & W[3].x] = W[3].x;
  341. if (!v.y)
  342. output[FOUND] = output[NFLAG & W[3].y] = W[3].y;
  343. if (!v.z)
  344. output[FOUND] = output[NFLAG & W[3].z] = W[3].z;
  345. if (!v.w)
  346. output[FOUND] = output[NFLAG & W[3].w] = W[3].w;
  347. }
  348. #else
  349. #ifdef VECTORS2
  350. bool result = v.x & v.y;
  351. if (!result) {
  352. if (!v.x)
  353. output[FOUND] = output[NFLAG & W[3].x] = W[3].x;
  354. if (!v.y)
  355. output[FOUND] = output[NFLAG & W[3].y] = W[3].y;
  356. }
  357. #else
  358. if (!v)
  359. output[FOUND] = output[NFLAG & W[3]] = W[3];
  360. #endif
  361. #endif
  362. }