poclbm120214.cl 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286
  1. // -ck modified kernel taken from Phoenix taken from poclbm, with aspects of
  2. // phatk and others.
  3. // Modified version copyright 2011-2012 Con Kolivas
  4. // This file is taken and modified from the public-domain poclbm project, and
  5. // we have therefore decided to keep it public-domain in Phoenix.
  6. #ifdef VECTORS4
  7. typedef uint4 u;
  8. #elif defined VECTORS2
  9. typedef uint2 u;
  10. #else
  11. typedef uint u;
  12. #endif
  13. __constant uint K[64] = {
  14. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  15. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  16. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  17. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  18. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  19. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  20. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  21. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  22. };
  23. // This part is not from the stock poclbm kernel. It's part of an optimization
  24. // added in the Phoenix Miner.
  25. // Some AMD devices have a BFI_INT opcode, which behaves exactly like the
  26. // SHA-256 ch function, but provides it in exactly one instruction. If
  27. // detected, use it for ch. Otherwise, construct ch out of simpler logical
  28. // primitives.
  29. #ifdef BITALIGN
  30. #pragma OPENCL EXTENSION cl_amd_media_ops : enable
  31. #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
  32. #ifdef BFI_INT
  33. // Well, slight problem... It turns out BFI_INT isn't actually exposed to
  34. // OpenCL (or CAL IL for that matter) in any way. However, there is
  35. // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
  36. // amd_bytealign, takes the same inputs, and provides the same output.
  37. // We can use that as a placeholder for BFI_INT and have the application
  38. // patch it after compilation.
  39. // This is the BFI_INT function
  40. #define ch(x, y, z) amd_bytealign(x, y, z)
  41. // Ma can also be implemented in terms of BFI_INT...
  42. #define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) )
  43. #else // BFI_INT
  44. // Later SDKs optimise this to BFI INT without patching and GCN
  45. // actually fails if manually patched with BFI_INT
  46. #define ch(x, y, z) bitselect((u)z, (u)y, (u)x)
  47. #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
  48. #endif
  49. #else // BITALIGN
  50. #define ch(x, y, z) (z ^ (x & (y ^ z)))
  51. #define Ma(x, y, z) ((x & z) | (y & (x | z)))
  52. #define rotr(x, y) rotate((u)x, (u)(32 - y))
  53. #endif
  54. // AMD's KernelAnalyzer throws errors compiling the kernel if we use
  55. // amd_bytealign on constants with vectors enabled, so we use this to avoid
  56. // problems. (this is used 4 times, and likely optimized out by the compiler.)
  57. #define Ma2(x, y, z) ((y & z) | (x & (y | z)))
  58. __kernel void search(const uint state0, const uint state1, const uint state2, const uint state3,
  59. const uint state4, const uint state5, const uint state6, const uint state7,
  60. const uint b1, const uint c1,
  61. const uint f1, const uint g1, const uint h1,
  62. const u base,
  63. const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r,
  64. const uint fcty_e2,
  65. const uint D1A, const uint C1addK5, const uint B1addK6,
  66. const uint W16addK16, const uint W17addK17,
  67. const uint PreVal4addT1, const uint Preval0,
  68. __global uint * output)
  69. {
  70. u W[24];
  71. u *Vals = &W[16]; // Now put at W[16] to be in same array
  72. const u nonce = base + (uint)(get_global_id(0));
  73. Vals[0]=Preval0+nonce;
  74. Vals[3]=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  75. Vals[3]+=ch(Vals[0],b1,c1);
  76. Vals[3]+=D1A;
  77. Vals[7]=Vals[3];
  78. Vals[7]+=h1;
  79. Vals[4]=PreVal4addT1+nonce;
  80. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  81. Vals[2]=C1addK5;
  82. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  83. Vals[2]+=ch(Vals[7],Vals[0],b1);
  84. Vals[6]=Vals[2];
  85. Vals[6]+=g1;
  86. Vals[3]+=Ma2(g1,Vals[4],f1);
  87. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  88. Vals[1]=B1addK6;
  89. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  90. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  91. Vals[5]=Vals[1];
  92. Vals[5]+=f1;
  93. Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
  94. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  95. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  96. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  97. Vals[0]+=K[7];
  98. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  99. Vals[4]+=Vals[0];
  100. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  101. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  102. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  103. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  104. Vals[7]+=K[8];
  105. Vals[3]+=Vals[7];
  106. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  107. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  108. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  109. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  110. Vals[6]+=K[9];
  111. Vals[2]+=Vals[6];
  112. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  113. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  114. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  115. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  116. Vals[5]+=K[10];
  117. Vals[1]+=Vals[5];
  118. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  119. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  120. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  121. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  122. Vals[4]+=K[11];
  123. Vals[0]+=Vals[4];
  124. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  125. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  126. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  127. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  128. Vals[3]+=K[12];
  129. Vals[7]+=Vals[3];
  130. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  131. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  132. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  133. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  134. Vals[2]+=K[13];
  135. Vals[6]+=Vals[2];
  136. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  137. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  138. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  139. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  140. Vals[1]+=K[14];
  141. Vals[5]+=Vals[1];
  142. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  143. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  144. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  145. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  146. Vals[0]+=0xC19BF3F4;
  147. Vals[4]+=Vals[0];
  148. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  149. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  150. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  151. Vals[7]+=W16addK16;
  152. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  153. Vals[3]+=Vals[7];
  154. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  155. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  156. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  157. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  158. Vals[6]+=W17addK17;
  159. Vals[2]+=Vals[6];
  160. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  161. W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
  162. W[2]+=fw2;
  163. Vals[5]+=W[2];
  164. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  165. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  166. Vals[5]+=K[18];
  167. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  168. Vals[1]+=Vals[5];
  169. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  170. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  171. W[3]=nonce;
  172. W[3]+=fw3;
  173. Vals[4]+=W[3];
  174. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  175. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  176. Vals[4]+=K[19];
  177. Vals[0]+=Vals[4];
  178. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  179. W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  180. W[4]+=0x80000000;
  181. Vals[3]+=W[4];
  182. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  183. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  184. Vals[3]+=K[20];
  185. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  186. Vals[7]+=Vals[3];
  187. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  188. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  189. W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  190. Vals[2]+=W[5];
  191. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  192. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  193. Vals[2]+=K[21];
  194. Vals[6]+=Vals[2];
  195. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  196. W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  197. W[6]+=0x00000280U;
  198. Vals[1]+=W[6];
  199. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  200. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  201. Vals[1]+=K[22];
  202. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  203. Vals[5]+=Vals[1];
  204. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  205. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  206. W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  207. W[7]+=fw0;
  208. Vals[0]+=W[7];
  209. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  210. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  211. Vals[0]+=K[23];
  212. Vals[4]+=Vals[0];
  213. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  214. W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  215. W[8]+=fw1;
  216. Vals[7]+=W[8];
  217. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  218. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  219. Vals[7]+=K[24];
  220. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  221. Vals[3]+=Vals[7];
  222. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  223. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  224. W[9]=W[2];
  225. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  226. Vals[6]+=W[9];
  227. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  228. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  229. Vals[6]+=K[25];
  230. Vals[2]+=Vals[6];
  231. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  232. W[10]=W[3];
  233. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  234. Vals[5]+=W[10];
  235. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  236. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  237. Vals[5]+=K[26];
  238. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  239. Vals[1]+=Vals[5];
  240. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  241. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  242. W[11]=W[4];
  243. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  244. Vals[4]+=W[11];
  245. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  246. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  247. Vals[4]+=K[27];
  248. Vals[0]+=Vals[4];
  249. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  250. W[12]=W[5];
  251. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  252. Vals[3]+=W[12];
  253. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  254. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  255. Vals[3]+=K[28];
  256. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  257. Vals[7]+=Vals[3];
  258. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  259. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  260. W[13]=W[6];
  261. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  262. Vals[2]+=W[13];
  263. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  264. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  265. Vals[2]+=K[29];
  266. Vals[6]+=Vals[2];
  267. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  268. W[14]=0x00a00055U;
  269. W[14]+=W[7];
  270. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  271. Vals[1]+=W[14];
  272. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  273. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  274. Vals[1]+=K[30];
  275. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  276. Vals[5]+=Vals[1];
  277. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  278. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  279. W[15]=fw15;
  280. W[15]+=W[8];
  281. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  282. Vals[0]+=W[15];
  283. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  284. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  285. Vals[0]+=K[31];
  286. Vals[4]+=Vals[0];
  287. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  288. W[0]=fw01r;
  289. W[0]+=W[9];
  290. W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
  291. Vals[7]+=W[0];
  292. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  293. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  294. Vals[7]+=K[32];
  295. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  296. Vals[3]+=Vals[7];
  297. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  298. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  299. W[1]=fw1;
  300. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  301. W[1]+=W[10];
  302. W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
  303. Vals[6]+=W[1];
  304. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  305. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  306. Vals[6]+=K[33];
  307. Vals[2]+=Vals[6];
  308. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  309. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  310. W[2]+=W[11];
  311. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  312. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  313. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  314. Vals[5]+=K[34];
  315. Vals[5]+=W[2];
  316. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  317. Vals[1]+=Vals[5];
  318. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  319. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  320. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  321. W[3]+=W[12];
  322. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  323. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  324. Vals[4]+=K[35];
  325. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  326. Vals[4]+=W[3];
  327. Vals[0]+=Vals[4];
  328. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  329. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  330. W[4]+=W[13];
  331. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  332. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  333. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  334. Vals[3]+=K[36];
  335. Vals[3]+=W[4];
  336. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  337. Vals[7]+=Vals[3];
  338. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  339. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  340. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  341. W[5]+=W[14];
  342. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  343. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  344. Vals[2]+=K[37];
  345. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  346. Vals[2]+=W[5];
  347. Vals[6]+=Vals[2];
  348. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  349. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  350. W[6]+=W[15];
  351. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  352. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  353. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  354. Vals[1]+=K[38];
  355. Vals[1]+=W[6];
  356. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  357. Vals[5]+=Vals[1];
  358. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  359. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  360. W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
  361. W[7]+=W[0];
  362. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  363. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  364. Vals[0]+=K[39];
  365. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  366. Vals[0]+=W[7];
  367. Vals[4]+=Vals[0];
  368. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  369. W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
  370. W[8]+=W[1];
  371. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  372. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  373. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  374. Vals[7]+=K[40];
  375. Vals[7]+=W[8];
  376. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  377. Vals[3]+=Vals[7];
  378. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  379. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  380. W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
  381. W[9]+=W[2];
  382. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  383. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  384. Vals[6]+=K[41];
  385. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  386. Vals[6]+=W[9];
  387. Vals[2]+=Vals[6];
  388. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  389. W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
  390. W[10]+=W[3];
  391. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  392. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  393. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  394. Vals[5]+=K[42];
  395. Vals[5]+=W[10];
  396. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  397. Vals[1]+=Vals[5];
  398. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  399. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  400. W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
  401. W[11]+=W[4];
  402. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  403. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  404. Vals[4]+=K[43];
  405. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  406. Vals[4]+=W[11];
  407. Vals[0]+=Vals[4];
  408. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  409. W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
  410. W[12]+=W[5];
  411. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  412. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  413. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  414. Vals[3]+=K[44];
  415. Vals[3]+=W[12];
  416. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  417. Vals[7]+=Vals[3];
  418. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  419. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  420. W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
  421. W[13]+=W[6];
  422. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  423. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  424. Vals[2]+=K[45];
  425. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  426. Vals[2]+=W[13];
  427. Vals[6]+=Vals[2];
  428. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  429. W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
  430. W[14]+=W[7];
  431. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  432. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  433. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  434. Vals[1]+=K[46];
  435. Vals[1]+=W[14];
  436. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  437. Vals[5]+=Vals[1];
  438. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  439. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  440. W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
  441. W[15]+=W[8];
  442. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  443. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  444. Vals[0]+=K[47];
  445. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  446. Vals[0]+=W[15];
  447. Vals[4]+=Vals[0];
  448. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  449. W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
  450. W[0]+=W[9];
  451. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  452. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  453. W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
  454. Vals[7]+=K[48];
  455. Vals[7]+=W[0];
  456. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  457. Vals[3]+=Vals[7];
  458. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  459. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  460. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  461. W[1]+=W[10];
  462. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  463. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  464. Vals[6]+=K[49];
  465. W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
  466. Vals[6]+=W[1];
  467. Vals[2]+=Vals[6];
  468. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  469. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  470. W[2]+=W[11];
  471. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  472. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  473. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  474. Vals[5]+=K[50];
  475. Vals[5]+=W[2];
  476. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  477. Vals[1]+=Vals[5];
  478. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  479. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  480. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  481. W[3]+=W[12];
  482. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  483. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  484. Vals[4]+=K[51];
  485. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  486. Vals[4]+=W[3];
  487. Vals[0]+=Vals[4];
  488. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  489. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  490. W[4]+=W[13];
  491. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  492. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  493. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  494. Vals[3]+=K[52];
  495. Vals[3]+=W[4];
  496. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  497. Vals[7]+=Vals[3];
  498. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  499. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  500. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  501. W[5]+=W[14];
  502. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  503. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  504. Vals[2]+=K[53];
  505. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  506. Vals[2]+=W[5];
  507. Vals[6]+=Vals[2];
  508. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  509. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  510. W[6]+=W[15];
  511. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  512. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  513. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  514. Vals[1]+=K[54];
  515. Vals[1]+=W[6];
  516. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  517. Vals[5]+=Vals[1];
  518. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  519. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  520. W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
  521. W[7]+=W[0];
  522. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  523. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  524. Vals[0]+=K[55];
  525. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  526. Vals[0]+=W[7];
  527. Vals[4]+=Vals[0];
  528. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  529. W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
  530. W[8]+=W[1];
  531. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  532. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  533. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  534. Vals[7]+=K[56];
  535. Vals[7]+=W[8];
  536. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  537. Vals[3]+=Vals[7];
  538. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  539. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  540. W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
  541. W[9]+=W[2];
  542. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  543. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  544. Vals[6]+=K[57];
  545. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  546. Vals[6]+=W[9];
  547. Vals[2]+=Vals[6];
  548. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  549. W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
  550. W[10]+=W[3];
  551. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  552. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  553. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  554. Vals[5]+=K[58];
  555. Vals[5]+=W[10];
  556. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  557. Vals[1]+=Vals[5];
  558. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  559. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  560. W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
  561. W[11]+=W[4];
  562. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  563. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  564. Vals[4]+=K[59];
  565. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  566. Vals[4]+=W[11];
  567. Vals[0]+=Vals[4];
  568. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  569. W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
  570. W[12]+=W[5];
  571. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  572. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  573. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  574. Vals[3]+=K[60];
  575. Vals[3]+=W[12];
  576. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  577. Vals[7]+=Vals[3];
  578. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  579. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  580. W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
  581. W[13]+=W[6];
  582. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  583. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  584. Vals[2]+=K[61];
  585. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  586. Vals[2]+=W[13];
  587. Vals[6]+=Vals[2];
  588. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  589. W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
  590. W[14]+=W[7];
  591. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  592. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  593. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  594. Vals[1]+=K[62];
  595. Vals[1]+=W[14];
  596. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  597. Vals[5]+=Vals[1];
  598. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  599. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  600. W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
  601. W[15]+=W[8];
  602. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  603. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  604. Vals[0]+=K[63];
  605. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  606. Vals[0]+=W[15];
  607. Vals[4]+=Vals[0];
  608. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  609. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  610. W[0]=Vals[0];
  611. W[7]=state7;
  612. W[7]+=Vals[7];
  613. Vals[7]=0xF377ED68;
  614. W[0]+=state0;
  615. Vals[7]+=W[0];
  616. W[3]=state3;
  617. W[3]+=Vals[3];
  618. Vals[3]=0xa54ff53a;
  619. Vals[3]+=Vals[7];
  620. W[1]=Vals[1];
  621. W[1]+=state1;
  622. W[6]=state6;
  623. W[6]+=Vals[6];
  624. Vals[6]=0x90BB1E3C;
  625. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  626. Vals[6]+=(0x9b05688cU^(Vals[3]&0xca0b3af3U));
  627. W[2]=state2;
  628. W[2]+=Vals[2];
  629. Vals[2]=0x3c6ef372U;
  630. Vals[6]+=W[1];
  631. Vals[2]+=Vals[6];
  632. Vals[7]+=0x08909ae5U;
  633. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  634. W[5]=state5;
  635. W[5]+=Vals[5];
  636. Vals[5]=0x150C6645B;
  637. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  638. Vals[5]+=ch(Vals[2],Vals[3],0x510e527fU);
  639. Vals[5]+=W[2];
  640. Vals[1]=0xbb67ae85U;
  641. Vals[1]+=Vals[5];
  642. Vals[6]+=Ma2(0xbb67ae85U,Vals[7],0x6a09e667U);
  643. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  644. W[4]=state4;
  645. W[4]+=Vals[4];
  646. Vals[4]=0x13AC42E24;
  647. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  648. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  649. Vals[4]+=W[3];
  650. Vals[0]=Vals[4];
  651. Vals[0]+=0x6a09e667U;
  652. Vals[5]+=Ma2(0x6a09e667U,Vals[6],Vals[7]);
  653. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  654. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  655. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  656. Vals[3]+=K[4];
  657. Vals[3]+=W[4];
  658. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  659. Vals[7]+=Vals[3];
  660. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  661. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  662. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  663. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  664. Vals[2]+=K[5];
  665. Vals[2]+=W[5];
  666. Vals[6]+=Vals[2];
  667. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  668. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  669. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  670. Vals[1]+=K[6];
  671. Vals[1]+=W[6];
  672. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  673. Vals[5]+=Vals[1];
  674. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  675. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  676. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  677. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  678. Vals[0]+=K[7];
  679. Vals[0]+=W[7];
  680. Vals[4]+=Vals[0];
  681. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  682. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  683. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  684. Vals[7]+=0x15807AA98;
  685. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  686. Vals[3]+=Vals[7];
  687. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  688. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  689. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  690. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  691. Vals[6]+=K[9];
  692. Vals[2]+=Vals[6];
  693. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  694. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  695. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  696. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  697. Vals[5]+=K[10];
  698. Vals[1]+=Vals[5];
  699. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  700. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  701. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  702. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  703. Vals[4]+=K[11];
  704. Vals[0]+=Vals[4];
  705. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  706. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  707. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  708. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  709. Vals[3]+=K[12];
  710. Vals[7]+=Vals[3];
  711. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  712. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  713. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  714. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  715. Vals[2]+=K[13];
  716. Vals[6]+=Vals[2];
  717. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  718. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  719. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  720. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  721. Vals[1]+=K[14];
  722. Vals[5]+=Vals[1];
  723. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  724. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  725. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  726. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  727. Vals[0]+=0xC19BF274;
  728. Vals[4]+=Vals[0];
  729. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  730. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  731. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  732. W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
  733. Vals[7]+=K[16];
  734. Vals[7]+=W[0];
  735. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  736. Vals[3]+=Vals[7];
  737. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  738. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  739. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  740. W[1]+=0x00a00000U;
  741. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  742. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  743. Vals[6]+=K[17];
  744. Vals[6]+=W[1];
  745. Vals[2]+=Vals[6];
  746. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  747. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  748. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  749. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  750. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  751. Vals[5]+=K[18];
  752. Vals[5]+=W[2];
  753. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  754. Vals[1]+=Vals[5];
  755. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  756. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  757. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  758. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  759. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  760. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  761. Vals[4]+=K[19];
  762. Vals[4]+=W[3];
  763. Vals[0]+=Vals[4];
  764. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  765. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  766. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  767. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  768. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  769. Vals[3]+=K[20];
  770. Vals[3]+=W[4];
  771. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  772. Vals[7]+=Vals[3];
  773. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  774. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  775. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  776. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  777. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  778. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  779. Vals[2]+=K[21];
  780. Vals[2]+=W[5];
  781. Vals[6]+=Vals[2];
  782. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  783. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  784. W[6]+=0x00000100U;
  785. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  786. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  787. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  788. Vals[1]+=K[22];
  789. Vals[1]+=W[6];
  790. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  791. Vals[5]+=Vals[1];
  792. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  793. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  794. W[7]+=0x11002000U;
  795. W[7]+=W[0];
  796. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  797. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  798. Vals[0]+=K[23];
  799. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  800. Vals[0]+=W[7];
  801. Vals[4]+=Vals[0];
  802. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  803. W[8]=0x80000000;
  804. W[8]+=W[1];
  805. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  806. Vals[7]+=W[8];
  807. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  808. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  809. Vals[7]+=K[24];
  810. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  811. Vals[3]+=Vals[7];
  812. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  813. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  814. W[9]=W[2];
  815. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  816. Vals[6]+=W[9];
  817. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  818. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  819. Vals[6]+=K[25];
  820. Vals[2]+=Vals[6];
  821. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  822. W[10]=W[3];
  823. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  824. Vals[5]+=W[10];
  825. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  826. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  827. Vals[5]+=K[26];
  828. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  829. Vals[1]+=Vals[5];
  830. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  831. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  832. W[11]=W[4];
  833. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  834. Vals[4]+=W[11];
  835. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  836. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  837. Vals[4]+=K[27];
  838. Vals[0]+=Vals[4];
  839. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  840. W[12]=W[5];
  841. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  842. Vals[3]+=W[12];
  843. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  844. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  845. Vals[3]+=K[28];
  846. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  847. Vals[7]+=Vals[3];
  848. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  849. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  850. W[13]=W[6];
  851. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  852. Vals[2]+=W[13];
  853. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  854. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  855. Vals[2]+=K[29];
  856. Vals[6]+=Vals[2];
  857. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  858. W[14]=0x00400022U;
  859. W[14]+=W[7];
  860. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  861. Vals[1]+=W[14];
  862. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  863. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  864. Vals[1]+=K[30];
  865. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  866. Vals[5]+=Vals[1];
  867. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  868. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  869. W[15]=0x00000100U;
  870. W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
  871. W[15]+=W[8];
  872. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  873. Vals[0]+=W[15];
  874. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  875. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  876. Vals[0]+=K[31];
  877. Vals[4]+=Vals[0];
  878. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  879. W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
  880. W[0]+=W[9];
  881. W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
  882. Vals[7]+=W[0];
  883. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  884. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  885. Vals[7]+=K[32];
  886. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  887. Vals[3]+=Vals[7];
  888. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  889. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  890. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  891. W[1]+=W[10];
  892. W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
  893. Vals[6]+=W[1];
  894. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  895. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  896. Vals[6]+=K[33];
  897. Vals[2]+=Vals[6];
  898. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  899. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  900. W[2]+=W[11];
  901. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  902. Vals[5]+=W[2];
  903. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  904. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  905. Vals[5]+=K[34];
  906. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  907. Vals[1]+=Vals[5];
  908. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  909. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  910. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  911. W[3]+=W[12];
  912. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  913. Vals[4]+=W[3];
  914. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  915. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  916. Vals[4]+=K[35];
  917. Vals[0]+=Vals[4];
  918. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  919. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  920. W[4]+=W[13];
  921. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  922. Vals[3]+=W[4];
  923. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  924. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  925. Vals[3]+=K[36];
  926. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  927. Vals[7]+=Vals[3];
  928. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  929. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  930. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  931. W[5]+=W[14];
  932. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  933. Vals[2]+=W[5];
  934. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  935. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  936. Vals[2]+=K[37];
  937. Vals[6]+=Vals[2];
  938. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  939. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  940. W[6]+=W[15];
  941. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  942. Vals[1]+=W[6];
  943. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  944. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  945. Vals[1]+=K[38];
  946. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  947. Vals[5]+=Vals[1];
  948. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  949. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  950. W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
  951. W[7]+=W[0];
  952. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  953. Vals[0]+=W[7];
  954. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  955. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  956. Vals[0]+=K[39];
  957. Vals[4]+=Vals[0];
  958. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  959. W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
  960. W[8]+=W[1];
  961. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  962. Vals[7]+=W[8];
  963. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  964. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  965. Vals[7]+=K[40];
  966. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  967. Vals[3]+=Vals[7];
  968. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  969. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  970. W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
  971. W[9]+=W[2];
  972. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  973. Vals[6]+=W[9];
  974. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  975. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  976. Vals[6]+=K[41];
  977. Vals[2]+=Vals[6];
  978. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  979. W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
  980. W[10]+=W[3];
  981. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  982. Vals[5]+=W[10];
  983. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  984. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  985. Vals[5]+=K[42];
  986. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  987. Vals[1]+=Vals[5];
  988. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  989. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  990. W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
  991. W[11]+=W[4];
  992. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  993. Vals[4]+=W[11];
  994. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  995. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  996. Vals[4]+=K[43];
  997. Vals[0]+=Vals[4];
  998. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  999. W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
  1000. W[12]+=W[5];
  1001. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  1002. Vals[3]+=W[12];
  1003. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  1004. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  1005. Vals[3]+=K[44];
  1006. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  1007. Vals[7]+=Vals[3];
  1008. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  1009. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  1010. W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
  1011. W[13]+=W[6];
  1012. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  1013. Vals[2]+=W[13];
  1014. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  1015. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  1016. Vals[2]+=K[45];
  1017. Vals[6]+=Vals[2];
  1018. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  1019. W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
  1020. W[14]+=W[7];
  1021. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  1022. Vals[1]+=W[14];
  1023. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  1024. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  1025. Vals[1]+=K[46];
  1026. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  1027. Vals[5]+=Vals[1];
  1028. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  1029. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  1030. W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
  1031. W[15]+=W[8];
  1032. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  1033. Vals[0]+=W[15];
  1034. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  1035. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  1036. Vals[0]+=K[47];
  1037. Vals[4]+=Vals[0];
  1038. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  1039. W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
  1040. W[0]+=W[9];
  1041. W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
  1042. Vals[7]+=W[0];
  1043. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  1044. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  1045. Vals[7]+=K[48];
  1046. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  1047. Vals[3]+=Vals[7];
  1048. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  1049. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  1050. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  1051. W[1]+=W[10];
  1052. W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
  1053. Vals[6]+=W[1];
  1054. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  1055. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  1056. Vals[6]+=K[49];
  1057. Vals[2]+=Vals[6];
  1058. Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  1059. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  1060. W[2]+=W[11];
  1061. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  1062. Vals[5]+=W[2];
  1063. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  1064. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  1065. Vals[5]+=K[50];
  1066. Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
  1067. Vals[1]+=Vals[5];
  1068. Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  1069. Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
  1070. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  1071. W[3]+=W[12];
  1072. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  1073. Vals[4]+=W[3];
  1074. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  1075. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  1076. Vals[4]+=K[51];
  1077. Vals[0]+=Vals[4];
  1078. Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  1079. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  1080. W[4]+=W[13];
  1081. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  1082. Vals[3]+=W[4];
  1083. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  1084. Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
  1085. Vals[3]+=K[52];
  1086. Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
  1087. Vals[7]+=Vals[3];
  1088. Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  1089. Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
  1090. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  1091. W[5]+=W[14];
  1092. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  1093. Vals[2]+=W[5];
  1094. Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  1095. Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
  1096. Vals[2]+=K[53];
  1097. Vals[6]+=Vals[2];
  1098. Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  1099. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  1100. W[6]+=W[15];
  1101. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  1102. Vals[1]+=W[6];
  1103. Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  1104. Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
  1105. Vals[1]+=K[54];
  1106. Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
  1107. Vals[5]+=Vals[1];
  1108. Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  1109. Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
  1110. W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
  1111. W[7]+=W[0];
  1112. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  1113. Vals[0]+=W[7];
  1114. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  1115. Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
  1116. Vals[0]+=K[55];
  1117. Vals[4]+=Vals[0];
  1118. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  1119. W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
  1120. W[8]+=W[1];
  1121. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  1122. Vals[7]+=W[8];
  1123. Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  1124. Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
  1125. Vals[7]+=K[56];
  1126. Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
  1127. Vals[3]+=Vals[7];
  1128. Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  1129. Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
  1130. W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
  1131. W[9]+=W[2];
  1132. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  1133. Vals[6]+=W[9];
  1134. Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  1135. Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
  1136. Vals[6]+=K[57];
  1137. W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
  1138. W[10]+=W[3];
  1139. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  1140. Vals[5]+=W[10];
  1141. Vals[2]+=Vals[6];
  1142. Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  1143. Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
  1144. Vals[5]+=K[58];
  1145. W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
  1146. W[11]+=W[4];
  1147. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  1148. Vals[4]+=W[11];
  1149. Vals[1]+=Vals[5];
  1150. Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  1151. Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
  1152. Vals[4]+=K[59];
  1153. W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
  1154. W[12]+=W[5];
  1155. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  1156. Vals[7]+=W[12];
  1157. Vals[0]+=Vals[4];
  1158. Vals[7]+=Vals[3];
  1159. Vals[7]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  1160. Vals[7]+=ch(Vals[0],Vals[1],Vals[2]);
  1161. //Vals[7]+=K[60]; diffed from 0xA41F32E7
  1162. #define FOUND (0x80)
  1163. #define NFLAG (0x7F)
  1164. #if defined(VECTORS4)
  1165. bool result = any(Vals[7] == 0x136032ed);
  1166. if (result) {
  1167. output[FOUND] = FOUND;
  1168. if (Vals[7].x == 0x136032ed)
  1169. output[NFLAG & nonce.x] = nonce.x;
  1170. if (Vals[7].y == 0x136032ed)
  1171. output[NFLAG & nonce.y] = nonce.y;
  1172. if (Vals[7].z == 0x136032ed)
  1173. output[NFLAG & nonce.z] = nonce.z;
  1174. if (Vals[7].w == 0x136032ed)
  1175. output[NFLAG & nonce.w] = nonce.w;
  1176. }
  1177. #elif defined(VECTORS2)
  1178. bool result = any(Vals[7] == 0x136032ed);
  1179. if (result) {
  1180. output[FOUND] = FOUND;
  1181. if (Vals[7].x == 0x136032ed)
  1182. output[NFLAG & nonce.x] = nonce.x;
  1183. if (Vals[7].y == 0x136032ed)
  1184. output[NFLAG & nonce.y] = nonce.y;
  1185. }
  1186. #else
  1187. if (Vals[7] == 0x136032ED)
  1188. output[FOUND] = output[NFLAG & nonce] = nonce;
  1189. #endif
  1190. }