driver-icarus.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. /*
  2. * Copyright 2012-2013 Andrew Smith
  3. * Copyright 2012 Xiangfu <xiangfu@openmobilefree.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the Free
  7. * Software Foundation; either version 3 of the License, or (at your option)
  8. * any later version. See COPYING for more details.
  9. */
  10. /*
  11. * Those code should be works fine with V2 and V3 bitstream of Icarus.
  12. * Operation:
  13. * No detection implement.
  14. * Input: 64B = 32B midstate + 20B fill bytes + last 12 bytes of block head.
  15. * Return: send back 32bits immediately when Icarus found a valid nonce.
  16. * no query protocol implemented here, if no data send back in ~11.3
  17. * seconds (full cover time on 32bit nonce range by 380MH/s speed)
  18. * just send another work.
  19. * Notice:
  20. * 1. Icarus will start calculate when you push a work to them, even they
  21. * are busy.
  22. * 2. The 2 FPGAs on Icarus will distribute the job, one will calculate the
  23. * 0 ~ 7FFFFFFF, another one will cover the 80000000 ~ FFFFFFFF.
  24. * 3. It's possible for 2 FPGAs both find valid nonce in the meantime, the 2
  25. * valid nonce will all be send back.
  26. * 4. Icarus will stop work when: a valid nonce has been found or 32 bits
  27. * nonce range is completely calculated.
  28. */
  29. #include <float.h>
  30. #include <limits.h>
  31. #include <pthread.h>
  32. #include <stdint.h>
  33. #include <stdio.h>
  34. #include <strings.h>
  35. #include <sys/time.h>
  36. #include <unistd.h>
  37. #include "config.h"
  38. #ifdef WIN32
  39. #include <windows.h>
  40. #endif
  41. #include "compat.h"
  42. #include "miner.h"
  43. #include "usbutils.h"
  44. // The serial I/O speed - Linux uses a define 'B115200' in bits/termios.h
  45. #define ICARUS_IO_SPEED 115200
  46. // The size of a successful nonce read
  47. #define ICARUS_READ_SIZE 4
  48. // Ensure the sizes are correct for the Serial read
  49. #if (ICARUS_READ_SIZE != 4)
  50. #error ICARUS_READ_SIZE must be 4
  51. #endif
  52. #define ASSERT1(condition) __maybe_unused static char sizeof_uint32_t_must_be_4[(condition)?1:-1]
  53. ASSERT1(sizeof(uint32_t) == 4);
  54. // TODO: USB? Different calculation? - see usbstats to work it out e.g. 1/2 of normal send time
  55. // or even use that number? 1/2
  56. // #define ICARUS_READ_TIME(baud) ((double)ICARUS_READ_SIZE * (double)8.0 / (double)(baud))
  57. // maybe 1ms?
  58. #define ICARUS_READ_TIME(baud) (0.001)
  59. // USB ms timeout to wait
  60. #define ICARUS_WAIT_TIMEOUT 100
  61. // In timing mode: Default starting value until an estimate can be obtained
  62. // 5000 ms allows for up to a ~840MH/s device
  63. #define ICARUS_READ_COUNT_TIMING 5000
  64. #define ICARUS_READ_COUNT_MIN ICARUS_WAIT_TIMEOUT
  65. #define SECTOMS(s) ((int)((s) * 1000))
  66. // How many ms below the expected completion time to abort work
  67. // extra in case the last read is delayed
  68. #define ICARUS_READ_REDUCE ((int)(ICARUS_WAIT_TIMEOUT * 1.5))
  69. // For a standard Icarus REV3 (to 5 places)
  70. // Since this rounds up a the last digit - it is a slight overestimate
  71. // Thus the hash rate will be a VERY slight underestimate
  72. // (by a lot less than the displayed accuracy)
  73. // Minor inaccuracy of these numbers doesn't affect the work done,
  74. // only the displayed MH/s
  75. #define ICARUS_REV3_HASH_TIME 0.0000000026316
  76. #define LANCELOT_HASH_TIME 0.0000000025000
  77. #define ASICMINERUSB_HASH_TIME 0.0000000029761
  78. #define NANOSEC 1000000000.0
  79. // Icarus Rev3 doesn't send a completion message when it finishes
  80. // the full nonce range, so to avoid being idle we must abort the
  81. // work (by starting a new work item) shortly before it finishes
  82. //
  83. // Thus we need to estimate 2 things:
  84. // 1) How many hashes were done if the work was aborted
  85. // 2) How high can the timeout be before the Icarus is idle,
  86. // to minimise the number of work items started
  87. // We set 2) to 'the calculated estimate' - ICARUS_READ_REDUCE
  88. // to ensure the estimate ends before idle
  89. //
  90. // The simple calculation used is:
  91. // Tn = Total time in seconds to calculate n hashes
  92. // Hs = seconds per hash
  93. // Xn = number of hashes
  94. // W = code/usb overhead per work
  95. //
  96. // Rough but reasonable estimate:
  97. // Tn = Hs * Xn + W (of the form y = mx + b)
  98. //
  99. // Thus:
  100. // Line of best fit (using least squares)
  101. //
  102. // Hs = (n*Sum(XiTi)-Sum(Xi)*Sum(Ti))/(n*Sum(Xi^2)-Sum(Xi)^2)
  103. // W = Sum(Ti)/n - (Hs*Sum(Xi))/n
  104. //
  105. // N.B. W is less when aborting work since we aren't waiting for the reply
  106. // to be transferred back (ICARUS_READ_TIME)
  107. // Calculating the hashes aborted at n seconds is thus just n/Hs
  108. // (though this is still a slight overestimate due to code delays)
  109. //
  110. // Both below must be exceeded to complete a set of data
  111. // Minimum how long after the first, the last data point must be
  112. #define HISTORY_SEC 60
  113. // Minimum how many points a single ICARUS_HISTORY should have
  114. #define MIN_DATA_COUNT 5
  115. // The value MIN_DATA_COUNT used is doubled each history until it exceeds:
  116. #define MAX_MIN_DATA_COUNT 100
  117. static struct timeval history_sec = { HISTORY_SEC, 0 };
  118. // Store the last INFO_HISTORY data sets
  119. // [0] = current data, not yet ready to be included as an estimate
  120. // Each new data set throws the last old set off the end thus
  121. // keeping a ongoing average of recent data
  122. #define INFO_HISTORY 10
  123. struct ICARUS_HISTORY {
  124. struct timeval finish;
  125. double sumXiTi;
  126. double sumXi;
  127. double sumTi;
  128. double sumXi2;
  129. uint32_t values;
  130. uint32_t hash_count_min;
  131. uint32_t hash_count_max;
  132. };
  133. enum timing_mode { MODE_DEFAULT, MODE_SHORT, MODE_LONG, MODE_VALUE };
  134. static const char *MODE_DEFAULT_STR = "default";
  135. static const char *MODE_SHORT_STR = "short";
  136. static const char *MODE_LONG_STR = "long";
  137. static const char *MODE_VALUE_STR = "value";
  138. static const char *MODE_UNKNOWN_STR = "unknown";
  139. struct ICARUS_INFO {
  140. // time to calculate the golden_ob
  141. uint64_t golden_hashes;
  142. struct timeval golden_tv;
  143. struct ICARUS_HISTORY history[INFO_HISTORY+1];
  144. uint32_t min_data_count;
  145. // seconds per Hash
  146. double Hs;
  147. // ms til we abort
  148. int read_time;
  149. enum timing_mode timing_mode;
  150. bool do_icarus_timing;
  151. double fullnonce;
  152. int count;
  153. double W;
  154. uint32_t values;
  155. uint64_t hash_count_range;
  156. // Determine the cost of history processing
  157. // (which will only affect W)
  158. uint64_t history_count;
  159. struct timeval history_time;
  160. // icarus-options
  161. int baud;
  162. int work_division;
  163. int fpga_count;
  164. uint32_t nonce_mask;
  165. };
  166. #define END_CONDITION 0x0000ffff
  167. // One for each possible device
  168. static struct ICARUS_INFO **icarus_info;
  169. // Looking for options in --icarus-timing and --icarus-options:
  170. //
  171. // Code increments this each time we start to look at a device
  172. // However, this means that if other devices are checked by
  173. // the Icarus code (e.g. Avalon only as at 20130517)
  174. // they will count in the option offset
  175. //
  176. // This, however, is deterministic so that's OK
  177. //
  178. // If we were to increment after successfully finding an Icarus
  179. // that would be random since an Icarus may fail and thus we'd
  180. // not be able to predict the option order
  181. //
  182. // Devices are checked in the order libusb finds them which is ?
  183. //
  184. static int option_offset = -1;
  185. struct device_drv icarus_drv;
  186. static void icarus_initialise(struct cgpu_info *icarus, int baud)
  187. {
  188. if (icarus->usbinfo.nodev)
  189. return;
  190. if (baud) {
  191. }
  192. }
  193. static void rev(unsigned char *s, size_t l)
  194. {
  195. size_t i, j;
  196. unsigned char t;
  197. for (i = 0, j = l - 1; i < j; i++, j--) {
  198. t = s[i];
  199. s[i] = s[j];
  200. s[j] = t;
  201. }
  202. }
  203. #define ICA_NONCE_ERROR -1
  204. #define ICA_NONCE_OK 0
  205. #define ICA_NONCE_RESTART 1
  206. #define ICA_NONCE_TIMEOUT 2
  207. static int icarus_get_nonce(struct cgpu_info *icarus, unsigned char *buf, struct timeval *tv_start, struct timeval *tv_finish, struct thr_info *thr, int read_time)
  208. {
  209. struct timeval read_start, read_finish;
  210. int err, amt;
  211. int rc = 0;
  212. int read_amount = ICARUS_READ_SIZE;
  213. bool first = true;
  214. cgtime(tv_start);
  215. while (true) {
  216. cgtime(&read_start);
  217. err = usb_read_timeout(icarus, (char *)buf, read_amount, &amt, ICARUS_WAIT_TIMEOUT, C_GETRESULTS);
  218. cgtime(&read_finish);
  219. if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) {
  220. applog(LOG_ERR, "%s%i: Comms error", icarus->drv->name, icarus->device_id);
  221. dev_error(icarus, REASON_DEV_COMMS_ERROR);
  222. return ICA_NONCE_ERROR;
  223. }
  224. if (first)
  225. copy_time(tv_finish, &read_finish);
  226. // TODO: test if there is more data? to read a 2nd nonce?
  227. if (amt >= ICARUS_READ_SIZE)
  228. return ICA_NONCE_OK;
  229. if (amt > 0) {
  230. buf += amt;
  231. read_amount -= amt;
  232. first = false;
  233. continue;
  234. }
  235. rc += SECTOMS(tdiff(&read_finish, &read_start));
  236. if (rc >= read_time) {
  237. if (opt_debug) {
  238. applog(LOG_DEBUG,
  239. "Icarus Read: No data in %d ms", rc);
  240. }
  241. return ICA_NONCE_TIMEOUT;
  242. }
  243. if (thr && thr->work_restart) {
  244. if (opt_debug) {
  245. applog(LOG_DEBUG,
  246. "Icarus Read: Work restart at %d ms", rc);
  247. }
  248. return ICA_NONCE_RESTART;
  249. }
  250. }
  251. }
  252. static const char *timing_mode_str(enum timing_mode timing_mode)
  253. {
  254. switch(timing_mode) {
  255. case MODE_DEFAULT:
  256. return MODE_DEFAULT_STR;
  257. case MODE_SHORT:
  258. return MODE_SHORT_STR;
  259. case MODE_LONG:
  260. return MODE_LONG_STR;
  261. case MODE_VALUE:
  262. return MODE_VALUE_STR;
  263. default:
  264. return MODE_UNKNOWN_STR;
  265. }
  266. }
  267. static void set_timing_mode(int this_option_offset, struct cgpu_info *icarus)
  268. {
  269. struct ICARUS_INFO *info = icarus_info[icarus->device_id];
  270. double Hs;
  271. char buf[BUFSIZ+1];
  272. char *ptr, *comma, *eq;
  273. size_t max;
  274. int i;
  275. if (opt_icarus_timing == NULL)
  276. buf[0] = '\0';
  277. else {
  278. ptr = opt_icarus_timing;
  279. for (i = 0; i < this_option_offset; i++) {
  280. comma = strchr(ptr, ',');
  281. if (comma == NULL)
  282. break;
  283. ptr = comma + 1;
  284. }
  285. comma = strchr(ptr, ',');
  286. if (comma == NULL)
  287. max = strlen(ptr);
  288. else
  289. max = comma - ptr;
  290. if (max > BUFSIZ)
  291. max = BUFSIZ;
  292. strncpy(buf, ptr, max);
  293. buf[max] = '\0';
  294. }
  295. info->Hs = 0;
  296. info->read_time = 0;
  297. if (strcasecmp(buf, MODE_SHORT_STR) == 0) {
  298. info->Hs = ICARUS_REV3_HASH_TIME;
  299. info->read_time = ICARUS_READ_COUNT_TIMING;
  300. info->timing_mode = MODE_SHORT;
  301. info->do_icarus_timing = true;
  302. } else if (strcasecmp(buf, MODE_LONG_STR) == 0) {
  303. info->Hs = ICARUS_REV3_HASH_TIME;
  304. info->read_time = ICARUS_READ_COUNT_TIMING;
  305. info->timing_mode = MODE_LONG;
  306. info->do_icarus_timing = true;
  307. } else if ((Hs = atof(buf)) != 0) {
  308. info->Hs = Hs / NANOSEC;
  309. info->fullnonce = info->Hs * (((double)0xffffffff) + 1);
  310. if ((eq = strchr(buf, '=')) != NULL)
  311. info->read_time = atoi(eq+1) * ICARUS_WAIT_TIMEOUT;
  312. if (info->read_time < ICARUS_READ_COUNT_MIN)
  313. info->read_time = SECTOMS(info->fullnonce) - ICARUS_READ_REDUCE;
  314. if (unlikely(info->read_time < ICARUS_READ_COUNT_MIN))
  315. info->read_time = ICARUS_READ_COUNT_MIN;
  316. info->timing_mode = MODE_VALUE;
  317. info->do_icarus_timing = false;
  318. } else {
  319. // Anything else in buf just uses DEFAULT mode
  320. info->Hs = ICARUS_REV3_HASH_TIME;
  321. info->fullnonce = info->Hs * (((double)0xffffffff) + 1);
  322. if ((eq = strchr(buf, '=')) != NULL)
  323. info->read_time = atoi(eq+1) * ICARUS_WAIT_TIMEOUT;
  324. if (info->read_time < ICARUS_READ_COUNT_MIN)
  325. info->read_time = SECTOMS(info->fullnonce) - ICARUS_READ_REDUCE;
  326. if (unlikely(info->read_time < ICARUS_READ_COUNT_MIN))
  327. info->read_time = ICARUS_READ_COUNT_MIN;
  328. info->timing_mode = MODE_DEFAULT;
  329. info->do_icarus_timing = false;
  330. }
  331. info->min_data_count = MIN_DATA_COUNT;
  332. applog(LOG_DEBUG, "Icarus: Init: %d mode=%s read_time=%dms Hs=%e",
  333. icarus->device_id, timing_mode_str(info->timing_mode), info->read_time, info->Hs);
  334. }
  335. static uint32_t mask(int work_division)
  336. {
  337. char err_buf[BUFSIZ+1];
  338. uint32_t nonce_mask = 0x7fffffff;
  339. // yes we can calculate these, but this way it's easy to see what they are
  340. switch (work_division) {
  341. case 1:
  342. nonce_mask = 0xffffffff;
  343. break;
  344. case 2:
  345. nonce_mask = 0x7fffffff;
  346. break;
  347. case 4:
  348. nonce_mask = 0x3fffffff;
  349. break;
  350. case 8:
  351. nonce_mask = 0x1fffffff;
  352. break;
  353. default:
  354. sprintf(err_buf, "Invalid2 icarus-options for work_division (%d) must be 1, 2, 4 or 8", work_division);
  355. quit(1, err_buf);
  356. }
  357. return nonce_mask;
  358. }
  359. static void get_options(int this_option_offset, int *baud, int *work_division, int *fpga_count)
  360. {
  361. char err_buf[BUFSIZ+1];
  362. char buf[BUFSIZ+1];
  363. char *ptr, *comma, *colon, *colon2;
  364. size_t max;
  365. int i, tmp;
  366. if (opt_icarus_options == NULL)
  367. buf[0] = '\0';
  368. else {
  369. ptr = opt_icarus_options;
  370. for (i = 0; i < this_option_offset; i++) {
  371. comma = strchr(ptr, ',');
  372. if (comma == NULL)
  373. break;
  374. ptr = comma + 1;
  375. }
  376. comma = strchr(ptr, ',');
  377. if (comma == NULL)
  378. max = strlen(ptr);
  379. else
  380. max = comma - ptr;
  381. if (max > BUFSIZ)
  382. max = BUFSIZ;
  383. strncpy(buf, ptr, max);
  384. buf[max] = '\0';
  385. }
  386. *baud = ICARUS_IO_SPEED;
  387. *work_division = 2;
  388. *fpga_count = 2;
  389. if (*buf) {
  390. colon = strchr(buf, ':');
  391. if (colon)
  392. *(colon++) = '\0';
  393. if (*buf) {
  394. tmp = atoi(buf);
  395. switch (tmp) {
  396. case 115200:
  397. *baud = 115200;
  398. break;
  399. case 57600:
  400. *baud = 57600;
  401. break;
  402. default:
  403. sprintf(err_buf, "Invalid icarus-options for baud (%s) must be 115200 or 57600", buf);
  404. quit(1, err_buf);
  405. }
  406. }
  407. if (colon && *colon) {
  408. colon2 = strchr(colon, ':');
  409. if (colon2)
  410. *(colon2++) = '\0';
  411. if (*colon) {
  412. tmp = atoi(colon);
  413. if (tmp == 1 || tmp == 2 || tmp == 4 || tmp == 8) {
  414. *work_division = tmp;
  415. *fpga_count = tmp; // default to the same
  416. } else {
  417. sprintf(err_buf, "Invalid icarus-options for work_division (%s) must be 1, 2, 4 or 8", colon);
  418. quit(1, err_buf);
  419. }
  420. }
  421. if (colon2 && *colon2) {
  422. tmp = atoi(colon2);
  423. if (tmp > 0 && tmp <= *work_division)
  424. *fpga_count = tmp;
  425. else {
  426. sprintf(err_buf, "Invalid icarus-options for fpga_count (%s) must be >0 and <=work_division (%d)", colon2, *work_division);
  427. quit(1, err_buf);
  428. }
  429. }
  430. }
  431. }
  432. }
  433. static bool icarus_detect_one(struct libusb_device *dev, struct usb_find_devices *found)
  434. {
  435. int this_option_offset = ++option_offset;
  436. char devpath[20];
  437. struct ICARUS_INFO *info;
  438. struct timeval tv_start, tv_finish;
  439. // Block 171874 nonce = (0xa2870100) = 0x000187a2
  440. // N.B. golden_ob MUST take less time to calculate
  441. // than the timeout set in icarus_open()
  442. // This one takes ~0.53ms on Rev3 Icarus
  443. const char golden_ob[] =
  444. "4679ba4ec99876bf4bfe086082b40025"
  445. "4df6c356451471139a3afa71e48f544a"
  446. "00000000000000000000000000000000"
  447. "0000000087320b1a1426674f2fa722ce";
  448. const char golden_nonce[] = "000187a2";
  449. const uint32_t golden_nonce_val = 0x000187a2;
  450. unsigned char ob_bin[64], nonce_bin[ICARUS_READ_SIZE];
  451. char *nonce_hex;
  452. int baud, work_division, fpga_count;
  453. struct cgpu_info *icarus;
  454. int ret, err, amount, tries;
  455. get_options(this_option_offset, &baud, &work_division, &fpga_count);
  456. icarus = calloc(1, sizeof(struct cgpu_info));
  457. if (unlikely(!icarus))
  458. quit(1, "Failed to calloc icarus in icarus_detect_one");
  459. icarus->drv = &icarus_drv;
  460. icarus->deven = DEV_ENABLED;
  461. icarus->threads = 1;
  462. if (!usb_init(icarus, dev, found))
  463. goto shin;
  464. // TODO: set options based on ident if options not supplied
  465. // add a flag to say options were set by parameters
  466. sprintf(devpath, "%d:%d",
  467. (int)(icarus->usbinfo.bus_number),
  468. (int)(icarus->usbinfo.device_address));
  469. icarus->device_path = strdup(devpath);
  470. hex2bin(ob_bin, golden_ob, sizeof(ob_bin));
  471. tries = 0;
  472. while (++tries) {
  473. icarus_initialise(icarus, baud);
  474. err = usb_write(icarus, (char *)ob_bin, sizeof(ob_bin), &amount, C_SENDTESTWORK);
  475. if (err == LIBUSB_SUCCESS && amount == sizeof(ob_bin))
  476. break;
  477. if (tries > 2)
  478. goto unshin;
  479. }
  480. memset(nonce_bin, 0, sizeof(nonce_bin));
  481. ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, NULL, 1);
  482. if (ret != ICA_NONCE_OK)
  483. goto unshin;
  484. nonce_hex = bin2hex(nonce_bin, sizeof(nonce_bin));
  485. if (strncmp(nonce_hex, golden_nonce, 8)) {
  486. applog(LOG_ERR,
  487. "Icarus Detect: "
  488. "Test failed at %s: get %s, should: %s",
  489. devpath, nonce_hex, golden_nonce);
  490. free(nonce_hex);
  491. goto unshin;
  492. }
  493. applog(LOG_DEBUG,
  494. "Icarus Detect: "
  495. "Test succeeded at %s: got %s",
  496. devpath, nonce_hex);
  497. free(nonce_hex);
  498. /* We have a real Icarus! */
  499. if (!add_cgpu(icarus))
  500. goto unshin;
  501. update_usb_stats(icarus);
  502. icarus_info = realloc(icarus_info, sizeof(struct ICARUS_INFO *) * (total_devices + 1));
  503. if (unlikely(!icarus_info))
  504. quit(1, "Failed to realloc ICARUS_INFO");
  505. applog(LOG_INFO, "Found Icarus at %s, mark as %d",
  506. devpath, icarus->device_id);
  507. applog(LOG_DEBUG, "Icarus: Init: %d baud=%d work_division=%d fpga_count=%d",
  508. icarus->device_id, baud, work_division, fpga_count);
  509. // Since we are adding a new device on the end it needs to always be allocated
  510. icarus_info[icarus->device_id] = (struct ICARUS_INFO *)malloc(sizeof(struct ICARUS_INFO));
  511. if (unlikely(!(icarus_info[icarus->device_id])))
  512. quit(1, "Failed to malloc ICARUS_INFO");
  513. info = icarus_info[icarus->device_id];
  514. // Initialise everything to zero for a new device
  515. memset(info, 0, sizeof(struct ICARUS_INFO));
  516. info->baud = baud;
  517. info->work_division = work_division;
  518. info->fpga_count = fpga_count;
  519. info->nonce_mask = mask(work_division);
  520. info->golden_hashes = (golden_nonce_val & info->nonce_mask) * fpga_count;
  521. timersub(&tv_finish, &tv_start, &(info->golden_tv));
  522. set_timing_mode(this_option_offset, icarus);
  523. return true;
  524. unshin:
  525. usb_uninit(icarus);
  526. free(icarus->device_path);
  527. shin:
  528. free(icarus);
  529. return false;
  530. }
  531. static void icarus_detect()
  532. {
  533. usb_detect(&icarus_drv, icarus_detect_one);
  534. }
  535. static bool icarus_prepare(struct thr_info *thr)
  536. {
  537. struct cgpu_info *icarus = thr->cgpu;
  538. struct timeval now;
  539. cgtime(&now);
  540. get_datestamp(icarus->init, &now);
  541. return true;
  542. }
  543. static int64_t icarus_scanhash(struct thr_info *thr, struct work *work,
  544. __maybe_unused int64_t max_nonce)
  545. {
  546. struct cgpu_info *icarus = thr->cgpu;
  547. int ret, err, amount;
  548. struct ICARUS_INFO *info;
  549. unsigned char ob_bin[64], nonce_bin[ICARUS_READ_SIZE];
  550. char *ob_hex;
  551. uint32_t nonce;
  552. int64_t hash_count;
  553. struct timeval tv_start, tv_finish, elapsed;
  554. struct timeval tv_history_start, tv_history_finish;
  555. double Ti, Xi;
  556. int curr_hw_errors, i;
  557. bool was_hw_error;
  558. struct ICARUS_HISTORY *history0, *history;
  559. int count;
  560. double Hs, W, fullnonce;
  561. int read_time;
  562. int64_t estimate_hashes;
  563. uint32_t values;
  564. int64_t hash_count_range;
  565. // Device is gone
  566. if (icarus->usbinfo.nodev)
  567. return -1;
  568. info = icarus_info[icarus->device_id];
  569. elapsed.tv_sec = elapsed.tv_usec = 0;
  570. memset(ob_bin, 0, sizeof(ob_bin));
  571. memcpy(ob_bin, work->midstate, 32);
  572. memcpy(ob_bin + 52, work->data + 64, 12);
  573. rev(ob_bin, 32);
  574. rev(ob_bin + 52, 12);
  575. err = usb_write(icarus, (char *)ob_bin, sizeof(ob_bin), &amount, C_SENDWORK);
  576. if (err < 0 || amount != sizeof(ob_bin)) {
  577. applog(LOG_ERR, "%s%i: Comms error", icarus->drv->name, icarus->device_id);
  578. dev_error(icarus, REASON_DEV_COMMS_ERROR);
  579. icarus_initialise(icarus, info->baud);
  580. return 0;
  581. }
  582. if (opt_debug) {
  583. ob_hex = bin2hex(ob_bin, sizeof(ob_bin));
  584. applog(LOG_DEBUG, "Icarus %d sent: %s",
  585. icarus->device_id, ob_hex);
  586. free(ob_hex);
  587. }
  588. /* Icarus will return 4 bytes (ICARUS_READ_SIZE) nonces or nothing */
  589. memset(nonce_bin, 0, sizeof(nonce_bin));
  590. ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, thr, info->read_time);
  591. if (ret == ICA_NONCE_ERROR)
  592. return 0;
  593. work->blk.nonce = 0xffffffff;
  594. // aborted before becoming idle, get new work
  595. if (ret == ICA_NONCE_TIMEOUT || ret == ICA_NONCE_RESTART) {
  596. timersub(&tv_finish, &tv_start, &elapsed);
  597. // ONLY up to just when it aborted
  598. // We didn't read a reply so we don't subtract ICARUS_READ_TIME
  599. estimate_hashes = ((double)(elapsed.tv_sec)
  600. + ((double)(elapsed.tv_usec))/((double)1000000)) / info->Hs;
  601. // If some Serial-USB delay allowed the full nonce range to
  602. // complete it can't have done more than a full nonce
  603. if (unlikely(estimate_hashes > 0xffffffff))
  604. estimate_hashes = 0xffffffff;
  605. if (opt_debug) {
  606. applog(LOG_DEBUG, "Icarus %d no nonce = 0x%08lX hashes (%ld.%06lds)",
  607. icarus->device_id, (long unsigned int)estimate_hashes,
  608. elapsed.tv_sec, elapsed.tv_usec);
  609. }
  610. return estimate_hashes;
  611. }
  612. memcpy((char *)&nonce, nonce_bin, sizeof(nonce_bin));
  613. nonce = htobe32(nonce);
  614. curr_hw_errors = icarus->hw_errors;
  615. submit_nonce(thr, work, nonce);
  616. was_hw_error = (curr_hw_errors > icarus->hw_errors);
  617. hash_count = (nonce & info->nonce_mask);
  618. hash_count++;
  619. hash_count *= info->fpga_count;
  620. if (opt_debug || info->do_icarus_timing)
  621. timersub(&tv_finish, &tv_start, &elapsed);
  622. if (opt_debug) {
  623. applog(LOG_DEBUG, "Icarus %d nonce = 0x%08x = 0x%08lX hashes (%ld.%06lds)",
  624. icarus->device_id, nonce, (long unsigned int)hash_count,
  625. elapsed.tv_sec, elapsed.tv_usec);
  626. }
  627. // ignore possible end condition values ... and hw errors
  628. if (info->do_icarus_timing
  629. && !was_hw_error
  630. && ((nonce & info->nonce_mask) > END_CONDITION)
  631. && ((nonce & info->nonce_mask) < (info->nonce_mask & ~END_CONDITION))) {
  632. cgtime(&tv_history_start);
  633. history0 = &(info->history[0]);
  634. if (history0->values == 0)
  635. timeradd(&tv_start, &history_sec, &(history0->finish));
  636. Ti = (double)(elapsed.tv_sec)
  637. + ((double)(elapsed.tv_usec))/((double)1000000)
  638. - ((double)ICARUS_READ_TIME(info->baud));
  639. Xi = (double)hash_count;
  640. history0->sumXiTi += Xi * Ti;
  641. history0->sumXi += Xi;
  642. history0->sumTi += Ti;
  643. history0->sumXi2 += Xi * Xi;
  644. history0->values++;
  645. if (history0->hash_count_max < hash_count)
  646. history0->hash_count_max = hash_count;
  647. if (history0->hash_count_min > hash_count || history0->hash_count_min == 0)
  648. history0->hash_count_min = hash_count;
  649. if (history0->values >= info->min_data_count
  650. && timercmp(&tv_start, &(history0->finish), >)) {
  651. for (i = INFO_HISTORY; i > 0; i--)
  652. memcpy(&(info->history[i]),
  653. &(info->history[i-1]),
  654. sizeof(struct ICARUS_HISTORY));
  655. // Initialise history0 to zero for summary calculation
  656. memset(history0, 0, sizeof(struct ICARUS_HISTORY));
  657. // We just completed a history data set
  658. // So now recalc read_time based on the whole history thus we will
  659. // initially get more accurate until it completes INFO_HISTORY
  660. // total data sets
  661. count = 0;
  662. for (i = 1 ; i <= INFO_HISTORY; i++) {
  663. history = &(info->history[i]);
  664. if (history->values >= MIN_DATA_COUNT) {
  665. count++;
  666. history0->sumXiTi += history->sumXiTi;
  667. history0->sumXi += history->sumXi;
  668. history0->sumTi += history->sumTi;
  669. history0->sumXi2 += history->sumXi2;
  670. history0->values += history->values;
  671. if (history0->hash_count_max < history->hash_count_max)
  672. history0->hash_count_max = history->hash_count_max;
  673. if (history0->hash_count_min > history->hash_count_min || history0->hash_count_min == 0)
  674. history0->hash_count_min = history->hash_count_min;
  675. }
  676. }
  677. // All history data
  678. Hs = (history0->values*history0->sumXiTi - history0->sumXi*history0->sumTi)
  679. / (history0->values*history0->sumXi2 - history0->sumXi*history0->sumXi);
  680. W = history0->sumTi/history0->values - Hs*history0->sumXi/history0->values;
  681. hash_count_range = history0->hash_count_max - history0->hash_count_min;
  682. values = history0->values;
  683. // Initialise history0 to zero for next data set
  684. memset(history0, 0, sizeof(struct ICARUS_HISTORY));
  685. fullnonce = W + Hs * (((double)0xffffffff) + 1);
  686. read_time = SECTOMS(fullnonce) - ICARUS_READ_REDUCE;
  687. info->Hs = Hs;
  688. info->read_time = read_time;
  689. info->fullnonce = fullnonce;
  690. info->count = count;
  691. info->W = W;
  692. info->values = values;
  693. info->hash_count_range = hash_count_range;
  694. if (info->min_data_count < MAX_MIN_DATA_COUNT)
  695. info->min_data_count *= 2;
  696. else if (info->timing_mode == MODE_SHORT)
  697. info->do_icarus_timing = false;
  698. // applog(LOG_WARNING, "Icarus %d Re-estimate: read_time=%d fullnonce=%fs history count=%d Hs=%e W=%e values=%d hash range=0x%08lx min data count=%u", icarus->device_id, read_time, fullnonce, count, Hs, W, values, hash_count_range, info->min_data_count);
  699. applog(LOG_WARNING, "Icarus %d Re-estimate: Hs=%e W=%e read_time=%dms fullnonce=%.3fs",
  700. icarus->device_id, Hs, W, read_time, fullnonce);
  701. }
  702. info->history_count++;
  703. cgtime(&tv_history_finish);
  704. timersub(&tv_history_finish, &tv_history_start, &tv_history_finish);
  705. timeradd(&tv_history_finish, &(info->history_time), &(info->history_time));
  706. }
  707. return hash_count;
  708. }
  709. static struct api_data *icarus_api_stats(struct cgpu_info *cgpu)
  710. {
  711. struct api_data *root = NULL;
  712. struct ICARUS_INFO *info = icarus_info[cgpu->device_id];
  713. // Warning, access to these is not locked - but we don't really
  714. // care since hashing performance is way more important than
  715. // locking access to displaying API debug 'stats'
  716. // If locking becomes an issue for any of them, use copy_data=true also
  717. root = api_add_int(root, "read_time", &(info->read_time), false);
  718. root = api_add_double(root, "fullnonce", &(info->fullnonce), false);
  719. root = api_add_int(root, "count", &(info->count), false);
  720. root = api_add_hs(root, "Hs", &(info->Hs), false);
  721. root = api_add_double(root, "W", &(info->W), false);
  722. root = api_add_uint(root, "total_values", &(info->values), false);
  723. root = api_add_uint64(root, "range", &(info->hash_count_range), false);
  724. root = api_add_uint64(root, "history_count", &(info->history_count), false);
  725. root = api_add_timeval(root, "history_time", &(info->history_time), false);
  726. root = api_add_uint(root, "min_data_count", &(info->min_data_count), false);
  727. root = api_add_uint(root, "timing_values", &(info->history[0].values), false);
  728. root = api_add_const(root, "timing_mode", timing_mode_str(info->timing_mode), false);
  729. root = api_add_bool(root, "is_timing", &(info->do_icarus_timing), false);
  730. root = api_add_int(root, "baud", &(info->baud), false);
  731. root = api_add_int(root, "work_division", &(info->work_division), false);
  732. root = api_add_int(root, "fpga_count", &(info->fpga_count), false);
  733. return root;
  734. }
  735. static void icarus_shutdown(__maybe_unused struct thr_info *thr)
  736. {
  737. // TODO: ?
  738. }
  739. struct device_drv icarus_drv = {
  740. .drv_id = DRIVER_ICARUS,
  741. .dname = "Icarus",
  742. .name = "ICA",
  743. .drv_detect = icarus_detect,
  744. .get_api_stats = icarus_api_stats,
  745. .thread_prepare = icarus_prepare,
  746. .scanhash = icarus_scanhash,
  747. .thread_shutdown = icarus_shutdown,
  748. };