findnonce.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246
  1. /*
  2. * Copyright 2011-2013 Con Kolivas
  3. * Copyright 2011 Nils Schneider
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the Free
  7. * Software Foundation; either version 3 of the License, or (at your option)
  8. * any later version. See COPYING for more details.
  9. */
  10. #include "config.h"
  11. #ifdef HAVE_OPENCL
  12. #include <stdio.h>
  13. #include <inttypes.h>
  14. #include <pthread.h>
  15. #include <string.h>
  16. #include "findnonce.h"
  17. #include "scrypt.h"
  18. const uint32_t SHA256_K[64] = {
  19. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  20. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  21. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  22. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  23. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  24. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  25. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  26. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  27. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  28. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  29. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  30. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  31. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  32. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  33. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  34. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  35. };
  36. #define rotate(x,y) ((x<<y) | (x>>(sizeof(x)*8-y)))
  37. #define rotr(x,y) ((x>>y) | (x<<(sizeof(x)*8-y)))
  38. #define R(a, b, c, d, e, f, g, h, w, k) \
  39. h = h + (rotate(e, 26) ^ rotate(e, 21) ^ rotate(e, 7)) + (g ^ (e & (f ^ g))) + k + w; \
  40. d = d + h; \
  41. h = h + (rotate(a, 30) ^ rotate(a, 19) ^ rotate(a, 10)) + ((a & b) | (c & (a | b)))
  42. void precalc_hash(dev_blk_ctx *blk, uint32_t *state, uint32_t *data)
  43. {
  44. cl_uint A, B, C, D, E, F, G, H;
  45. A = state[0];
  46. B = state[1];
  47. C = state[2];
  48. D = state[3];
  49. E = state[4];
  50. F = state[5];
  51. G = state[6];
  52. H = state[7];
  53. R(A, B, C, D, E, F, G, H, data[0], SHA256_K[0]);
  54. R(H, A, B, C, D, E, F, G, data[1], SHA256_K[1]);
  55. R(G, H, A, B, C, D, E, F, data[2], SHA256_K[2]);
  56. blk->cty_a = A;
  57. blk->cty_b = B;
  58. blk->cty_c = C;
  59. blk->cty_d = D;
  60. blk->D1A = D + 0xb956c25b;
  61. blk->cty_e = E;
  62. blk->cty_f = F;
  63. blk->cty_g = G;
  64. blk->cty_h = H;
  65. blk->ctx_a = state[0];
  66. blk->ctx_b = state[1];
  67. blk->ctx_c = state[2];
  68. blk->ctx_d = state[3];
  69. blk->ctx_e = state[4];
  70. blk->ctx_f = state[5];
  71. blk->ctx_g = state[6];
  72. blk->ctx_h = state[7];
  73. blk->merkle = data[0];
  74. blk->ntime = data[1];
  75. blk->nbits = data[2];
  76. blk->W16 = blk->fW0 = data[0] + (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3));
  77. blk->W17 = blk->fW1 = data[1] + (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) + 0x01100000;
  78. blk->PreVal4 = blk->fcty_e = blk->ctx_e + (rotr(B, 6) ^ rotr(B, 11) ^ rotr(B, 25)) + (D ^ (B & (C ^ D))) + 0xe9b5dba5;
  79. blk->T1 = blk->fcty_e2 = (rotr(F, 2) ^ rotr(F, 13) ^ rotr(F, 22)) + ((F & G) | (H & (F | G)));
  80. blk->PreVal4_2 = blk->PreVal4 + blk->T1;
  81. blk->PreVal0 = blk->PreVal4 + blk->ctx_a;
  82. blk->PreW31 = 0x00000280 + (rotr(blk->W16, 7) ^ rotr(blk->W16, 18) ^ (blk->W16 >> 3));
  83. blk->PreW32 = blk->W16 + (rotr(blk->W17, 7) ^ rotr(blk->W17, 18) ^ (blk->W17 >> 3));
  84. blk->PreW18 = data[2] + (rotr(blk->W16, 17) ^ rotr(blk->W16, 19) ^ (blk->W16 >> 10));
  85. blk->PreW19 = 0x11002000 + (rotr(blk->W17, 17) ^ rotr(blk->W17, 19) ^ (blk->W17 >> 10));
  86. blk->W2 = data[2];
  87. blk->W2A = blk->W2 + (rotr(blk->W16, 19) ^ rotr(blk->W16, 17) ^ (blk->W16 >> 10));
  88. blk->W17_2 = 0x11002000 + (rotr(blk->W17, 19) ^ rotr(blk->W17, 17) ^ (blk->W17 >> 10));
  89. blk->fW2 = data[2] + (rotr(blk->fW0, 17) ^ rotr(blk->fW0, 19) ^ (blk->fW0 >> 10));
  90. blk->fW3 = 0x11002000 + (rotr(blk->fW1, 17) ^ rotr(blk->fW1, 19) ^ (blk->fW1 >> 10));
  91. blk->fW15 = 0x00000280 + (rotr(blk->fW0, 7) ^ rotr(blk->fW0, 18) ^ (blk->fW0 >> 3));
  92. blk->fW01r = blk->fW0 + (rotr(blk->fW1, 7) ^ rotr(blk->fW1, 18) ^ (blk->fW1 >> 3));
  93. blk->PreVal4addT1 = blk->PreVal4 + blk->T1;
  94. blk->T1substate0 = blk->ctx_a - blk->T1;
  95. blk->C1addK5 = blk->cty_c + SHA256_K[5];
  96. blk->B1addK6 = blk->cty_b + SHA256_K[6];
  97. blk->PreVal0addK7 = blk->PreVal0 + SHA256_K[7];
  98. blk->W16addK16 = blk->W16 + SHA256_K[16];
  99. blk->W17addK17 = blk->W17 + SHA256_K[17];
  100. blk->zeroA = blk->ctx_a + 0x98c7e2a2;
  101. blk->zeroB = blk->ctx_a + 0xfc08884d;
  102. blk->oneA = blk->ctx_b + 0x90bb1e3c;
  103. blk->twoA = blk->ctx_c + 0x50c6645b;
  104. blk->threeA = blk->ctx_d + 0x3ac42e24;
  105. blk->fourA = blk->ctx_e + SHA256_K[4];
  106. blk->fiveA = blk->ctx_f + SHA256_K[5];
  107. blk->sixA = blk->ctx_g + SHA256_K[6];
  108. blk->sevenA = blk->ctx_h + SHA256_K[7];
  109. }
  110. #if 0 // not used any more
  111. #define P(t) (W[(t)&0xF] = W[(t-16)&0xF] + (rotate(W[(t-15)&0xF], 25) ^ rotate(W[(t-15)&0xF], 14) ^ (W[(t-15)&0xF] >> 3)) + W[(t-7)&0xF] + (rotate(W[(t-2)&0xF], 15) ^ rotate(W[(t-2)&0xF], 13) ^ (W[(t-2)&0xF] >> 10)))
  112. #define IR(u) \
  113. R(A, B, C, D, E, F, G, H, W[u+0], SHA256_K[u+0]); \
  114. R(H, A, B, C, D, E, F, G, W[u+1], SHA256_K[u+1]); \
  115. R(G, H, A, B, C, D, E, F, W[u+2], SHA256_K[u+2]); \
  116. R(F, G, H, A, B, C, D, E, W[u+3], SHA256_K[u+3]); \
  117. R(E, F, G, H, A, B, C, D, W[u+4], SHA256_K[u+4]); \
  118. R(D, E, F, G, H, A, B, C, W[u+5], SHA256_K[u+5]); \
  119. R(C, D, E, F, G, H, A, B, W[u+6], SHA256_K[u+6]); \
  120. R(B, C, D, E, F, G, H, A, W[u+7], SHA256_K[u+7])
  121. #define FR(u) \
  122. R(A, B, C, D, E, F, G, H, P(u+0), SHA256_K[u+0]); \
  123. R(H, A, B, C, D, E, F, G, P(u+1), SHA256_K[u+1]); \
  124. R(G, H, A, B, C, D, E, F, P(u+2), SHA256_K[u+2]); \
  125. R(F, G, H, A, B, C, D, E, P(u+3), SHA256_K[u+3]); \
  126. R(E, F, G, H, A, B, C, D, P(u+4), SHA256_K[u+4]); \
  127. R(D, E, F, G, H, A, B, C, P(u+5), SHA256_K[u+5]); \
  128. R(C, D, E, F, G, H, A, B, P(u+6), SHA256_K[u+6]); \
  129. R(B, C, D, E, F, G, H, A, P(u+7), SHA256_K[u+7])
  130. #define PIR(u) \
  131. R(F, G, H, A, B, C, D, E, W[u+3], SHA256_K[u+3]); \
  132. R(E, F, G, H, A, B, C, D, W[u+4], SHA256_K[u+4]); \
  133. R(D, E, F, G, H, A, B, C, W[u+5], SHA256_K[u+5]); \
  134. R(C, D, E, F, G, H, A, B, W[u+6], SHA256_K[u+6]); \
  135. R(B, C, D, E, F, G, H, A, W[u+7], SHA256_K[u+7])
  136. #define PFR(u) \
  137. R(A, B, C, D, E, F, G, H, P(u+0), SHA256_K[u+0]); \
  138. R(H, A, B, C, D, E, F, G, P(u+1), SHA256_K[u+1]); \
  139. R(G, H, A, B, C, D, E, F, P(u+2), SHA256_K[u+2]); \
  140. R(F, G, H, A, B, C, D, E, P(u+3), SHA256_K[u+3]); \
  141. R(E, F, G, H, A, B, C, D, P(u+4), SHA256_K[u+4]); \
  142. R(D, E, F, G, H, A, B, C, P(u+5), SHA256_K[u+5])
  143. #endif
  144. struct pc_data {
  145. struct thr_info *thr;
  146. struct work *work;
  147. uint32_t res[MAXBUFFERS];
  148. pthread_t pth;
  149. int found;
  150. };
  151. static void send_scrypt_nonce(struct pc_data *pcd, uint32_t nonce)
  152. {
  153. struct thr_info *thr = pcd->thr;
  154. struct work *work = pcd->work;
  155. if (scrypt_test(work->data, work->target, nonce))
  156. submit_nonce(thr, work, nonce);
  157. else {
  158. applog(LOG_INFO, "Scrypt error, review settings");
  159. thr->cgpu->hw_errors++;
  160. }
  161. }
  162. static void *postcalc_hash(void *userdata)
  163. {
  164. struct pc_data *pcd = (struct pc_data *)userdata;
  165. struct thr_info *thr = pcd->thr;
  166. unsigned int entry = 0;
  167. pthread_detach(pthread_self());
  168. /* To prevent corrupt values in FOUND from trying to read beyond the
  169. * end of the res[] array */
  170. if (unlikely(pcd->res[FOUND] & ~FOUND)) {
  171. applog(LOG_WARNING, "%s%d: invalid nonce count - HW error",
  172. thr->cgpu->drv->name, thr->cgpu->device_id);
  173. hw_errors++;
  174. thr->cgpu->hw_errors++;
  175. pcd->res[FOUND] &= FOUND;
  176. }
  177. for (entry = 0; entry < pcd->res[FOUND]; entry++) {
  178. uint32_t nonce = pcd->res[entry];
  179. applog(LOG_DEBUG, "OCL NONCE %u found in slot %d", nonce, entry);
  180. if (opt_scrypt)
  181. send_scrypt_nonce(pcd, nonce);
  182. else
  183. submit_nonce(thr, pcd->work, nonce);
  184. }
  185. discard_work(pcd->work);
  186. free(pcd);
  187. return NULL;
  188. }
  189. void postcalc_hash_async(struct thr_info *thr, struct work *work, uint32_t *res)
  190. {
  191. struct pc_data *pcd = malloc(sizeof(struct pc_data));
  192. if (unlikely(!pcd)) {
  193. applog(LOG_ERR, "Failed to malloc pc_data in postcalc_hash_async");
  194. return;
  195. }
  196. pcd->thr = thr;
  197. pcd->work = copy_work(work);
  198. memcpy(&pcd->res, res, BUFFERSIZE);
  199. if (pthread_create(&pcd->pth, NULL, postcalc_hash, (void *)pcd)) {
  200. applog(LOG_ERR, "Failed to create postcalc_hash thread");
  201. return;
  202. }
  203. }
  204. #endif /* HAVE_OPENCL */