| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286 |
- // -ck modified kernel taken from Phoenix taken from poclbm, with aspects of
- // phatk and others.
- // Modified version copyright 2011-2012 Con Kolivas
- // This file is taken and modified from the public-domain poclbm project, and
- // we have therefore decided to keep it public-domain in Phoenix.
- #ifdef VECTORS4
- typedef uint4 u;
- #elif defined VECTORS2
- typedef uint2 u;
- #else
- typedef uint u;
- #endif
- __constant uint K[64] = {
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
- 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
- 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
- 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
- 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
- 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
- 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
- 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
- };
- // This part is not from the stock poclbm kernel. It's part of an optimization
- // added in the Phoenix Miner.
- // Some AMD devices have a BFI_INT opcode, which behaves exactly like the
- // SHA-256 ch function, but provides it in exactly one instruction. If
- // detected, use it for ch. Otherwise, construct ch out of simpler logical
- // primitives.
- #ifdef BITALIGN
- #pragma OPENCL EXTENSION cl_amd_media_ops : enable
- #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
- #ifdef BFI_INT
- // Well, slight problem... It turns out BFI_INT isn't actually exposed to
- // OpenCL (or CAL IL for that matter) in any way. However, there is
- // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
- // amd_bytealign, takes the same inputs, and provides the same output.
- // We can use that as a placeholder for BFI_INT and have the application
- // patch it after compilation.
-
- // This is the BFI_INT function
- #define ch(x, y, z) amd_bytealign(x, y, z)
-
- // Ma can also be implemented in terms of BFI_INT...
- #define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) )
- #else // BFI_INT
- // Later SDKs optimise this to BFI INT without patching and GCN
- // actually fails if manually patched with BFI_INT
- #define ch(x, y, z) bitselect((u)z, (u)y, (u)x)
- #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
- #endif
- #else // BITALIGN
- #define ch(x, y, z) (z ^ (x & (y ^ z)))
- #define Ma(x, y, z) ((x & z) | (y & (x | z)))
- #define rotr(x, y) rotate((u)x, (u)(32 - y))
- #endif
- // AMD's KernelAnalyzer throws errors compiling the kernel if we use
- // amd_bytealign on constants with vectors enabled, so we use this to avoid
- // problems. (this is used 4 times, and likely optimized out by the compiler.)
- #define Ma2(x, y, z) ((y & z) | (x & (y | z)))
- __kernel void search(const uint state0, const uint state1, const uint state2, const uint state3,
- const uint state4, const uint state5, const uint state6, const uint state7,
- const uint b1, const uint c1,
- const uint f1, const uint g1, const uint h1,
- const u base,
- const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r,
- const uint fcty_e2,
- const uint D1A, const uint C1addK5, const uint B1addK6,
- const uint W16addK16, const uint W17addK17,
- const uint PreVal4addT1, const uint Preval0,
- __global uint * output)
- {
- u W[24];
- u *Vals = &W[16]; // Now put at W[16] to be in same array
- const u nonce = base + (uint)(get_global_id(0));
- Vals[0]=Preval0+nonce;
- Vals[3]=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],b1,c1);
- Vals[3]+=D1A;
- Vals[7]=Vals[3];
- Vals[7]+=h1;
- Vals[4]=PreVal4addT1+nonce;
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[2]=C1addK5;
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],b1);
- Vals[6]=Vals[2];
- Vals[6]+=g1;
- Vals[3]+=Ma2(g1,Vals[4],f1);
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[1]=B1addK6;
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[5]=Vals[1];
- Vals[5]+=f1;
- Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[7];
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[8];
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[9];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[10];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[11];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[12];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[13];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[14];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=0xC19BF3F4;
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=W16addK16;
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=W17addK17;
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
- W[2]+=fw2;
- Vals[5]+=W[2];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[18];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]=nonce;
- W[3]+=fw3;
- Vals[4]+=W[3];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[19];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- W[4]+=0x80000000;
- Vals[3]+=W[4];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[20];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=W[5];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[21];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- W[6]+=0x00000280U;
- Vals[1]+=W[6];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[22];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- W[7]+=fw0;
- Vals[0]+=W[7];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[23];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- W[8]+=fw1;
- Vals[7]+=W[8];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[24];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=W[9];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[25];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[10]=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=W[10];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[26];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[11]=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=W[11];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[27];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[12]=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[3]+=W[12];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[28];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[13]=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[2]+=W[13];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[29];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[14]=0x00a00055U;
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[1]+=W[14];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[30];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[15]=fw15;
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[0]+=W[15];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[31];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[0]=fw01r;
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[7]+=W[0];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[32];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[1]=fw1;
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[6]+=W[1];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[33];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[5]+=K[34];
- Vals[5]+=W[2];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[35];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[4]+=W[3];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[3]+=K[36];
- Vals[3]+=W[4];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[37];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=W[5];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[1]+=K[38];
- Vals[1]+=W[6];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[39];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[0]+=W[7];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[7]+=K[40];
- Vals[7]+=W[8];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[41];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=W[9];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=K[42];
- Vals[5]+=W[10];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[43];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=W[11];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[3]+=K[44];
- Vals[3]+=W[12];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=W[6];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[45];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[2]+=W[13];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- W[14]+=W[7];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[1]+=K[46];
- Vals[1]+=W[14];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[47];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[0]+=W[15];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- W[0]+=W[9];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[7]+=K[48];
- Vals[7]+=W[0];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[49];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[6]+=W[1];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[5]+=K[50];
- Vals[5]+=W[2];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[51];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[4]+=W[3];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[3]+=K[52];
- Vals[3]+=W[4];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[53];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=W[5];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[1]+=K[54];
- Vals[1]+=W[6];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[55];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[0]+=W[7];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[7]+=K[56];
- Vals[7]+=W[8];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[57];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=W[9];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=K[58];
- Vals[5]+=W[10];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[59];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=W[11];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[3]+=K[60];
- Vals[3]+=W[12];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=W[6];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[61];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[2]+=W[13];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- W[14]+=W[7];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[1]+=K[62];
- Vals[1]+=W[14];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[63];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[0]+=W[15];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- W[0]=Vals[0];
- W[7]=state7;
- W[7]+=Vals[7];
- Vals[7]=0xF377ED68;
- W[0]+=state0;
- Vals[7]+=W[0];
- W[3]=state3;
- W[3]+=Vals[3];
- Vals[3]=0xa54ff53a;
- Vals[3]+=Vals[7];
- W[1]=Vals[1];
- W[1]+=state1;
- W[6]=state6;
- W[6]+=Vals[6];
- Vals[6]=0x90BB1E3C;
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=(0x9b05688cU^(Vals[3]&0xca0b3af3U));
- W[2]=state2;
- W[2]+=Vals[2];
- Vals[2]=0x3c6ef372U;
- Vals[6]+=W[1];
- Vals[2]+=Vals[6];
- Vals[7]+=0x08909ae5U;
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[5]=state5;
- W[5]+=Vals[5];
- Vals[5]=0x150C6645B;
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],0x510e527fU);
- Vals[5]+=W[2];
- Vals[1]=0xbb67ae85U;
- Vals[1]+=Vals[5];
- Vals[6]+=Ma2(0xbb67ae85U,Vals[7],0x6a09e667U);
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- W[4]=state4;
- W[4]+=Vals[4];
- Vals[4]=0x13AC42E24;
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=W[3];
- Vals[0]=Vals[4];
- Vals[0]+=0x6a09e667U;
- Vals[5]+=Ma2(0x6a09e667U,Vals[6],Vals[7]);
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[4];
- Vals[3]+=W[4];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[5];
- Vals[2]+=W[5];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[6];
- Vals[1]+=W[6];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[7];
- Vals[0]+=W[7];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=0x15807AA98;
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[9];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[10];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[11];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[12];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[13];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[14];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=0xC19BF274;
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- Vals[7]+=K[16];
- Vals[7]+=W[0];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=0x00a00000U;
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[17];
- Vals[6]+=W[1];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[18];
- Vals[5]+=W[2];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[19];
- Vals[4]+=W[3];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[20];
- Vals[3]+=W[4];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[21];
- Vals[2]+=W[5];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=0x00000100U;
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[1]+=K[22];
- Vals[1]+=W[6];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]+=0x11002000U;
- W[7]+=W[0];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[23];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[0]+=W[7];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[8]=0x80000000;
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[7]+=W[8];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[24];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=W[9];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[25];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[10]=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=W[10];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[26];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[11]=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=W[11];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[27];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[12]=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[3]+=W[12];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[28];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[13]=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[2]+=W[13];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[29];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[14]=0x00400022U;
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[1]+=W[14];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[30];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[15]=0x00000100U;
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[0]+=W[15];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[31];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[7]+=W[0];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[32];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[6]+=W[1];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[33];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[5]+=W[2];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[34];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[4]+=W[3];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[35];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[3]+=W[4];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[36];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=W[5];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[37];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[1]+=W[6];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[38];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[0]+=W[7];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[39];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[7]+=W[8];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[40];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=W[9];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[41];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=W[10];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[42];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=W[11];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[43];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[3]+=W[12];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[44];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[2]+=W[13];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[45];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[1]+=W[14];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[46];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[0]+=W[15];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[47];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[7]+=W[0];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[48];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[6]+=W[1];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[49];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[5]+=W[2];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[50];
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[4]+=W[3];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[51];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[3]+=W[4];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[52];
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=W[5];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[53];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[1]+=W[6];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[54];
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[0]+=W[7];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[55];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[7]+=W[8];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[56];
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=W[9];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[57];
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=W[10];
- Vals[2]+=Vals[6];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[58];
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=W[11];
- Vals[1]+=Vals[5];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[59];
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[7]+=W[12];
- Vals[0]+=Vals[4];
- Vals[7]+=Vals[3];
- Vals[7]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[7]+=ch(Vals[0],Vals[1],Vals[2]);
- //Vals[7]+=K[60]; diffed from 0xA41F32E7
- #define FOUND (0x80)
- #define NFLAG (0x7F)
- #if defined(VECTORS4)
- bool result = any(Vals[7] == 0x136032ed);
- if (result) {
- output[FOUND] = FOUND;
- if (Vals[7].x == 0x136032ed)
- output[NFLAG & nonce.x] = nonce.x;
- if (Vals[7].y == 0x136032ed)
- output[NFLAG & nonce.y] = nonce.y;
- if (Vals[7].z == 0x136032ed)
- output[NFLAG & nonce.z] = nonce.z;
- if (Vals[7].w == 0x136032ed)
- output[NFLAG & nonce.w] = nonce.w;
- }
- #elif defined(VECTORS2)
- bool result = any(Vals[7] == 0x136032ed);
- if (result) {
- output[FOUND] = FOUND;
- if (Vals[7].x == 0x136032ed)
- output[NFLAG & nonce.x] = nonce.x;
- if (Vals[7].y == 0x136032ed)
- output[NFLAG & nonce.y] = nonce.y;
- }
- #else
- if (Vals[7] == 0x136032ED)
- output[FOUND] = output[NFLAG & nonce] = nonce;
- #endif
- }
|