driver-avalon.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017
  1. /*
  2. * Copyright 2013 Con Kolivas <kernel@kolivas.org>
  3. * Copyright 2012-2013 Xiangfu <xiangfu@openmobilefree.com>
  4. * Copyright 2012 Luke Dashjr
  5. * Copyright 2012 Andrew Smith
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the Free
  9. * Software Foundation; either version 3 of the License, or (at your option)
  10. * any later version. See COPYING for more details.
  11. */
  12. #include "config.h"
  13. #include <limits.h>
  14. #include <pthread.h>
  15. #include <stdio.h>
  16. #include <sys/time.h>
  17. #include <sys/types.h>
  18. #include <dirent.h>
  19. #include <unistd.h>
  20. #ifndef WIN32
  21. #include <sys/select.h>
  22. #include <termios.h>
  23. #include <sys/stat.h>
  24. #include <fcntl.h>
  25. #ifndef O_CLOEXEC
  26. #define O_CLOEXEC 0
  27. #endif
  28. #else
  29. #include "compat.h"
  30. #include <windows.h>
  31. #include <io.h>
  32. #endif
  33. #include "elist.h"
  34. #include "miner.h"
  35. #include "fpgautils.h"
  36. #include "driver-avalon.h"
  37. #include "hexdump.c"
  38. #include "util.h"
  39. static int option_offset = -1;
  40. struct avalon_info **avalon_infos;
  41. struct device_drv avalon_drv;
  42. static int avalon_init_task(struct avalon_task *at,
  43. uint8_t reset, uint8_t ff, uint8_t fan,
  44. uint8_t timeout, uint8_t asic_num,
  45. uint8_t miner_num, uint8_t nonce_elf,
  46. uint8_t gate_miner, int frequency)
  47. {
  48. uint8_t *buf;
  49. static bool first = true;
  50. if (unlikely(!at))
  51. return -1;
  52. if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0))
  53. return -1;
  54. memset(at, 0, sizeof(struct avalon_task));
  55. if (unlikely(reset)) {
  56. at->reset = 1;
  57. at->fan_eft = 1;
  58. at->timer_eft = 1;
  59. first = true;
  60. }
  61. at->flush_fifo = (ff ? 1 : 0);
  62. at->fan_eft = (fan ? 1 : 0);
  63. if (unlikely(first && !at->reset)) {
  64. at->fan_eft = 1;
  65. at->timer_eft = 1;
  66. first = false;
  67. }
  68. at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM);
  69. at->timeout_data = timeout;
  70. at->asic_num = asic_num;
  71. at->miner_num = miner_num;
  72. at->nonce_elf = nonce_elf;
  73. at->gate_miner_elf = 1;
  74. at->asic_pll = 1;
  75. if (unlikely(gate_miner)) {
  76. at-> gate_miner = 1;
  77. at->asic_pll = 0;
  78. }
  79. buf = (uint8_t *)at;
  80. buf[5] = 0x00;
  81. buf[8] = 0x74;
  82. buf[9] = 0x01;
  83. buf[10] = 0x00;
  84. buf[11] = 0x00;
  85. if (frequency == 256) {
  86. buf[6] = 0x03;
  87. buf[7] = 0x08;
  88. } else if (frequency == 270) {
  89. buf[6] = 0x73;
  90. buf[7] = 0x08;
  91. } else if (frequency == 282) {
  92. buf[6] = 0xd3;
  93. buf[7] = 0x08;
  94. } else if (frequency == 300) {
  95. buf[6] = 0x63;
  96. buf[7] = 0x09;
  97. }
  98. return 0;
  99. }
  100. static inline void avalon_create_task(struct avalon_task *at,
  101. struct work *work)
  102. {
  103. memcpy(at->midstate, work->midstate, 32);
  104. memcpy(at->data, work->data + 64, 12);
  105. }
  106. static int avalon_send_task(int fd, const struct avalon_task *at,
  107. struct cgpu_info *avalon)
  108. {
  109. size_t ret;
  110. int full;
  111. struct timespec p;
  112. uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM];
  113. size_t nr_len;
  114. struct avalon_info *info;
  115. uint64_t delay = 32000000; /* Default 32ms for B19200 */
  116. uint32_t nonce_range;
  117. int i;
  118. if (at->nonce_elf)
  119. nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num;
  120. else
  121. nr_len = AVALON_WRITE_SIZE;
  122. memcpy(buf, at, AVALON_WRITE_SIZE);
  123. if (at->nonce_elf) {
  124. nonce_range = (uint32_t)0xffffffff / at->asic_num;
  125. for (i = 0; i < at->asic_num; i++) {
  126. buf[AVALON_WRITE_SIZE + (i * 4) + 3] =
  127. (i * nonce_range & 0xff000000) >> 24;
  128. buf[AVALON_WRITE_SIZE + (i * 4) + 2] =
  129. (i * nonce_range & 0x00ff0000) >> 16;
  130. buf[AVALON_WRITE_SIZE + (i * 4) + 1] =
  131. (i * nonce_range & 0x0000ff00) >> 8;
  132. buf[AVALON_WRITE_SIZE + (i * 4) + 0] =
  133. (i * nonce_range & 0x000000ff) >> 0;
  134. }
  135. }
  136. #if defined(__BIG_ENDIAN__) || defined(MIPSEB)
  137. uint8_t tt = 0;
  138. tt = (buf[0] & 0x0f) << 4;
  139. tt |= ((buf[0] & 0x10) ? (1 << 3) : 0);
  140. tt |= ((buf[0] & 0x20) ? (1 << 2) : 0);
  141. tt |= ((buf[0] & 0x40) ? (1 << 1) : 0);
  142. tt |= ((buf[0] & 0x80) ? (1 << 0) : 0);
  143. buf[0] = tt;
  144. tt = (buf[4] & 0x0f) << 4;
  145. tt |= ((buf[4] & 0x10) ? (1 << 3) : 0);
  146. tt |= ((buf[4] & 0x20) ? (1 << 2) : 0);
  147. tt |= ((buf[4] & 0x40) ? (1 << 1) : 0);
  148. tt |= ((buf[4] & 0x80) ? (1 << 0) : 0);
  149. buf[4] = tt;
  150. #endif
  151. if (likely(avalon)) {
  152. info = avalon->device_data;
  153. delay = nr_len * 10 * 1000000000ULL;
  154. delay = delay / info->baud;
  155. }
  156. if (at->reset)
  157. nr_len = 1;
  158. if (opt_debug) {
  159. applog(LOG_DEBUG, "Avalon: Sent(%u):", (unsigned int)nr_len);
  160. hexdump((uint8_t *)buf, nr_len);
  161. }
  162. ret = write(fd, buf, nr_len);
  163. if (unlikely(ret != nr_len))
  164. return AVA_SEND_ERROR;
  165. p.tv_sec = 0;
  166. p.tv_nsec = (long)delay + 4000000;
  167. nanosleep(&p, NULL);
  168. applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %ld", p.tv_nsec);
  169. full = avalon_buffer_full(fd);
  170. applog(LOG_DEBUG, "Avalon: Sent: Buffer full: %s",
  171. ((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
  172. if (unlikely(full == AVA_BUFFER_FULL))
  173. return AVA_SEND_BUFFER_FULL;
  174. return AVA_SEND_BUFFER_EMPTY;
  175. }
  176. static void avalon_decode_nonce(struct thr_info *thr, struct cgpu_info *avalon,
  177. struct avalon_info *info, struct avalon_result *ar,
  178. struct work *work)
  179. {
  180. uint32_t nonce;
  181. info = avalon->device_data;
  182. info->matching_work[work->subid]++;
  183. nonce = htole32(ar->nonce);
  184. applog(LOG_DEBUG, "Avalon: nonce = %0x08x", nonce);
  185. submit_nonce(thr, work, nonce);
  186. }
  187. static int avalon_write(int fd, char *buf, ssize_t len)
  188. {
  189. ssize_t wrote = 0;
  190. while (len > 0) {
  191. struct timeval timeout;
  192. ssize_t ret;
  193. fd_set wd;
  194. timeout.tv_sec = 0;
  195. timeout.tv_usec = 100000;
  196. FD_ZERO(&wd);
  197. FD_SET((SOCKETTYPE)fd, &wd);
  198. ret = select(fd + 1, NULL, &wd, NULL, &timeout);
  199. if (unlikely(ret < 1)) {
  200. applog(LOG_WARNING, "Select error on avalon_write");
  201. return AVA_SEND_ERROR;
  202. }
  203. ret = write(fd, buf + wrote, len);
  204. if (unlikely(ret < 1)) {
  205. applog(LOG_WARNING, "Write error on avalon_write");
  206. return AVA_SEND_ERROR;
  207. }
  208. wrote += ret;
  209. len -= ret;
  210. }
  211. return 0;
  212. }
  213. static int avalon_read(int fd, char *buf, ssize_t len)
  214. {
  215. ssize_t aread = 0;
  216. while (len > 0) {
  217. struct timeval timeout;
  218. ssize_t ret;
  219. fd_set rd;
  220. timeout.tv_sec = 0;
  221. timeout.tv_usec = 100000;
  222. FD_ZERO(&rd);
  223. FD_SET((SOCKETTYPE)fd, &rd);
  224. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  225. if (unlikely(ret < 1)) {
  226. applog(LOG_WARNING, "Select error on avalon_read");
  227. return AVA_GETS_ERROR;
  228. }
  229. ret = read(fd, buf + aread, len);
  230. if (unlikely(ret < 1)) {
  231. applog(LOG_WARNING, "Read error on avalon_read");
  232. return AVA_GETS_ERROR;
  233. }
  234. aread += ret;
  235. len -= ret;
  236. }
  237. return 0;
  238. }
  239. /* Non blocking clearing of anything in the buffer */
  240. static void avalon_clear_readbuf(int fd)
  241. {
  242. ssize_t ret;
  243. do {
  244. struct timeval timeout;
  245. char buf[AVALON_FTDI_READSIZE];
  246. fd_set rd;
  247. timeout.tv_sec = timeout.tv_usec = 0;
  248. FD_ZERO(&rd);
  249. FD_SET((SOCKETTYPE)fd, &rd);
  250. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  251. if (ret > 0)
  252. ret = read(fd, buf, AVALON_FTDI_READSIZE);
  253. } while (ret > 0);
  254. }
  255. /* Wait until the avalon says it's ready to receive a write, or 2 seconds has
  256. * elapsed, whichever comes first. The status is updated by the ftdi device
  257. * every 40ms. Returns true if the avalon is ready. */
  258. static bool avalon_wait_write(int fd)
  259. {
  260. int i = 0;
  261. bool ret;
  262. do {
  263. ret = avalon_buffer_full(fd);
  264. if (ret)
  265. nmsleep(50);
  266. } while (ret == true && i++ < 40);
  267. return !ret;
  268. }
  269. static void avalon_idle(struct cgpu_info *avalon, int fd)
  270. {
  271. struct avalon_info *info = avalon->device_data;
  272. int i;
  273. for (i = 0; i < info->miner_count; i++) {
  274. struct avalon_task at;
  275. int ret;
  276. avalon_clear_readbuf(fd);
  277. if (unlikely(avalon_buffer_full(fd))) {
  278. applog(LOG_WARNING, "Avalon buffer full in avalon_idle after %d tasks", i);
  279. break;
  280. }
  281. avalon_init_task(&at, 0, 0, info->fan_pwm,
  282. info->timeout, info->asic_count,
  283. info->miner_count, 1, 1, info->frequency);
  284. ret = avalon_write(fd, (char *)&at, AVALON_WRITE_SIZE);
  285. if (unlikely(ret == AVA_SEND_ERROR))
  286. break;
  287. }
  288. applog(LOG_ERR, "Avalon: Going to idle mode");
  289. }
  290. static int avalon_reset(struct cgpu_info *avalon, int fd)
  291. {
  292. struct avalon_result ar;
  293. char reset = 0xad;
  294. uint8_t *buf;
  295. int ret, i = 0;
  296. struct timespec p;
  297. /* Reset once, then send command to go idle */
  298. ret = avalon_write(fd, &reset, 1);
  299. if (unlikely(ret == AVA_SEND_ERROR))
  300. return -1;
  301. /* Ignore first result as it may be corrupt with old work */
  302. avalon_clear_readbuf(fd);
  303. /* What do these sleeps do?? */
  304. p.tv_sec = 0;
  305. p.tv_nsec = AVALON_RESET_PITCH;
  306. nanosleep(&p, NULL);
  307. avalon_idle(avalon, fd);
  308. /* Reset again, then check result */
  309. ret = avalon_write(fd, &reset, 1);
  310. if (unlikely(ret == AVA_SEND_ERROR))
  311. return -1;
  312. ret = avalon_read(fd, (char *)&ar, AVALON_READ_SIZE);
  313. if (unlikely(ret == AVA_GETS_ERROR))
  314. return -1;
  315. nanosleep(&p, NULL);
  316. buf = (uint8_t *)&ar;
  317. if (buf[0] == 0xAA && buf[1] == 0x55 &&
  318. buf[2] == 0xAA && buf[3] == 0x55) {
  319. for (i = 4; i < 11; i++)
  320. if (buf[i] != 0)
  321. break;
  322. }
  323. if (i != 11) {
  324. applog(LOG_ERR, "Avalon: Reset failed! not an Avalon?"
  325. " (%d: %02x %02x %02x %02x)",
  326. i, buf[0], buf[1], buf[2], buf[3]);
  327. /* FIXME: return 1; */
  328. } else
  329. applog(LOG_WARNING, "Avalon: Reset succeeded");
  330. avalon_idle(avalon, fd);
  331. if (!avalon_wait_write(fd))
  332. applog(LOG_WARNING, "Avalon: Not ready for writes?");
  333. return 0;
  334. }
  335. static void get_options(int this_option_offset, int *baud, int *miner_count,
  336. int *asic_count, int *timeout, int *frequency)
  337. {
  338. char err_buf[BUFSIZ+1];
  339. char buf[BUFSIZ+1];
  340. char *ptr, *comma, *colon, *colon2, *colon3, *colon4;
  341. size_t max;
  342. int i, tmp;
  343. if (opt_avalon_options == NULL)
  344. buf[0] = '\0';
  345. else {
  346. ptr = opt_avalon_options;
  347. for (i = 0; i < this_option_offset; i++) {
  348. comma = strchr(ptr, ',');
  349. if (comma == NULL)
  350. break;
  351. ptr = comma + 1;
  352. }
  353. comma = strchr(ptr, ',');
  354. if (comma == NULL)
  355. max = strlen(ptr);
  356. else
  357. max = comma - ptr;
  358. if (max > BUFSIZ)
  359. max = BUFSIZ;
  360. strncpy(buf, ptr, max);
  361. buf[max] = '\0';
  362. }
  363. *baud = AVALON_IO_SPEED;
  364. *miner_count = AVALON_DEFAULT_MINER_NUM - 8;
  365. *asic_count = AVALON_DEFAULT_ASIC_NUM;
  366. *timeout = AVALON_DEFAULT_TIMEOUT;
  367. *frequency = AVALON_DEFAULT_FREQUENCY;
  368. if (!(*buf))
  369. return;
  370. colon = strchr(buf, ':');
  371. if (colon)
  372. *(colon++) = '\0';
  373. tmp = atoi(buf);
  374. switch (tmp) {
  375. case 115200:
  376. *baud = 115200;
  377. break;
  378. case 57600:
  379. *baud = 57600;
  380. break;
  381. case 38400:
  382. *baud = 38400;
  383. break;
  384. case 19200:
  385. *baud = 19200;
  386. break;
  387. default:
  388. sprintf(err_buf,
  389. "Invalid avalon-options for baud (%s) "
  390. "must be 115200, 57600, 38400 or 19200", buf);
  391. quit(1, err_buf);
  392. }
  393. if (colon && *colon) {
  394. colon2 = strchr(colon, ':');
  395. if (colon2)
  396. *(colon2++) = '\0';
  397. if (*colon) {
  398. tmp = atoi(colon);
  399. if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) {
  400. *miner_count = tmp;
  401. } else {
  402. sprintf(err_buf,
  403. "Invalid avalon-options for "
  404. "miner_count (%s) must be 1 ~ %d",
  405. colon, AVALON_DEFAULT_MINER_NUM);
  406. quit(1, err_buf);
  407. }
  408. }
  409. if (colon2 && *colon2) {
  410. colon3 = strchr(colon2, ':');
  411. if (colon3)
  412. *(colon3++) = '\0';
  413. tmp = atoi(colon2);
  414. if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM)
  415. *asic_count = tmp;
  416. else {
  417. sprintf(err_buf,
  418. "Invalid avalon-options for "
  419. "asic_count (%s) must be 1 ~ %d",
  420. colon2, AVALON_DEFAULT_ASIC_NUM);
  421. quit(1, err_buf);
  422. }
  423. if (colon3 && *colon3) {
  424. colon4 = strchr(colon3, ':');
  425. if (colon4)
  426. *(colon4++) = '\0';
  427. tmp = atoi(colon3);
  428. if (tmp > 0 && tmp <= 0xff)
  429. *timeout = tmp;
  430. else {
  431. sprintf(err_buf,
  432. "Invalid avalon-options for "
  433. "timeout (%s) must be 1 ~ %d",
  434. colon3, 0xff);
  435. quit(1, err_buf);
  436. }
  437. if (colon4 && *colon4) {
  438. tmp = atoi(colon4);
  439. switch (tmp) {
  440. case 256:
  441. case 270:
  442. case 282:
  443. case 300:
  444. *frequency = tmp;
  445. break;
  446. default:
  447. sprintf(err_buf,
  448. "Invalid avalon-options for "
  449. "frequency must be 256/270/282/300");
  450. quit(1, err_buf);
  451. }
  452. }
  453. }
  454. }
  455. }
  456. }
  457. static bool avalon_detect_one(const char *devpath)
  458. {
  459. struct avalon_info *info;
  460. int fd, ret;
  461. int baud, miner_count, asic_count, timeout, frequency = 0;
  462. struct cgpu_info *avalon;
  463. int this_option_offset = ++option_offset;
  464. get_options(this_option_offset, &baud, &miner_count, &asic_count,
  465. &timeout, &frequency);
  466. applog(LOG_DEBUG, "Avalon Detect: Attempting to open %s "
  467. "(baud=%d miner_count=%d asic_count=%d timeout=%d frequency=%d)",
  468. devpath, baud, miner_count, asic_count, timeout, frequency);
  469. fd = avalon_open2(devpath, baud, true);
  470. if (unlikely(fd == -1)) {
  471. applog(LOG_ERR, "Avalon Detect: Failed to open %s", devpath);
  472. return false;
  473. }
  474. avalon_clear_readbuf(fd);
  475. /* We have a real Avalon! */
  476. avalon = calloc(1, sizeof(struct cgpu_info));
  477. avalon->drv = &avalon_drv;
  478. avalon->device_path = strdup(devpath);
  479. avalon->device_fd = fd;
  480. avalon->threads = AVALON_MINER_THREADS;
  481. add_cgpu(avalon);
  482. avalon_infos = realloc(avalon_infos,
  483. sizeof(struct avalon_info *) *
  484. (total_devices + 1));
  485. applog(LOG_INFO, "Avalon Detect: Found at %s, mark as %d",
  486. devpath, avalon->device_id);
  487. avalon_infos[avalon->device_id] = calloc(sizeof(struct avalon_info), 1);
  488. if (unlikely(!(avalon_infos[avalon->device_id])))
  489. quit(1, "Failed to calloc avalon_infos");
  490. avalon->device_data = avalon_infos[avalon->device_id];
  491. info = avalon->device_data;
  492. info->baud = baud;
  493. info->miner_count = miner_count;
  494. info->asic_count = asic_count;
  495. info->timeout = timeout;
  496. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
  497. info->temp_max = 0;
  498. /* This is for check the temp/fan every 3~4s */
  499. info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1;
  500. if (info->temp_history_count <= 0)
  501. info->temp_history_count = 1;
  502. info->temp_history_index = 0;
  503. info->temp_sum = 0;
  504. info->temp_old = 0;
  505. info->frequency = frequency;
  506. ret = avalon_reset(avalon, fd);
  507. if (ret) {
  508. ; /* FIXME: I think IT IS avalon and wait on reset;
  509. * avalon_close(fd);
  510. * return false; */
  511. }
  512. return true;
  513. }
  514. static inline void avalon_detect()
  515. {
  516. serial_detect(&avalon_drv, avalon_detect_one);
  517. }
  518. static void avalon_init(struct cgpu_info *avalon)
  519. {
  520. applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path);
  521. }
  522. static struct work *avalon_valid_result(struct cgpu_info *avalon, struct avalon_result *ar)
  523. {
  524. return find_queued_work_bymidstate(avalon, (char *)ar->midstate, 32,
  525. (char *)ar->data, 64, 12);
  526. }
  527. static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info,
  528. struct avalon_result *ar);
  529. static void avalon_parse_results(struct cgpu_info *avalon, struct avalon_info *info,
  530. struct thr_info *thr, char *buf, int *offset)
  531. {
  532. int i, spare = *offset - AVALON_READ_SIZE;
  533. bool found = false;
  534. for (i = 0; i <= spare; i++) {
  535. struct avalon_result *ar;
  536. struct work *work;
  537. ar = (struct avalon_result *)&buf[i];
  538. work = avalon_valid_result(avalon, ar);
  539. if (work) {
  540. bool gettemp = false;
  541. found = true;
  542. mutex_lock(&info->lock);
  543. if (!avalon->results++ % info->miner_count) {
  544. gettemp = true;
  545. avalon->results = 0;
  546. }
  547. info->nonces++;
  548. mutex_unlock(&info->lock);
  549. avalon_decode_nonce(thr, avalon, info, ar, work);
  550. if (gettemp)
  551. avalon_update_temps(avalon, info, ar);
  552. break;
  553. }
  554. }
  555. if (!found)
  556. spare = *offset - AVALON_READ_SIZE;
  557. else
  558. spare = AVALON_READ_SIZE + i;
  559. applog(LOG_WARNING, "Avalon: Discarding %d bytes from buffer", spare);
  560. *offset -= spare;
  561. memmove(buf, buf + spare, *offset);
  562. if (!found) {
  563. mutex_lock(&info->lock);
  564. info->no_matching_work++;
  565. mutex_unlock(&info->lock);
  566. }
  567. }
  568. static void *avalon_get_results(void *userdata)
  569. {
  570. struct cgpu_info *avalon = (struct cgpu_info *)userdata;
  571. struct avalon_info *info = avalon->device_data;
  572. const int rsize = AVALON_FTDI_READSIZE;
  573. char readbuf[AVALON_READBUF_SIZE];
  574. struct thr_info *thr = info->thr;
  575. int fd = avalon->device_fd;
  576. int offset = 0;
  577. pthread_detach(pthread_self());
  578. RenameThread("ava_getres");
  579. while (42) {
  580. struct timeval timeout;
  581. char buf[rsize];
  582. ssize_t ret;
  583. fd_set rd;
  584. if (unlikely(offset + rsize >= AVALON_READBUF_SIZE)) {
  585. /* This should never happen */
  586. applog(LOG_ERR, "Avalon readbuf overflow, resetting buffer");
  587. offset = 0;
  588. }
  589. timeout.tv_sec = 0;
  590. timeout.tv_usec = AVALON_READ_TIMEOUT * 1000;
  591. FD_ZERO(&rd);
  592. FD_SET((SOCKETTYPE)fd, &rd);
  593. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  594. if (ret < 1) {
  595. if (unlikely(ret < 0))
  596. applog(LOG_WARNING, "Select error in avalon_get_results");
  597. continue;
  598. }
  599. ret = read(fd, buf, AVALON_FTDI_READSIZE);
  600. if (unlikely(ret < 1)) {
  601. if (unlikely(ret < 0))
  602. applog(LOG_WARNING, "Read error in avalon_get_results");
  603. continue;
  604. }
  605. if (opt_debug) {
  606. applog(LOG_DEBUG, "Avalon: get:");
  607. hexdump((uint8_t *)buf, ret);
  608. }
  609. memcpy(&readbuf[offset], buf, ret);
  610. offset += ret;
  611. while (offset >= (int)AVALON_READ_SIZE)
  612. avalon_parse_results(avalon, info, thr, readbuf, &offset);
  613. }
  614. return NULL;
  615. }
  616. static bool avalon_prepare(struct thr_info *thr)
  617. {
  618. struct cgpu_info *avalon = thr->cgpu;
  619. struct avalon_info *info = avalon->device_data;
  620. struct timeval now;
  621. free(avalon->works);
  622. avalon->works = calloc(info->miner_count * sizeof(struct work *),
  623. AVALON_ARRAY_SIZE);
  624. if (!avalon->works)
  625. quit(1, "Failed to calloc avalon works in avalon_prepare");
  626. info->thr = thr;
  627. mutex_init(&info->lock);
  628. avalon_clear_readbuf(avalon->device_fd);
  629. if (pthread_create(&info->read_thr, NULL, avalon_get_results, (void *)avalon))
  630. quit(1, "Failed to create avalon read_thr");
  631. avalon_init(avalon);
  632. cgtime(&now);
  633. get_datestamp(avalon->init, &now);
  634. return true;
  635. }
  636. static void avalon_free_work(struct thr_info *thr)
  637. {
  638. struct cgpu_info *avalon;
  639. struct avalon_info *info;
  640. struct work **works;
  641. int i;
  642. avalon = thr->cgpu;
  643. avalon->queued = 0;
  644. if (unlikely(!avalon->works))
  645. return;
  646. works = avalon->works;
  647. info = avalon->device_data;
  648. for (i = 0; i < info->miner_count * 4; i++) {
  649. if (works[i]) {
  650. work_completed(avalon, works[i]);
  651. works[i] = NULL;
  652. }
  653. }
  654. }
  655. static void do_avalon_close(struct thr_info *thr)
  656. {
  657. struct cgpu_info *avalon = thr->cgpu;
  658. struct avalon_info *info = avalon->device_data;
  659. avalon_free_work(thr);
  660. avalon_reset(avalon, avalon->device_fd);
  661. avalon_close(avalon->device_fd);
  662. avalon->device_fd = -1;
  663. info->no_matching_work = 0;
  664. }
  665. static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg)
  666. {
  667. info->fan0 = ar->fan0 * AVALON_FAN_FACTOR;
  668. info->fan1 = ar->fan1 * AVALON_FAN_FACTOR;
  669. info->fan2 = ar->fan2 * AVALON_FAN_FACTOR;
  670. info->temp0 = ar->temp0;
  671. info->temp1 = ar->temp1;
  672. info->temp2 = ar->temp2;
  673. if (ar->temp0 & 0x80) {
  674. ar->temp0 &= 0x7f;
  675. info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1);
  676. }
  677. if (ar->temp1 & 0x80) {
  678. ar->temp1 &= 0x7f;
  679. info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1);
  680. }
  681. if (ar->temp2 & 0x80) {
  682. ar->temp2 &= 0x7f;
  683. info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1);
  684. }
  685. *temp_avg = info->temp2 > info->temp1 ? info->temp2 : info->temp1;
  686. if (info->temp0 > info->temp_max)
  687. info->temp_max = info->temp0;
  688. if (info->temp1 > info->temp_max)
  689. info->temp_max = info->temp1;
  690. if (info->temp2 > info->temp_max)
  691. info->temp_max = info->temp2;
  692. }
  693. static inline void adjust_fan(struct avalon_info *info)
  694. {
  695. int temp_new;
  696. temp_new = info->temp_sum / info->temp_history_count;
  697. if (temp_new < 35) {
  698. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
  699. info->temp_old = temp_new;
  700. } else if (temp_new > 55) {
  701. info->fan_pwm = AVALON_DEFAULT_FAN_MAX_PWM;
  702. info->temp_old = temp_new;
  703. } else if (abs(temp_new - info->temp_old) >= 2) {
  704. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM + (temp_new - 35) * 6.4;
  705. info->temp_old = temp_new;
  706. }
  707. }
  708. static void avalon_update_temps(struct cgpu_info *avalon, struct avalon_info *info,
  709. struct avalon_result *ar)
  710. {
  711. record_temp_fan(info, ar, &(avalon->temp));
  712. applog(LOG_INFO,
  713. "Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t"
  714. "Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC",
  715. info->fan0, info->fan1, info->fan2,
  716. info->temp0, info->temp1, info->temp2, info->temp_max);
  717. info->temp_history_index++;
  718. info->temp_sum += avalon->temp;
  719. applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d",
  720. info->temp_history_index, info->temp_history_count, info->temp_old);
  721. if (info->temp_history_index == info->temp_history_count) {
  722. adjust_fan(info);
  723. info->temp_history_index = 0;
  724. info->temp_sum = 0;
  725. }
  726. }
  727. /* We use a replacement algorithm to only remove references to work done from
  728. * the buffer when we need the extra space for new work. */
  729. static bool avalon_fill(struct cgpu_info *avalon)
  730. {
  731. int subid, slot, mc = avalon_infos[avalon->device_id]->miner_count;
  732. struct work *work;
  733. if (avalon->queued >= mc)
  734. return true;
  735. work = get_queued(avalon);
  736. if (unlikely(!work))
  737. return false;
  738. subid = avalon->queued++;
  739. work->subid = subid;
  740. slot = avalon->work_array * mc + subid;
  741. if (likely(avalon->works[slot]))
  742. work_completed(avalon, avalon->works[slot]);
  743. avalon->works[slot] = work;
  744. if (avalon->queued >= mc)
  745. return true;
  746. return false;
  747. }
  748. static void avalon_rotate_array(struct cgpu_info *avalon)
  749. {
  750. avalon->queued = 0;
  751. if (++avalon->work_array >= AVALON_ARRAY_SIZE)
  752. avalon->work_array = 0;
  753. }
  754. static int64_t avalon_scanhash(struct thr_info *thr)
  755. {
  756. struct cgpu_info *avalon;
  757. struct work **works;
  758. int fd, ret = AVA_GETS_OK, full;
  759. struct avalon_info *info;
  760. struct avalon_task at;
  761. int i;
  762. int avalon_get_work_count;
  763. int start_count, end_count;
  764. struct timeval tv_start, elapsed;
  765. int64_t hash_count;
  766. static int first_try = 0;
  767. avalon = thr->cgpu;
  768. works = avalon->works;
  769. info = avalon->device_data;
  770. avalon_get_work_count = info->miner_count;
  771. fd = avalon->device_fd;
  772. #ifndef WIN32
  773. tcflush(fd, TCOFLUSH);
  774. #endif
  775. start_count = avalon->work_array * avalon_get_work_count;
  776. end_count = start_count + avalon_get_work_count;
  777. i = start_count;
  778. while (true) {
  779. avalon_init_task(&at, 0, 0, info->fan_pwm,
  780. info->timeout, info->asic_count,
  781. info->miner_count, 1, 0, info->frequency);
  782. avalon_create_task(&at, works[i]);
  783. ret = avalon_send_task(fd, &at, avalon);
  784. if (unlikely(ret == AVA_SEND_ERROR ||
  785. (ret == AVA_SEND_BUFFER_EMPTY &&
  786. (i + 1 == end_count) &&
  787. first_try))) {
  788. applog(LOG_ERR, "AVA%i: Comms error(buffer)",
  789. avalon->device_id);
  790. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  791. avalon_reset(avalon, fd);
  792. first_try = 0;
  793. return 0; /* This should never happen */
  794. }
  795. if (ret == AVA_SEND_BUFFER_EMPTY && (i + 1 == end_count)) {
  796. first_try = 1;
  797. avalon_rotate_array(avalon);
  798. return 0xffffffff;
  799. }
  800. works[i]->blk.nonce = 0xffffffff;
  801. if (ret == AVA_SEND_BUFFER_FULL)
  802. break;
  803. i++;
  804. }
  805. if (unlikely(first_try))
  806. first_try = 0;
  807. elapsed.tv_sec = elapsed.tv_usec = 0;
  808. cgtime(&tv_start);
  809. while (true) {
  810. full = avalon_buffer_full(fd);
  811. applog(LOG_DEBUG, "Avalon: Buffer full: %s",
  812. ((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
  813. if (unlikely(full == AVA_BUFFER_EMPTY))
  814. break;
  815. nmsleep(40);
  816. }
  817. mutex_lock(&info->lock);
  818. hash_count = 0xffffffffull * (uint64_t)info->nonces;
  819. info->nonces = 0;
  820. mutex_unlock(&info->lock);
  821. avalon_rotate_array(avalon);
  822. /* This hashmeter is just a utility counter based on returned shares */
  823. return hash_count;
  824. }
  825. static struct api_data *avalon_api_stats(struct cgpu_info *cgpu)
  826. {
  827. struct api_data *root = NULL;
  828. struct avalon_info *info = cgpu->device_data;
  829. int i;
  830. root = api_add_int(root, "baud", &(info->baud), false);
  831. root = api_add_int(root, "miner_count", &(info->miner_count),false);
  832. root = api_add_int(root, "asic_count", &(info->asic_count), false);
  833. root = api_add_int(root, "timeout", &(info->timeout), false);
  834. root = api_add_int(root, "frequency", &(info->frequency), false);
  835. root = api_add_int(root, "fan1", &(info->fan0), false);
  836. root = api_add_int(root, "fan2", &(info->fan1), false);
  837. root = api_add_int(root, "fan3", &(info->fan2), false);
  838. root = api_add_int(root, "temp1", &(info->temp0), false);
  839. root = api_add_int(root, "temp2", &(info->temp1), false);
  840. root = api_add_int(root, "temp3", &(info->temp2), false);
  841. root = api_add_int(root, "temp_max", &(info->temp_max), false);
  842. root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false);
  843. for (i = 0; i < info->miner_count; i++) {
  844. char mcw[24];
  845. sprintf(mcw, "match_work_count%d", i + 1);
  846. root = api_add_int(root, mcw, &(info->matching_work[i]), false);
  847. }
  848. return root;
  849. }
  850. static void avalon_shutdown(struct thr_info *thr)
  851. {
  852. do_avalon_close(thr);
  853. }
  854. struct device_drv avalon_drv = {
  855. .drv_id = DRIVER_AVALON,
  856. .dname = "avalon",
  857. .name = "AVA",
  858. .drv_detect = avalon_detect,
  859. .thread_prepare = avalon_prepare,
  860. .hash_work = hash_queued_work,
  861. .queue_full = avalon_fill,
  862. .scanwork = avalon_scanhash,
  863. .get_api_stats = avalon_api_stats,
  864. .reinit_device = avalon_init,
  865. .thread_shutdown = avalon_shutdown,
  866. };