libbitfury.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. /*
  2. * Copyright 2013 bitfury
  3. * Copyright 2013 Anatoly Legkodymov
  4. * Copyright 2013 Luke Dashjr
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  19. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "config.h"
  25. #include <stdbool.h>
  26. #include <stdint.h>
  27. #include <stdio.h>
  28. #include <unistd.h>
  29. #include <string.h>
  30. #include "logging.h"
  31. #include "miner.h"
  32. #include "libbitfury.h"
  33. #include "spidevc.h"
  34. #include "sha2.h"
  35. #include <time.h>
  36. #define BITFURY_REFRESH_DELAY 100
  37. #define BITFURY_DETECT_TRIES 3000 / BITFURY_REFRESH_DELAY
  38. unsigned bitfury_decnonce(unsigned in);
  39. /* Configuration registers - control oscillators and such stuff. PROGRAMMED when magic number is matches, UNPROGRAMMED (default) otherwise */
  40. static
  41. void bitfury_config_reg(struct spi_port *port, int cfgreg, int ena)
  42. {
  43. static const uint8_t enaconf[4] = { 0xc1, 0x6a, 0x59, 0xe3 };
  44. static const uint8_t disconf[4] = { 0, 0, 0, 0 };
  45. if (ena) spi_emit_data(port, 0x7000+cfgreg*32, enaconf, 4);
  46. else spi_emit_data(port, 0x7000+cfgreg*32, disconf, 4);
  47. }
  48. #define FIRST_BASE 61
  49. #define SECOND_BASE 4
  50. static
  51. const int8_t bitfury_counters[16] = { 64, 64,
  52. SECOND_BASE, SECOND_BASE+4, SECOND_BASE+2, SECOND_BASE+2+16, SECOND_BASE, SECOND_BASE+1,
  53. (FIRST_BASE)%65, (FIRST_BASE+1)%65, (FIRST_BASE+3)%65, (FIRST_BASE+3+16)%65, (FIRST_BASE+4)%65, (FIRST_BASE+4+4)%65, (FIRST_BASE+3+3)%65, (FIRST_BASE+3+1+3)%65};
  54. /* Oscillator setup variants (maybe more), values inside of chip ANDed to not allow by programming errors work it at higher speeds */
  55. /* WARNING! no chip temperature control limits, etc. It may self-fry and make fried chips with great ease :-) So if trying to overclock */
  56. /* Do not place chip near flammable objects, provide adequate power protection and better wear eye protection ! */
  57. /* Thermal runaway in this case could produce nice flames of chippy fries */
  58. // Thermometer code from left to right - more ones ==> faster clock!
  59. #define rotrFixed(x,y) (((x) >> (y)) | ((x) << (32-(y))))
  60. #define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3))
  61. #define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10))
  62. #define Ch(x,y,z) (z^(x&(y^z)))
  63. #define Maj(x,y,z) (y^((x^y)&(y^z)))
  64. #define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22))
  65. #define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25))
  66. /* SHA256 CONSTANTS */
  67. static const unsigned SHA_K[64] = {
  68. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  69. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  70. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  71. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  72. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  73. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  74. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  75. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  76. };
  77. static
  78. void libbitfury_ms3_compute(unsigned *p)
  79. {
  80. unsigned a,b,c,d,e,f,g,h, ne, na, i;
  81. a = p[0]; b = p[1]; c = p[2]; d = p[3]; e = p[4]; f = p[5]; g = p[6]; h = p[7];
  82. for (i = 0; i < 3; i++) {
  83. ne = p[i+16] + SHA_K[i] + h + Ch(e,f,g) + S1(e) + d;
  84. na = p[i+16] + SHA_K[i] + h + Ch(e,f,g) + S1(e) + S0(a) + Maj(a,b,c);
  85. d = c; c = b; b = a; a = na;
  86. h = g; g = f; f = e; e = ne;
  87. }
  88. p[15] = a; p[14] = b; p[13] = c; p[12] = d; p[11] = e; p[10] = f; p[9] = g; p[8] = h;
  89. }
  90. static
  91. void bitfury_send_conf(struct spi_port *port) {
  92. int i;
  93. for (i = 7; i <= 11; ++i)
  94. bitfury_config_reg(port, i, 0);
  95. bitfury_config_reg(port, 6, 0); /* disable OUTSLK */
  96. bitfury_config_reg(port, 4, 1); /* Enable slow oscillator */
  97. for (i = 1; i <= 3; ++i)
  98. bitfury_config_reg(port, i, 0);
  99. spi_emit_data(port, 0x0100, bitfury_counters, 16); /* Program counters correctly for rounds processing, here baby should start consuming power */
  100. }
  101. static
  102. void bitfury_send_init(struct spi_port *port) {
  103. /* Prepare internal buffers */
  104. /* PREPARE BUFFERS (INITIAL PROGRAMMING) */
  105. unsigned w[16];
  106. unsigned atrvec[] = {
  107. 0xb0e72d8e, 0x1dc5b862, 0xe9e7c4a6, 0x3050f1f5, 0x8a1a6b7e, 0x7ec384e8, 0x42c1c3fc, 0x8ed158a1, /* MIDSTATE */
  108. 0,0,0,0,0,0,0,0,
  109. 0x8a0bb7b7, 0x33af304f, 0x0b290c1a, 0xf0c4e61f, /* WDATA: hashMerleRoot[7], nTime, nBits, nNonce */
  110. };
  111. libbitfury_ms3_compute(&atrvec[0]);
  112. memset(&w, 0, sizeof(w)); w[3] = 0xffffffff; w[4] = 0x80000000; w[15] = 0x00000280;
  113. spi_emit_data(port, 0x1000, w, 16*4);
  114. spi_emit_data(port, 0x1400, w, 8*4);
  115. memset(w, 0, sizeof(w)); w[0] = 0x80000000; w[7] = 0x100;
  116. spi_emit_data(port, 0x1900, &w[0],8*4); /* Prepare MS and W buffers! */
  117. spi_emit_data(port, 0x3000, &atrvec[0], 19*4);
  118. }
  119. static
  120. void bitfury_set_freq(struct spi_port *port, int bits) {
  121. uint64_t freq;
  122. const uint8_t *
  123. osc6 = (unsigned char *)&freq;
  124. freq = (1ULL << bits) - 1ULL;
  125. spi_emit_data(port, 0x6000, osc6, 8); /* Program internal on-die slow oscillator frequency */
  126. bitfury_config_reg(port, 4, 1); /* Enable slow oscillator */
  127. }
  128. void bitfury_send_reinit(struct spi_port *port, int slot, int chip_n, int osc6) {
  129. spi_clear_buf(port);
  130. spi_emit_break(port);
  131. spi_emit_fasync(port, chip_n);
  132. bitfury_set_freq(port, osc6);
  133. bitfury_send_conf(port);
  134. bitfury_send_init(port);
  135. spi_txrx(port);
  136. }
  137. void bitfury_send_shutdown(struct spi_port *port, int slot, int chip_n) {
  138. spi_clear_buf(port);
  139. spi_emit_break(port);
  140. spi_emit_fasync(port, chip_n);
  141. bitfury_config_reg(port, 4, 0); /* Disable slow oscillator */
  142. spi_txrx(port);
  143. }
  144. void bitfury_send_freq(struct spi_port *port, int slot, int chip_n, int bits) {
  145. spi_clear_buf(port);
  146. spi_emit_break(port);
  147. spi_emit_fasync(port, chip_n);
  148. bitfury_set_freq(port, bits);
  149. spi_txrx(port);
  150. }
  151. static
  152. unsigned int libbitfury_c_diff(unsigned ocounter, unsigned counter) {
  153. return counter > ocounter ? counter - ocounter : (0x003FFFFF - ocounter) + counter;
  154. }
  155. static
  156. int libbitfury_get_counter(unsigned int *newbuf, unsigned int *oldbuf) {
  157. int j;
  158. for(j = 0; j < 16; j++) {
  159. if (newbuf[j] != oldbuf[j]) {
  160. unsigned counter = bitfury_decnonce(newbuf[j]);
  161. if ((counter & 0xFFC00000) == 0xdf800000) {
  162. counter -= 0xdf800000;
  163. return counter;
  164. }
  165. }
  166. }
  167. return 0;
  168. }
  169. static
  170. int libbitfury_detect_chip(struct spi_port *port, int chip_n) {
  171. /* Test vectors to calculate (using address-translated loads) */
  172. unsigned atrvec[] = {
  173. 0xb0e72d8e, 0x1dc5b862, 0xe9e7c4a6, 0x3050f1f5, 0x8a1a6b7e, 0x7ec384e8, 0x42c1c3fc, 0x8ed158a1, /* MIDSTATE */
  174. 0,0,0,0,0,0,0,0,
  175. 0x8a0bb7b7, 0x33af304f, 0x0b290c1a, 0xf0c4e61f, /* WDATA: hashMerleRoot[7], nTime, nBits, nNonce */
  176. 0x9c4dfdc0, 0xf055c9e1, 0xe60f079d, 0xeeada6da, 0xd459883d, 0xd8049a9d, 0xd49f9a96, 0x15972fed, /* MIDSTATE */
  177. 0,0,0,0,0,0,0,0,
  178. 0x048b2528, 0x7acb2d4f, 0x0b290c1a, 0xbe00084a, /* WDATA: hashMerleRoot[7], nTime, nBits, nNonce */
  179. 0x0317b3ea, 0x1d227d06, 0x3cca281e, 0xa6d0b9da, 0x1a359fe2, 0xa7287e27, 0x8b79c296, 0xc4d88274, /* MIDSTATE */
  180. 0,0,0,0,0,0,0,0,
  181. 0x328bcd4f, 0x75462d4f, 0x0b290c1a, 0x002c6dbc, /* WDATA: hashMerleRoot[7], nTime, nBits, nNonce */
  182. 0xac4e38b6, 0xba0e3b3b, 0x649ad6f8, 0xf72e4c02, 0x93be06fb, 0x366d1126, 0xf4aae554, 0x4ff19c5b, /* MIDSTATE */
  183. 0,0,0,0,0,0,0,0,
  184. 0x72698140, 0x3bd62b4f, 0x3fd40c1a, 0x801e43e9, /* WDATA: hashMerleRoot[7], nTime, nBits, nNonce */
  185. 0x9dbf91c9, 0x12e5066c, 0xf4184b87, 0x8060bc4d, 0x18f9c115, 0xf589d551, 0x0f7f18ae, 0x885aca59, /* MIDSTATE */
  186. 0,0,0,0,0,0,0,0,
  187. 0x6f3806c3, 0x41f82a4f, 0x3fd40c1a, 0x00334b39, /* WDATA: hashMerleRoot[7], nTime, nBits, nNonce */
  188. };
  189. int i;
  190. unsigned newbuf[17], oldbuf[17];
  191. unsigned ocounter;
  192. int odiff = 0;
  193. memset(newbuf, 0, 17 * 4);
  194. memset(oldbuf, 0, 17 * 4);
  195. libbitfury_ms3_compute(&atrvec[0]);
  196. libbitfury_ms3_compute(&atrvec[20]);
  197. libbitfury_ms3_compute(&atrvec[40]);
  198. spi_clear_buf(port);
  199. spi_emit_break(port); /* First we want to break chain! Otherwise we'll get all of traffic bounced to output */
  200. spi_emit_fasync(port, chip_n);
  201. bitfury_set_freq(port, 52); //54 - 3F, 53 - 1F
  202. bitfury_send_conf(port);
  203. bitfury_send_init(port);
  204. spi_txrx(port);
  205. ocounter = 0;
  206. for (i = 0; i < BITFURY_DETECT_TRIES; i++) {
  207. int counter;
  208. spi_clear_buf(port);
  209. spi_emit_break(port);
  210. spi_emit_fasync(port, chip_n);
  211. spi_emit_data(port, 0x3000, &atrvec[0], 19*4);
  212. spi_txrx(port);
  213. memcpy(newbuf, spi_getrxbuf(port) + 4 + chip_n, 17*4);
  214. counter = libbitfury_get_counter(newbuf, oldbuf);
  215. if (ocounter) {
  216. unsigned int cdiff = libbitfury_c_diff(ocounter, counter);
  217. if (cdiff > 5000 && cdiff < 100000 && odiff > 5000 && odiff < 100000)
  218. return 1;
  219. odiff = cdiff;
  220. }
  221. ocounter = counter;
  222. if (newbuf[16] != 0 && newbuf[16] != 0xFFFFFFFF) {
  223. return 0;
  224. }
  225. cgsleep_ms(BITFURY_REFRESH_DELAY / 10);
  226. memcpy(oldbuf, newbuf, 17 * 4);
  227. }
  228. return 0;
  229. }
  230. int libbitfury_detectChips1(struct spi_port *port) {
  231. int n;
  232. for (n = 0; libbitfury_detect_chip(port, n); ++n)
  233. {}
  234. return n;
  235. }
  236. // in = 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 f e d c b a 9 8 7 6 5 4 3 2 1 0
  237. unsigned bitfury_decnonce(unsigned in)
  238. {
  239. unsigned out;
  240. /* First part load */
  241. out = (in & 0xFF) << 24; in >>= 8;
  242. /* Byte reversal */
  243. in = (((in & 0xaaaaaaaa) >> 1) | ((in & 0x55555555) << 1));
  244. in = (((in & 0xcccccccc) >> 2) | ((in & 0x33333333) << 2));
  245. in = (((in & 0xf0f0f0f0) >> 4) | ((in & 0x0f0f0f0f) << 4));
  246. out |= (in >> 2)&0x3FFFFF;
  247. /* Extraction */
  248. if (in & 1) out |= (1 << 23);
  249. if (in & 2) out |= (1 << 22);
  250. // out = 7 6 5 4 3 2 1 0 f e 18 19 1a 1b 1c 1d 1e 1f 10 11 12 13 14 15 16 17 8 9 a b c d
  251. out -= 0x800004;
  252. return out;
  253. }
  254. static
  255. int libbitfury_rehash(const void *midstate, const uint32_t m7, const uint32_t ntime, const uint32_t nbits, uint32_t nnonce) {
  256. unsigned char in[16];
  257. unsigned int *in32 = (unsigned int *)in;
  258. unsigned int *mid32 = (unsigned int *)midstate;
  259. unsigned out32[8];
  260. unsigned char *out = (unsigned char *) out32;
  261. #ifdef BITFURY_REHASH_DEBUG
  262. static unsigned history[512];
  263. static unsigned history_p;
  264. #endif
  265. sha256_ctx ctx;
  266. memset( &ctx, 0, sizeof( sha256_ctx ) );
  267. memcpy(ctx.h, mid32, 8*4);
  268. ctx.tot_len = 64;
  269. ctx.len = 0;
  270. nnonce = bswap_32(nnonce);
  271. in32[0] = bswap_32(m7);
  272. in32[1] = bswap_32(ntime);
  273. in32[2] = bswap_32(nbits);
  274. in32[3] = nnonce;
  275. sha256_update(&ctx, in, 16);
  276. sha256_final(&ctx, out);
  277. sha256(out, 32, out);
  278. if (out32[7] == 0) {
  279. #ifdef BITFURY_REHASH_DEBUG
  280. char hex[65];
  281. bin2hex(hex, out, 32);
  282. applog(LOG_INFO, "! MS0: %08x, m7: %08x, ntime: %08x, nbits: %08x, nnonce: %08x", mid32[0], m7, ntime, nbits, nnonce);
  283. applog(LOG_INFO, " out: %s", hex);
  284. history[history_p] = nnonce;
  285. history_p++; history_p &= 512 - 1;
  286. #endif
  287. return 1;
  288. }
  289. return 0;
  290. }
  291. bool bitfury_fudge_nonce(const void *midstate, const uint32_t m7, const uint32_t ntime, const uint32_t nbits, uint32_t *nonce_p) {
  292. static const uint32_t offsets[] = {0, 0xffc00000, 0xff800000, 0x02800000, 0x02C00000, 0x00400000};
  293. uint32_t nonce;
  294. int i;
  295. for (i = 0; i < 6; ++i)
  296. {
  297. nonce = *nonce_p + offsets[i];
  298. if (libbitfury_rehash(midstate, m7, ntime, nbits, nonce))
  299. {
  300. *nonce_p = nonce;
  301. return true;
  302. }
  303. }
  304. return false;
  305. }
  306. void work_to_bitfury_payload(struct bitfury_payload *p, struct work *w) {
  307. unsigned char flipped_data[80];
  308. memset(p, 0, sizeof(struct bitfury_payload));
  309. swap32yes(flipped_data, w->data, 80 / 4);
  310. memcpy(p->midstate, w->midstate, 32);
  311. p->m7 = bswap_32(*(unsigned *)(flipped_data + 64));
  312. p->ntime = bswap_32(*(unsigned *)(flipped_data + 68));
  313. p->nbits = bswap_32(*(unsigned *)(flipped_data + 72));
  314. }
  315. void bitfury_payload_to_atrvec(uint32_t *atrvec, struct bitfury_payload *p)
  316. {
  317. /* Programming next value */
  318. memcpy(atrvec, p, 20*4);
  319. libbitfury_ms3_compute(atrvec);
  320. }