scrypt120713.cl 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. #define rotl(x,y) rotate(x,y)
  2. #define Ch(x,y,z) bitselect(z,y,x)
  3. #define Maj(x,y,z) Ch((x^z),y,z)
  4. uint4 EndianSwap4(uint4 n)
  5. {
  6. return rotl(n&0x00FF00FF,24U)|rotl(n&0xFF00FF00,8U);
  7. }
  8. #define Tr2(x) (rotl(x, 30U) ^ rotl(x, 19U) ^ rotl(x, 10U))
  9. #define Tr1(x) (rotl(x, 26U) ^ rotl(x, 21U) ^ rotl(x, 7U))
  10. #define Wr2(x) (rotl(x, 25U) ^ rotl(x, 14U) ^ (x>>3U))
  11. #define Wr1(x) (rotl(x, 15U) ^ rotl(x, 13U) ^ (x>>10U))
  12. #define RND(a, b, c, d, e, f, g, h, k) \
  13. h += Tr1(e) + Ch(e, f, g) + k; \
  14. d += h; \
  15. h += Tr2(a) + Maj(a, b, c);
  16. void SHA256(uint4*restrict state0,uint4*restrict state1, const uint4 block0, const uint4 block1, const uint4 block2, const uint4 block3)
  17. {
  18. uint4 S0 = *state0;
  19. uint4 S1 = *state1;
  20. #define A S0.x
  21. #define B S0.y
  22. #define C S0.z
  23. #define D S0.w
  24. #define E S1.x
  25. #define F S1.y
  26. #define G S1.z
  27. #define H S1.w
  28. uint4 W[4];
  29. W[ 0].x = block0.x;
  30. RND(A,B,C,D,E,F,G,H, W[0].x+0x428a2f98U);
  31. W[ 0].y = block0.y;
  32. RND(H,A,B,C,D,E,F,G, W[0].y+0x71374491U);
  33. W[ 0].z = block0.z;
  34. RND(G,H,A,B,C,D,E,F, W[0].z+0xb5c0fbcfU);
  35. W[ 0].w = block0.w;
  36. RND(F,G,H,A,B,C,D,E, W[0].w+0xe9b5dba5U);
  37. W[ 1].x = block1.x;
  38. RND(E,F,G,H,A,B,C,D, W[1].x+0x3956c25bU);
  39. W[ 1].y = block1.y;
  40. RND(D,E,F,G,H,A,B,C, W[1].y+0x59f111f1U);
  41. W[ 1].z = block1.z;
  42. RND(C,D,E,F,G,H,A,B, W[1].z+0x923f82a4U);
  43. W[ 1].w = block1.w;
  44. RND(B,C,D,E,F,G,H,A, W[1].w+0xab1c5ed5U);
  45. W[ 2].x = block2.x;
  46. RND(A,B,C,D,E,F,G,H, W[2].x+0xd807aa98U);
  47. W[ 2].y = block2.y;
  48. RND(H,A,B,C,D,E,F,G, W[2].y+0x12835b01U);
  49. W[ 2].z = block2.z;
  50. RND(G,H,A,B,C,D,E,F, W[2].z+0x243185beU);
  51. W[ 2].w = block2.w;
  52. RND(F,G,H,A,B,C,D,E, W[2].w+0x550c7dc3U);
  53. W[ 3].x = block3.x;
  54. RND(E,F,G,H,A,B,C,D, W[3].x+0x72be5d74U);
  55. W[ 3].y = block3.y;
  56. RND(D,E,F,G,H,A,B,C, W[3].y+0x80deb1feU);
  57. W[ 3].z = block3.z;
  58. RND(C,D,E,F,G,H,A,B, W[3].z+0x9bdc06a7U);
  59. W[ 3].w = block3.w;
  60. RND(B,C,D,E,F,G,H,A, W[3].w+0xc19bf174U);
  61. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  62. RND(A,B,C,D,E,F,G,H, W[0].x+0xe49b69c1U);
  63. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  64. RND(H,A,B,C,D,E,F,G, W[0].y+0xefbe4786U);
  65. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  66. RND(G,H,A,B,C,D,E,F, W[0].z+0x0fc19dc6U);
  67. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  68. RND(F,G,H,A,B,C,D,E, W[0].w+0x240ca1ccU);
  69. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  70. RND(E,F,G,H,A,B,C,D, W[1].x+0x2de92c6fU);
  71. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  72. RND(D,E,F,G,H,A,B,C, W[1].y+0x4a7484aaU);
  73. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  74. RND(C,D,E,F,G,H,A,B, W[1].z+0x5cb0a9dcU);
  75. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  76. RND(B,C,D,E,F,G,H,A, W[1].w+0x76f988daU);
  77. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  78. RND(A,B,C,D,E,F,G,H, W[2].x+0x983e5152U);
  79. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  80. RND(H,A,B,C,D,E,F,G, W[2].y+0xa831c66dU);
  81. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  82. RND(G,H,A,B,C,D,E,F, W[2].z+0xb00327c8U);
  83. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  84. RND(F,G,H,A,B,C,D,E, W[2].w+0xbf597fc7U);
  85. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  86. RND(E,F,G,H,A,B,C,D, W[3].x+0xc6e00bf3U);
  87. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  88. RND(D,E,F,G,H,A,B,C, W[3].y+0xd5a79147U);
  89. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  90. RND(C,D,E,F,G,H,A,B, W[3].z+0x06ca6351U);
  91. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  92. RND(B,C,D,E,F,G,H,A, W[3].w+0x14292967U);
  93. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  94. RND(A,B,C,D,E,F,G,H, W[0].x+0x27b70a85U);
  95. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  96. RND(H,A,B,C,D,E,F,G, W[0].y+0x2e1b2138U);
  97. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  98. RND(G,H,A,B,C,D,E,F, W[0].z+0x4d2c6dfcU);
  99. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  100. RND(F,G,H,A,B,C,D,E, W[0].w+0x53380d13U);
  101. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  102. RND(E,F,G,H,A,B,C,D, W[1].x+0x650a7354U);
  103. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  104. RND(D,E,F,G,H,A,B,C, W[1].y+0x766a0abbU);
  105. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  106. RND(C,D,E,F,G,H,A,B, W[1].z+0x81c2c92eU);
  107. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  108. RND(B,C,D,E,F,G,H,A, W[1].w+0x92722c85U);
  109. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  110. RND(A,B,C,D,E,F,G,H, W[2].x+0xa2bfe8a1U);
  111. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  112. RND(H,A,B,C,D,E,F,G, W[2].y+0xa81a664bU);
  113. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  114. RND(G,H,A,B,C,D,E,F, W[2].z+0xc24b8b70U);
  115. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  116. RND(F,G,H,A,B,C,D,E, W[2].w+0xc76c51a3U);
  117. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  118. RND(E,F,G,H,A,B,C,D, W[3].x+0xd192e819U);
  119. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  120. RND(D,E,F,G,H,A,B,C, W[3].y+0xd6990624U);
  121. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  122. RND(C,D,E,F,G,H,A,B, W[3].z+0xf40e3585U);
  123. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  124. RND(B,C,D,E,F,G,H,A, W[3].w+0x106aa070U);
  125. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  126. RND(A,B,C,D,E,F,G,H, W[0].x+0x19a4c116U);
  127. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  128. RND(H,A,B,C,D,E,F,G, W[0].y+0x1e376c08U);
  129. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  130. RND(G,H,A,B,C,D,E,F, W[0].z+0x2748774cU);
  131. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  132. RND(F,G,H,A,B,C,D,E, W[0].w+0x34b0bcb5U);
  133. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  134. RND(E,F,G,H,A,B,C,D, W[1].x+0x391c0cb3U);
  135. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  136. RND(D,E,F,G,H,A,B,C, W[1].y+0x4ed8aa4aU);
  137. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  138. RND(C,D,E,F,G,H,A,B, W[1].z+0x5b9cca4fU);
  139. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  140. RND(B,C,D,E,F,G,H,A, W[1].w+0x682e6ff3U);
  141. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  142. RND(A,B,C,D,E,F,G,H, W[2].x+0x748f82eeU);
  143. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  144. RND(H,A,B,C,D,E,F,G, W[2].y+0x78a5636fU);
  145. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  146. RND(G,H,A,B,C,D,E,F, W[2].z+0x84c87814U);
  147. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  148. RND(F,G,H,A,B,C,D,E, W[2].w+0x8cc70208U);
  149. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  150. RND(E,F,G,H,A,B,C,D, W[3].x+0x90befffaU);
  151. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  152. RND(D,E,F,G,H,A,B,C, W[3].y+0xa4506cebU);
  153. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  154. RND(C,D,E,F,G,H,A,B, W[3].z+0xbef9a3f7U);
  155. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  156. RND(B,C,D,E,F,G,H,A, W[3].w+0xc67178f2U);
  157. #undef A
  158. #undef B
  159. #undef C
  160. #undef D
  161. #undef E
  162. #undef F
  163. #undef G
  164. #undef H
  165. *state0 += S0;
  166. *state1 += S1;
  167. }
  168. void SHA256_fresh(uint4*restrict state0,uint4*restrict state1, const uint4 block0, const uint4 block1, const uint4 block2, const uint4 block3)
  169. {
  170. #define A (*state0).x
  171. #define B (*state0).y
  172. #define C (*state0).z
  173. #define D (*state0).w
  174. #define E (*state1).x
  175. #define F (*state1).y
  176. #define G (*state1).z
  177. #define H (*state1).w
  178. uint4 W[4];
  179. W[ 0].x = block0.x;
  180. D=0x98c7e2a2U+W[0].x;
  181. H=0xfc08884dU+W[0].x;
  182. W[ 0].y = block0.y;
  183. C=0xcd2a11aeU+Tr1(D)+Ch(D,0x510e527fU,0x9b05688cU)+W[0].y;
  184. G=0xC3910C8EU+C+Tr2(H)+Ch(H,0xfb6feee7U,0x2a01a605U);
  185. W[ 0].z = block0.z;
  186. B=0x0c2e12e0U+Tr1(C)+Ch(C,D,0x510e527fU)+W[0].z;
  187. F=0x4498517BU+B+Tr2(G)+Maj(G,H,0x6a09e667U);
  188. W[ 0].w = block0.w;
  189. A=0xa4ce148bU+Tr1(B)+Ch(B,C,D)+W[0].w;
  190. E=0x95F61999U+A+Tr2(F)+Maj(F,G,H);
  191. W[ 1].x = block1.x;
  192. RND(E,F,G,H,A,B,C,D, W[1].x+0x3956c25bU);
  193. W[ 1].y = block1.y;
  194. RND(D,E,F,G,H,A,B,C, W[1].y+0x59f111f1U);
  195. W[ 1].z = block1.z;
  196. RND(C,D,E,F,G,H,A,B, W[1].z+0x923f82a4U);
  197. W[ 1].w = block1.w;
  198. RND(B,C,D,E,F,G,H,A, W[1].w+0xab1c5ed5U);
  199. W[ 2].x = block2.x;
  200. RND(A,B,C,D,E,F,G,H, W[2].x+0xd807aa98U);
  201. W[ 2].y = block2.y;
  202. RND(H,A,B,C,D,E,F,G, W[2].y+0x12835b01U);
  203. W[ 2].z = block2.z;
  204. RND(G,H,A,B,C,D,E,F, W[2].z+0x243185beU);
  205. W[ 2].w = block2.w;
  206. RND(F,G,H,A,B,C,D,E, W[2].w+0x550c7dc3U);
  207. W[ 3].x = block3.x;
  208. RND(E,F,G,H,A,B,C,D, W[3].x+0x72be5d74U);
  209. W[ 3].y = block3.y;
  210. RND(D,E,F,G,H,A,B,C, W[3].y+0x80deb1feU);
  211. W[ 3].z = block3.z;
  212. RND(C,D,E,F,G,H,A,B, W[3].z+0x9bdc06a7U);
  213. W[ 3].w = block3.w;
  214. RND(B,C,D,E,F,G,H,A, W[3].w+0xc19bf174U);
  215. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  216. RND(A,B,C,D,E,F,G,H, W[0].x+0xe49b69c1U);
  217. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  218. RND(H,A,B,C,D,E,F,G, W[0].y+0xefbe4786U);
  219. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  220. RND(G,H,A,B,C,D,E,F, W[0].z+0x0fc19dc6U);
  221. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  222. RND(F,G,H,A,B,C,D,E, W[0].w+0x240ca1ccU);
  223. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  224. RND(E,F,G,H,A,B,C,D, W[1].x+0x2de92c6fU);
  225. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  226. RND(D,E,F,G,H,A,B,C, W[1].y+0x4a7484aaU);
  227. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  228. RND(C,D,E,F,G,H,A,B, W[1].z+0x5cb0a9dcU);
  229. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  230. RND(B,C,D,E,F,G,H,A, W[1].w+0x76f988daU);
  231. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  232. RND(A,B,C,D,E,F,G,H, W[2].x+0x983e5152U);
  233. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  234. RND(H,A,B,C,D,E,F,G, W[2].y+0xa831c66dU);
  235. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  236. RND(G,H,A,B,C,D,E,F, W[2].z+0xb00327c8U);
  237. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  238. RND(F,G,H,A,B,C,D,E, W[2].w+0xbf597fc7U);
  239. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  240. RND(E,F,G,H,A,B,C,D, W[3].x+0xc6e00bf3U);
  241. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  242. RND(D,E,F,G,H,A,B,C, W[3].y+0xd5a79147U);
  243. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  244. RND(C,D,E,F,G,H,A,B, W[3].z+0x06ca6351U);
  245. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  246. RND(B,C,D,E,F,G,H,A, W[3].w+0x14292967U);
  247. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  248. RND(A,B,C,D,E,F,G,H, W[0].x+0x27b70a85U);
  249. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  250. RND(H,A,B,C,D,E,F,G, W[0].y+0x2e1b2138U);
  251. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  252. RND(G,H,A,B,C,D,E,F, W[0].z+0x4d2c6dfcU);
  253. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  254. RND(F,G,H,A,B,C,D,E, W[0].w+0x53380d13U);
  255. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  256. RND(E,F,G,H,A,B,C,D, W[1].x+0x650a7354U);
  257. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  258. RND(D,E,F,G,H,A,B,C, W[1].y+0x766a0abbU);
  259. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  260. RND(C,D,E,F,G,H,A,B, W[1].z+0x81c2c92eU);
  261. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  262. RND(B,C,D,E,F,G,H,A, W[1].w+0x92722c85U);
  263. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  264. RND(A,B,C,D,E,F,G,H, W[2].x+0xa2bfe8a1U);
  265. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  266. RND(H,A,B,C,D,E,F,G, W[2].y+0xa81a664bU);
  267. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  268. RND(G,H,A,B,C,D,E,F, W[2].z+0xc24b8b70U);
  269. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  270. RND(F,G,H,A,B,C,D,E, W[2].w+0xc76c51a3U);
  271. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  272. RND(E,F,G,H,A,B,C,D, W[3].x+0xd192e819U);
  273. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  274. RND(D,E,F,G,H,A,B,C, W[3].y+0xd6990624U);
  275. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  276. RND(C,D,E,F,G,H,A,B, W[3].z+0xf40e3585U);
  277. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  278. RND(B,C,D,E,F,G,H,A, W[3].w+0x106aa070U);
  279. W[ 0].x += Wr1(W[ 3].z) + W[ 2].y + Wr2(W[ 0].y);
  280. RND(A,B,C,D,E,F,G,H, W[0].x+0x19a4c116U);
  281. W[ 0].y += Wr1(W[ 3].w) + W[ 2].z + Wr2(W[ 0].z);
  282. RND(H,A,B,C,D,E,F,G, W[0].y+0x1e376c08U);
  283. W[ 0].z += Wr1(W[ 0].x) + W[ 2].w + Wr2(W[ 0].w);
  284. RND(G,H,A,B,C,D,E,F, W[0].z+0x2748774cU);
  285. W[ 0].w += Wr1(W[ 0].y) + W[ 3].x + Wr2(W[ 1].x);
  286. RND(F,G,H,A,B,C,D,E, W[0].w+0x34b0bcb5U);
  287. W[ 1].x += Wr1(W[ 0].z) + W[ 3].y + Wr2(W[ 1].y);
  288. RND(E,F,G,H,A,B,C,D, W[1].x+0x391c0cb3U);
  289. W[ 1].y += Wr1(W[ 0].w) + W[ 3].z + Wr2(W[ 1].z);
  290. RND(D,E,F,G,H,A,B,C, W[1].y+0x4ed8aa4aU);
  291. W[ 1].z += Wr1(W[ 1].x) + W[ 3].w + Wr2(W[ 1].w);
  292. RND(C,D,E,F,G,H,A,B, W[1].z+0x5b9cca4fU);
  293. W[ 1].w += Wr1(W[ 1].y) + W[ 0].x + Wr2(W[ 2].x);
  294. RND(B,C,D,E,F,G,H,A, W[1].w+0x682e6ff3U);
  295. W[ 2].x += Wr1(W[ 1].z) + W[ 0].y + Wr2(W[ 2].y);
  296. RND(A,B,C,D,E,F,G,H, W[2].x+0x748f82eeU);
  297. W[ 2].y += Wr1(W[ 1].w) + W[ 0].z + Wr2(W[ 2].z);
  298. RND(H,A,B,C,D,E,F,G, W[2].y+0x78a5636fU);
  299. W[ 2].z += Wr1(W[ 2].x) + W[ 0].w + Wr2(W[ 2].w);
  300. RND(G,H,A,B,C,D,E,F, W[2].z+0x84c87814U);
  301. W[ 2].w += Wr1(W[ 2].y) + W[ 1].x + Wr2(W[ 3].x);
  302. RND(F,G,H,A,B,C,D,E, W[2].w+0x8cc70208U);
  303. W[ 3].x += Wr1(W[ 2].z) + W[ 1].y + Wr2(W[ 3].y);
  304. RND(E,F,G,H,A,B,C,D, W[3].x+0x90befffaU);
  305. W[ 3].y += Wr1(W[ 2].w) + W[ 1].z + Wr2(W[ 3].z);
  306. RND(D,E,F,G,H,A,B,C, W[3].y+0xa4506cebU);
  307. W[ 3].z += Wr1(W[ 3].x) + W[ 1].w + Wr2(W[ 3].w);
  308. RND(C,D,E,F,G,H,A,B, W[3].z+0xbef9a3f7U);
  309. W[ 3].w += Wr1(W[ 3].y) + W[ 2].x + Wr2(W[ 0].x);
  310. RND(B,C,D,E,F,G,H,A, W[3].w+0xc67178f2U);
  311. #undef A
  312. #undef B
  313. #undef C
  314. #undef D
  315. #undef E
  316. #undef F
  317. #undef G
  318. #undef H
  319. *state0 += (uint4)(0x6A09E667U,0xBB67AE85U,0x3C6EF372U,0xA54FF53AU);
  320. *state1 += (uint4)(0x510E527FU,0x9B05688CU,0x1F83D9ABU,0x5BE0CD19U);
  321. }
  322. __constant uint fixedW[64] =
  323. {
  324. 0x428a2f99,0xf1374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
  325. 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf794,
  326. 0xf59b89c2,0x73924787,0x23c6886e,0xa42ca65c,0x15ed3627,0x4d6edcbf,0xe28217fc,0xef02488f,
  327. 0xb707775c,0x0468c23f,0xe7e72b4c,0x49e1f1a2,0x4b99c816,0x926d1570,0xaa0fc072,0xadb36e2c,
  328. 0xad87a3ea,0xbcb1d3a3,0x7b993186,0x562b9420,0xbff3ca0c,0xda4b0c23,0x6cd8711a,0x8f337caa,
  329. 0xc91b1417,0xc359dce1,0xa83253a7,0x3b13c12d,0x9d3d725d,0xd9031a84,0xb1a03340,0x16f58012,
  330. 0xe64fb6a2,0xe84d923a,0xe93a5730,0x09837686,0x078ff753,0x29833341,0xd5de0b7e,0x6948ccf4,
  331. 0xe0a1adbe,0x7c728e11,0x511c78e4,0x315b45bd,0xfca71413,0xea28f96a,0x79703128,0x4e1ef848,
  332. };
  333. void SHA256_fixed(uint4*restrict state0,uint4*restrict state1)
  334. {
  335. uint4 S0 = *state0;
  336. uint4 S1 = *state1;
  337. #define A S0.x
  338. #define B S0.y
  339. #define C S0.z
  340. #define D S0.w
  341. #define E S1.x
  342. #define F S1.y
  343. #define G S1.z
  344. #define H S1.w
  345. RND(A,B,C,D,E,F,G,H, fixedW[0]);
  346. RND(H,A,B,C,D,E,F,G, fixedW[1]);
  347. RND(G,H,A,B,C,D,E,F, fixedW[2]);
  348. RND(F,G,H,A,B,C,D,E, fixedW[3]);
  349. RND(E,F,G,H,A,B,C,D, fixedW[4]);
  350. RND(D,E,F,G,H,A,B,C, fixedW[5]);
  351. RND(C,D,E,F,G,H,A,B, fixedW[6]);
  352. RND(B,C,D,E,F,G,H,A, fixedW[7]);
  353. RND(A,B,C,D,E,F,G,H, fixedW[8]);
  354. RND(H,A,B,C,D,E,F,G, fixedW[9]);
  355. RND(G,H,A,B,C,D,E,F, fixedW[10]);
  356. RND(F,G,H,A,B,C,D,E, fixedW[11]);
  357. RND(E,F,G,H,A,B,C,D, fixedW[12]);
  358. RND(D,E,F,G,H,A,B,C, fixedW[13]);
  359. RND(C,D,E,F,G,H,A,B, fixedW[14]);
  360. RND(B,C,D,E,F,G,H,A, fixedW[15]);
  361. RND(A,B,C,D,E,F,G,H, fixedW[16]);
  362. RND(H,A,B,C,D,E,F,G, fixedW[17]);
  363. RND(G,H,A,B,C,D,E,F, fixedW[18]);
  364. RND(F,G,H,A,B,C,D,E, fixedW[19]);
  365. RND(E,F,G,H,A,B,C,D, fixedW[20]);
  366. RND(D,E,F,G,H,A,B,C, fixedW[21]);
  367. RND(C,D,E,F,G,H,A,B, fixedW[22]);
  368. RND(B,C,D,E,F,G,H,A, fixedW[23]);
  369. RND(A,B,C,D,E,F,G,H, fixedW[24]);
  370. RND(H,A,B,C,D,E,F,G, fixedW[25]);
  371. RND(G,H,A,B,C,D,E,F, fixedW[26]);
  372. RND(F,G,H,A,B,C,D,E, fixedW[27]);
  373. RND(E,F,G,H,A,B,C,D, fixedW[28]);
  374. RND(D,E,F,G,H,A,B,C, fixedW[29]);
  375. RND(C,D,E,F,G,H,A,B, fixedW[30]);
  376. RND(B,C,D,E,F,G,H,A, fixedW[31]);
  377. RND(A,B,C,D,E,F,G,H, fixedW[32]);
  378. RND(H,A,B,C,D,E,F,G, fixedW[33]);
  379. RND(G,H,A,B,C,D,E,F, fixedW[34]);
  380. RND(F,G,H,A,B,C,D,E, fixedW[35]);
  381. RND(E,F,G,H,A,B,C,D, fixedW[36]);
  382. RND(D,E,F,G,H,A,B,C, fixedW[37]);
  383. RND(C,D,E,F,G,H,A,B, fixedW[38]);
  384. RND(B,C,D,E,F,G,H,A, fixedW[39]);
  385. RND(A,B,C,D,E,F,G,H, fixedW[40]);
  386. RND(H,A,B,C,D,E,F,G, fixedW[41]);
  387. RND(G,H,A,B,C,D,E,F, fixedW[42]);
  388. RND(F,G,H,A,B,C,D,E, fixedW[43]);
  389. RND(E,F,G,H,A,B,C,D, fixedW[44]);
  390. RND(D,E,F,G,H,A,B,C, fixedW[45]);
  391. RND(C,D,E,F,G,H,A,B, fixedW[46]);
  392. RND(B,C,D,E,F,G,H,A, fixedW[47]);
  393. RND(A,B,C,D,E,F,G,H, fixedW[48]);
  394. RND(H,A,B,C,D,E,F,G, fixedW[49]);
  395. RND(G,H,A,B,C,D,E,F, fixedW[50]);
  396. RND(F,G,H,A,B,C,D,E, fixedW[51]);
  397. RND(E,F,G,H,A,B,C,D, fixedW[52]);
  398. RND(D,E,F,G,H,A,B,C, fixedW[53]);
  399. RND(C,D,E,F,G,H,A,B, fixedW[54]);
  400. RND(B,C,D,E,F,G,H,A, fixedW[55]);
  401. RND(A,B,C,D,E,F,G,H, fixedW[56]);
  402. RND(H,A,B,C,D,E,F,G, fixedW[57]);
  403. RND(G,H,A,B,C,D,E,F, fixedW[58]);
  404. RND(F,G,H,A,B,C,D,E, fixedW[59]);
  405. RND(E,F,G,H,A,B,C,D, fixedW[60]);
  406. RND(D,E,F,G,H,A,B,C, fixedW[61]);
  407. RND(C,D,E,F,G,H,A,B, fixedW[62]);
  408. RND(B,C,D,E,F,G,H,A, fixedW[63]);
  409. #undef A
  410. #undef B
  411. #undef C
  412. #undef D
  413. #undef E
  414. #undef F
  415. #undef G
  416. #undef H
  417. *state0 += S0;
  418. *state1 += S1;
  419. }
  420. void shittify(uint4 B[8])
  421. {
  422. uint4 tmp[4];
  423. tmp[0] = (uint4)(B[1].x,B[2].y,B[3].z,B[0].w);
  424. tmp[1] = (uint4)(B[2].x,B[3].y,B[0].z,B[1].w);
  425. tmp[2] = (uint4)(B[3].x,B[0].y,B[1].z,B[2].w);
  426. tmp[3] = (uint4)(B[0].x,B[1].y,B[2].z,B[3].w);
  427. #pragma unroll
  428. for(uint i=0; i<4; ++i)
  429. B[i] = EndianSwap4(tmp[i]);
  430. tmp[0] = (uint4)(B[5].x,B[6].y,B[7].z,B[4].w);
  431. tmp[1] = (uint4)(B[6].x,B[7].y,B[4].z,B[5].w);
  432. tmp[2] = (uint4)(B[7].x,B[4].y,B[5].z,B[6].w);
  433. tmp[3] = (uint4)(B[4].x,B[5].y,B[6].z,B[7].w);
  434. #pragma unroll
  435. for(uint i=0; i<4; ++i)
  436. B[i+4] = EndianSwap4(tmp[i]);
  437. }
  438. void unshittify(uint4 B[8])
  439. {
  440. uint4 tmp[4];
  441. tmp[0] = (uint4)(B[3].x,B[2].y,B[1].z,B[0].w);
  442. tmp[1] = (uint4)(B[0].x,B[3].y,B[2].z,B[1].w);
  443. tmp[2] = (uint4)(B[1].x,B[0].y,B[3].z,B[2].w);
  444. tmp[3] = (uint4)(B[2].x,B[1].y,B[0].z,B[3].w);
  445. #pragma unroll
  446. for(uint i=0; i<4; ++i)
  447. B[i] = EndianSwap4(tmp[i]);
  448. tmp[0] = (uint4)(B[7].x,B[6].y,B[5].z,B[4].w);
  449. tmp[1] = (uint4)(B[4].x,B[7].y,B[6].z,B[5].w);
  450. tmp[2] = (uint4)(B[5].x,B[4].y,B[7].z,B[6].w);
  451. tmp[3] = (uint4)(B[6].x,B[5].y,B[4].z,B[7].w);
  452. #pragma unroll
  453. for(uint i=0; i<4; ++i)
  454. B[i+4] = EndianSwap4(tmp[i]);
  455. }
  456. void salsa(uint4 B[8])
  457. {
  458. uint4 w[4];
  459. #pragma unroll
  460. for(uint i=0; i<4; ++i)
  461. w[i] = (B[i]^=B[i+4]);
  462. #pragma unroll
  463. for(uint i=0; i<4; ++i)
  464. {
  465. w[0] ^= rotl(w[3] +w[2] , 7U);
  466. w[1] ^= rotl(w[0] +w[3] , 9U);
  467. w[2] ^= rotl(w[1] +w[0] ,13U);
  468. w[3] ^= rotl(w[2] +w[1] ,18U);
  469. w[2] ^= rotl(w[3].wxyz+w[0].zwxy, 7U);
  470. w[1] ^= rotl(w[2].wxyz+w[3].zwxy, 9U);
  471. w[0] ^= rotl(w[1].wxyz+w[2].zwxy,13U);
  472. w[3] ^= rotl(w[0].wxyz+w[1].zwxy,18U);
  473. }
  474. #pragma unroll
  475. for(uint i=0; i<4; ++i)
  476. w[i] = (B[i+4]^=(B[i]+=w[i]));
  477. #pragma unroll
  478. for(uint i=0; i<4; ++i)
  479. {
  480. w[0] ^= rotl(w[3] +w[2] , 7U);
  481. w[1] ^= rotl(w[0] +w[3] , 9U);
  482. w[2] ^= rotl(w[1] +w[0] ,13U);
  483. w[3] ^= rotl(w[2] +w[1] ,18U);
  484. w[2] ^= rotl(w[3].wxyz+w[0].zwxy, 7U);
  485. w[1] ^= rotl(w[2].wxyz+w[3].zwxy, 9U);
  486. w[0] ^= rotl(w[1].wxyz+w[2].zwxy,13U);
  487. w[3] ^= rotl(w[0].wxyz+w[1].zwxy,18U);
  488. }
  489. #pragma unroll
  490. for(uint i=0; i<4; ++i)
  491. B[i+4] += w[i];
  492. }
  493. #define Coord(x,y,z) x+y*(x ## SIZE)+z*(y ## SIZE)*(x ## SIZE)
  494. #define CO Coord(z,x,y)
  495. void scrypt_core(uint4 X[8], __global uint4*restrict lookup)
  496. {
  497. shittify(X);
  498. const uint zSIZE = 8;
  499. const uint ySIZE = (1024/LOOKUP_GAP+(1024%LOOKUP_GAP>0));
  500. const uint xSIZE = CONCURRENT_THREADS;
  501. uint x = get_global_id(0)%xSIZE;
  502. for(uint y=0; y<1024/LOOKUP_GAP; ++y)
  503. {
  504. #pragma unroll
  505. for(uint z=0; z<zSIZE; ++z)
  506. lookup[CO] = X[z];
  507. for(uint i=0; i<LOOKUP_GAP; ++i)
  508. salsa(X);
  509. }
  510. #if (LOOKUP_GAP != 1) && (LOOKUP_GAP != 2) && (LOOKUP_GAP != 4) && (LOOKUP_GAP != 8)
  511. {
  512. uint y = (1024/LOOKUP_GAP);
  513. #pragma unroll
  514. for(uint z=0; z<zSIZE; ++z)
  515. lookup[CO] = X[z];
  516. for(uint i=0; i<1024%LOOKUP_GAP; ++i)
  517. salsa(X);
  518. }
  519. #endif
  520. for (uint i=0; i<1024; ++i)
  521. {
  522. uint4 V[8];
  523. uint j = X[7].x & 0x3FF;
  524. uint y = (j/LOOKUP_GAP);
  525. #pragma unroll
  526. for(uint z=0; z<zSIZE; ++z)
  527. V[z] = lookup[CO];
  528. #if (LOOKUP_GAP == 1)
  529. #elif (LOOKUP_GAP == 2)
  530. if (j&1)
  531. salsa(V);
  532. #else
  533. uint val = j%LOOKUP_GAP;
  534. for (uint z=0; z<val; ++z)
  535. salsa(V);
  536. #endif
  537. #pragma unroll
  538. for(uint z=0; z<zSIZE; ++z)
  539. X[z] ^= V[z];
  540. salsa(X);
  541. }
  542. unshittify(X);
  543. }
  544. #define FOUND (0x80)
  545. #define NFLAG (0x7F)
  546. __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
  547. __kernel void search(__global uint4*restrict input, __global uint*restrict output, __global uint4*restrict padcache, uint4 pad0, uint4 pad1)
  548. {
  549. uint gid = get_global_id(0);
  550. uint4 X[8];
  551. uint4 tstate0, tstate1, ostate0, ostate1, tmp0, tmp1;
  552. uint4 data = (uint4)(input[4].x,input[4].y,input[4].z,gid);
  553. SHA256(&pad0,&pad1, data, (uint4)(0x80000000U,0,0,0), (uint4)(0,0,0,0), (uint4)(0,0,0,0x280));
  554. SHA256_fresh(&ostate0,&ostate1, pad0^0x5C5C5C5CU, pad1^0x5C5C5C5CU, 0x5C5C5C5CU, 0x5C5C5C5CU);
  555. SHA256_fresh(&tstate0,&tstate1, pad0^0x36363636U, pad1^0x36363636U, 0x36363636U, 0x36363636U);
  556. tmp0 = tstate0;
  557. tmp1 = tstate1;
  558. SHA256(&tstate0, &tstate1, input[0],input[1],input[2],input[3]);
  559. #pragma unroll
  560. for (uint i=0; i<4; i++)
  561. {
  562. pad0 = tstate0;
  563. pad1 = tstate1;
  564. X[i*2 ] = ostate0;
  565. X[i*2+1] = ostate1;
  566. SHA256(&pad0,&pad1, data, (uint4)(i+1,0x80000000U,0,0), (uint4)(0,0,0,0), (uint4)(0,0,0,0x4a0U));
  567. SHA256(X+i*2,X+i*2+1, pad0, pad1, (uint4)(0x80000000U, 0U, 0U, 0U), (uint4)(0U, 0U, 0U, 0x300U));
  568. }
  569. scrypt_core(X,padcache);
  570. SHA256(&tmp0,&tmp1, X[0], X[1], X[2], X[3]);
  571. SHA256(&tmp0,&tmp1, X[4], X[5], X[6], X[7]);
  572. SHA256_fixed(&tmp0,&tmp1);
  573. SHA256(&ostate0,&ostate1, tmp0, tmp1, (uint4)(0x80000000U, 0U, 0U, 0U), (uint4)(0U, 0U, 0U, 0x300U));
  574. if ((ostate1.w&0xFFFF) == 0)
  575. output[FOUND] = output[NFLAG & gid] = gid;
  576. }
  577. /*-
  578. * Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler, 2012 mtrlt
  579. * All rights reserved.
  580. *
  581. * Redistribution and use in source and binary forms, with or without
  582. * modification, are permitted provided that the following conditions
  583. * are met:
  584. * 1. Redistributions of source code must retain the above copyright
  585. * notice, this list of conditions and the following disclaimer.
  586. * 2. Redistributions in binary form must reproduce the above copyright
  587. * notice, this list of conditions and the following disclaimer in the
  588. * documentation and/or other materials provided with the distribution.
  589. *
  590. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  591. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  592. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  593. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  594. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  595. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  596. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  597. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  598. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  599. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  600. * SUCH DAMAGE.
  601. *
  602. * This file was originally written by Colin Percival as part of the Tarsnap
  603. * online backup system.
  604. */