driver-avalon.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020
  1. /*
  2. * Copyright 2013 Con Kolivas <kernel@kolivas.org>
  3. * Copyright 2012-2013 Xiangfu <xiangfu@openmobilefree.com>
  4. * Copyright 2012 Luke Dashjr
  5. * Copyright 2012 Andrew Smith
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License as published by the Free
  9. * Software Foundation; either version 3 of the License, or (at your option)
  10. * any later version. See COPYING for more details.
  11. */
  12. #include "config.h"
  13. #include <limits.h>
  14. #include <pthread.h>
  15. #include <stdio.h>
  16. #include <sys/time.h>
  17. #include <sys/types.h>
  18. #include <sys/select.h>
  19. #include <dirent.h>
  20. #include <unistd.h>
  21. #ifndef WIN32
  22. #include <termios.h>
  23. #include <sys/stat.h>
  24. #include <fcntl.h>
  25. #ifndef O_CLOEXEC
  26. #define O_CLOEXEC 0
  27. #endif
  28. #else
  29. #include <windows.h>
  30. #include <io.h>
  31. #endif
  32. #include "elist.h"
  33. #include "miner.h"
  34. #include "fpgautils.h"
  35. #include "driver-avalon.h"
  36. #include "hexdump.c"
  37. static int option_offset = -1;
  38. struct avalon_info **avalon_infos;
  39. struct device_drv avalon_drv;
  40. static int avalon_init_task(struct avalon_task *at,
  41. uint8_t reset, uint8_t ff, uint8_t fan,
  42. uint8_t timeout, uint8_t asic_num,
  43. uint8_t miner_num, uint8_t nonce_elf,
  44. uint8_t gate_miner, int frequency)
  45. {
  46. uint8_t *buf;
  47. static bool first = true;
  48. if (unlikely(!at))
  49. return -1;
  50. if (unlikely(timeout <= 0 || asic_num <= 0 || miner_num <= 0))
  51. return -1;
  52. memset(at, 0, sizeof(struct avalon_task));
  53. if (unlikely(reset)) {
  54. at->reset = 1;
  55. at->fan_eft = 1;
  56. at->timer_eft = 1;
  57. first = true;
  58. }
  59. at->flush_fifo = (ff ? 1 : 0);
  60. at->fan_eft = (fan ? 1 : 0);
  61. if (unlikely(first && !at->reset)) {
  62. at->fan_eft = 1;
  63. at->timer_eft = 1;
  64. first = false;
  65. }
  66. at->fan_pwm_data = (fan ? fan : AVALON_DEFAULT_FAN_MAX_PWM);
  67. at->timeout_data = timeout;
  68. at->asic_num = asic_num;
  69. at->miner_num = miner_num;
  70. at->nonce_elf = nonce_elf;
  71. at->gate_miner_elf = 1;
  72. at->asic_pll = 1;
  73. if (unlikely(gate_miner)) {
  74. at-> gate_miner = 1;
  75. at->asic_pll = 0;
  76. }
  77. buf = (uint8_t *)at;
  78. buf[5] = 0x00;
  79. buf[8] = 0x74;
  80. buf[9] = 0x01;
  81. buf[10] = 0x00;
  82. buf[11] = 0x00;
  83. if (frequency == 256) {
  84. buf[6] = 0x03;
  85. buf[7] = 0x08;
  86. } else if (frequency == 270) {
  87. buf[6] = 0x73;
  88. buf[7] = 0x08;
  89. } else if (frequency == 282) {
  90. buf[6] = 0xd3;
  91. buf[7] = 0x08;
  92. } else if (frequency == 300) {
  93. buf[6] = 0x63;
  94. buf[7] = 0x09;
  95. }
  96. return 0;
  97. }
  98. static inline void avalon_create_task(struct avalon_task *at,
  99. struct work *work)
  100. {
  101. memcpy(at->midstate, work->midstate, 32);
  102. memcpy(at->data, work->data + 64, 12);
  103. }
  104. static int avalon_send_task(int fd, const struct avalon_task *at,
  105. struct cgpu_info *avalon)
  106. {
  107. size_t ret;
  108. int full;
  109. struct timespec p;
  110. uint8_t buf[AVALON_WRITE_SIZE + 4 * AVALON_DEFAULT_ASIC_NUM];
  111. size_t nr_len;
  112. struct avalon_info *info;
  113. uint64_t delay = 32000000; /* Default 32ms for B19200 */
  114. uint32_t nonce_range;
  115. int i;
  116. if (at->nonce_elf)
  117. nr_len = AVALON_WRITE_SIZE + 4 * at->asic_num;
  118. else
  119. nr_len = AVALON_WRITE_SIZE;
  120. memcpy(buf, at, AVALON_WRITE_SIZE);
  121. if (at->nonce_elf) {
  122. nonce_range = (uint32_t)0xffffffff / at->asic_num;
  123. for (i = 0; i < at->asic_num; i++) {
  124. buf[AVALON_WRITE_SIZE + (i * 4) + 3] =
  125. (i * nonce_range & 0xff000000) >> 24;
  126. buf[AVALON_WRITE_SIZE + (i * 4) + 2] =
  127. (i * nonce_range & 0x00ff0000) >> 16;
  128. buf[AVALON_WRITE_SIZE + (i * 4) + 1] =
  129. (i * nonce_range & 0x0000ff00) >> 8;
  130. buf[AVALON_WRITE_SIZE + (i * 4) + 0] =
  131. (i * nonce_range & 0x000000ff) >> 0;
  132. }
  133. }
  134. #if defined(__BIG_ENDIAN__) || defined(MIPSEB)
  135. uint8_t tt = 0;
  136. tt = (buf[0] & 0x0f) << 4;
  137. tt |= ((buf[0] & 0x10) ? (1 << 3) : 0);
  138. tt |= ((buf[0] & 0x20) ? (1 << 2) : 0);
  139. tt |= ((buf[0] & 0x40) ? (1 << 1) : 0);
  140. tt |= ((buf[0] & 0x80) ? (1 << 0) : 0);
  141. buf[0] = tt;
  142. tt = (buf[4] & 0x0f) << 4;
  143. tt |= ((buf[4] & 0x10) ? (1 << 3) : 0);
  144. tt |= ((buf[4] & 0x20) ? (1 << 2) : 0);
  145. tt |= ((buf[4] & 0x40) ? (1 << 1) : 0);
  146. tt |= ((buf[4] & 0x80) ? (1 << 0) : 0);
  147. buf[4] = tt;
  148. #endif
  149. if (likely(avalon)) {
  150. info = avalon_infos[avalon->device_id];
  151. delay = nr_len * 10 * 1000000000ULL;
  152. delay = delay / info->baud;
  153. }
  154. if (at->reset)
  155. nr_len = 1;
  156. if (opt_debug) {
  157. applog(LOG_DEBUG, "Avalon: Sent(%d):", nr_len);
  158. hexdump((uint8_t *)buf, nr_len);
  159. }
  160. ret = write(fd, buf, nr_len);
  161. if (unlikely(ret != nr_len))
  162. return AVA_SEND_ERROR;
  163. p.tv_sec = 0;
  164. p.tv_nsec = (long)delay + 4000000;
  165. nanosleep(&p, NULL);
  166. applog(LOG_DEBUG, "Avalon: Sent: Buffer delay: %ld", p.tv_nsec);
  167. full = avalon_buffer_full(fd);
  168. applog(LOG_DEBUG, "Avalon: Sent: Buffer full: %s",
  169. ((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
  170. if (unlikely(full == AVA_BUFFER_FULL))
  171. return AVA_SEND_BUFFER_FULL;
  172. return AVA_SEND_BUFFER_EMPTY;
  173. }
  174. static int avalon_gets(int fd, uint8_t *buf, int read_count,
  175. struct thr_info *thr, struct timeval *tv_finish)
  176. {
  177. ssize_t ret = 0;
  178. int rc = 0;
  179. int read_amount = AVALON_READ_SIZE;
  180. bool first = true;
  181. while (true) {
  182. struct timeval timeout = {0, 100000};
  183. fd_set rd;
  184. FD_ZERO(&rd);
  185. FD_SET(fd, &rd);
  186. ret = select(fd + 1, &rd, NULL, NULL, &timeout);
  187. if (unlikely(ret < 0))
  188. return AVA_GETS_ERROR;
  189. if (ret) {
  190. ret = read(fd, buf, read_amount);
  191. if (unlikely(ret < 0))
  192. return AVA_GETS_ERROR;
  193. if (likely(first)) {
  194. if (likely(tv_finish))
  195. gettimeofday(tv_finish, NULL);
  196. first = false;
  197. }
  198. if (likely(ret >= read_amount))
  199. return AVA_GETS_OK;
  200. buf += ret;
  201. read_amount -= ret;
  202. continue;
  203. }
  204. rc++;
  205. if (rc >= read_count) {
  206. if (opt_debug) {
  207. applog(LOG_WARNING,
  208. "Avalon: No data in %.2f seconds",
  209. (float)rc/(float)AVALON_TIME_FACTOR);
  210. }
  211. return AVA_GETS_TIMEOUT;
  212. }
  213. if (thr && thr->work_restart) {
  214. if (opt_debug) {
  215. applog(LOG_WARNING,
  216. "Avalon: Work restart at %.2f seconds",
  217. (float)(rc)/(float)AVALON_TIME_FACTOR);
  218. }
  219. return AVA_GETS_RESTART;
  220. }
  221. }
  222. }
  223. static int avalon_get_result(int fd, struct avalon_result *ar,
  224. struct thr_info *thr, struct timeval *tv_finish)
  225. {
  226. struct cgpu_info *avalon;
  227. struct avalon_info *info;
  228. uint8_t result[AVALON_READ_SIZE];
  229. int ret, read_count = AVALON_RESET_FAULT_DECISECONDS * AVALON_TIME_FACTOR;
  230. if (likely(thr)) {
  231. avalon = thr->cgpu;
  232. info = avalon_infos[avalon->device_id];
  233. read_count = info->read_count;
  234. }
  235. memset(result, 0, AVALON_READ_SIZE);
  236. ret = avalon_gets(fd, result, read_count, thr, tv_finish);
  237. memset(ar, 0, sizeof(struct avalon_result));
  238. if (ret == AVA_GETS_OK) {
  239. if (opt_debug) {
  240. applog(LOG_DEBUG, "Avalon: get:");
  241. hexdump((uint8_t *)result, AVALON_READ_SIZE);
  242. }
  243. memcpy((uint8_t *)ar, result, AVALON_READ_SIZE);
  244. }
  245. return ret;
  246. }
  247. static bool avalon_decode_nonce(struct thr_info *thr, struct avalon_result *ar,
  248. uint32_t *nonce)
  249. {
  250. struct cgpu_info *avalon;
  251. struct avalon_info *info;
  252. struct work *work;
  253. avalon = thr->cgpu;
  254. if (unlikely(!avalon->works))
  255. return false;
  256. work = find_queued_work_bymidstate(avalon, (char *)ar->midstate, 32,
  257. (char *)ar->data, 64, 12);
  258. if (!work)
  259. return false;
  260. info = avalon_infos[avalon->device_id];
  261. info->matching_work++;
  262. *nonce = htole32(ar->nonce);
  263. submit_nonce(thr, work, *nonce);
  264. return true;
  265. }
  266. static int avalon_reset(int fd, struct avalon_result *ar)
  267. {
  268. struct avalon_task at;
  269. uint8_t *buf;
  270. int ret, i = 0;
  271. struct timespec p;
  272. avalon_init_task(&at, 1, 0,
  273. AVALON_DEFAULT_FAN_MAX_PWM,
  274. AVALON_DEFAULT_TIMEOUT,
  275. AVALON_DEFAULT_ASIC_NUM,
  276. AVALON_DEFAULT_MINER_NUM,
  277. 0, 0,
  278. AVALON_DEFAULT_FREQUENCY);
  279. ret = avalon_send_task(fd, &at, NULL);
  280. if (ret == AVA_SEND_ERROR)
  281. return 1;
  282. avalon_get_result(fd, ar, NULL, NULL);
  283. buf = (uint8_t *)ar;
  284. /* Sometimes there is one extra 0 byte for some reason in the buffer,
  285. * so work around it. */
  286. if (buf[0] == 0)
  287. buf = (uint8_t *)(ar + 1);
  288. if (buf[0] == 0xAA && buf[1] == 0x55 &&
  289. buf[2] == 0xAA && buf[3] == 0x55) {
  290. for (i = 4; i < 11; i++)
  291. if (buf[i] != 0)
  292. break;
  293. }
  294. p.tv_sec = 0;
  295. p.tv_nsec = AVALON_RESET_PITCH;
  296. nanosleep(&p, NULL);
  297. if (i != 11) {
  298. applog(LOG_ERR, "Avalon: Reset failed! not an Avalon?"
  299. " (%d: %02x %02x %02x %02x)",
  300. i, buf[0], buf[1], buf[2], buf[3]);
  301. /* FIXME: return 1; */
  302. } else
  303. applog(LOG_WARNING, "Avalon: Reset succeeded");
  304. return 0;
  305. }
  306. static void avalon_idle(struct cgpu_info *avalon)
  307. {
  308. int i, ret;
  309. struct avalon_task at;
  310. int fd = avalon->device_fd;
  311. struct avalon_info *info = avalon_infos[avalon->device_id];
  312. int avalon_get_work_count = info->miner_count;
  313. i = 0;
  314. while (true) {
  315. avalon_init_task(&at, 0, 0, info->fan_pwm,
  316. info->timeout, info->asic_count,
  317. info->miner_count, 1, 1, info->frequency);
  318. ret = avalon_send_task(fd, &at, avalon);
  319. if (unlikely(ret == AVA_SEND_ERROR ||
  320. (ret == AVA_SEND_BUFFER_EMPTY &&
  321. (i + 1 == avalon_get_work_count * 2)))) {
  322. applog(LOG_ERR, "AVA%i: Comms error", avalon->device_id);
  323. return;
  324. }
  325. if (i + 1 == avalon_get_work_count * 2)
  326. break;
  327. if (ret == AVA_SEND_BUFFER_FULL)
  328. break;
  329. i++;
  330. }
  331. applog(LOG_ERR, "Avalon: Goto idle mode");
  332. }
  333. static void get_options(int this_option_offset, int *baud, int *miner_count,
  334. int *asic_count, int *timeout, int *frequency)
  335. {
  336. char err_buf[BUFSIZ+1];
  337. char buf[BUFSIZ+1];
  338. char *ptr, *comma, *colon, *colon2, *colon3, *colon4;
  339. size_t max;
  340. int i, tmp;
  341. if (opt_avalon_options == NULL)
  342. buf[0] = '\0';
  343. else {
  344. ptr = opt_avalon_options;
  345. for (i = 0; i < this_option_offset; i++) {
  346. comma = strchr(ptr, ',');
  347. if (comma == NULL)
  348. break;
  349. ptr = comma + 1;
  350. }
  351. comma = strchr(ptr, ',');
  352. if (comma == NULL)
  353. max = strlen(ptr);
  354. else
  355. max = comma - ptr;
  356. if (max > BUFSIZ)
  357. max = BUFSIZ;
  358. strncpy(buf, ptr, max);
  359. buf[max] = '\0';
  360. }
  361. *baud = AVALON_IO_SPEED;
  362. *miner_count = AVALON_DEFAULT_MINER_NUM - 8;
  363. *asic_count = AVALON_DEFAULT_ASIC_NUM;
  364. *timeout = AVALON_DEFAULT_TIMEOUT;
  365. *frequency = AVALON_DEFAULT_FREQUENCY;
  366. if (!(*buf))
  367. return;
  368. colon = strchr(buf, ':');
  369. if (colon)
  370. *(colon++) = '\0';
  371. tmp = atoi(buf);
  372. switch (tmp) {
  373. case 115200:
  374. *baud = 115200;
  375. break;
  376. case 57600:
  377. *baud = 57600;
  378. break;
  379. case 38400:
  380. *baud = 38400;
  381. break;
  382. case 19200:
  383. *baud = 19200;
  384. break;
  385. default:
  386. sprintf(err_buf,
  387. "Invalid avalon-options for baud (%s) "
  388. "must be 115200, 57600, 38400 or 19200", buf);
  389. quit(1, err_buf);
  390. }
  391. if (colon && *colon) {
  392. colon2 = strchr(colon, ':');
  393. if (colon2)
  394. *(colon2++) = '\0';
  395. if (*colon) {
  396. tmp = atoi(colon);
  397. if (tmp > 0 && tmp <= AVALON_DEFAULT_MINER_NUM) {
  398. *miner_count = tmp;
  399. } else {
  400. sprintf(err_buf,
  401. "Invalid avalon-options for "
  402. "miner_count (%s) must be 1 ~ %d",
  403. colon, AVALON_DEFAULT_MINER_NUM);
  404. quit(1, err_buf);
  405. }
  406. }
  407. if (colon2 && *colon2) {
  408. colon3 = strchr(colon2, ':');
  409. if (colon3)
  410. *(colon3++) = '\0';
  411. tmp = atoi(colon2);
  412. if (tmp > 0 && tmp <= AVALON_DEFAULT_ASIC_NUM)
  413. *asic_count = tmp;
  414. else {
  415. sprintf(err_buf,
  416. "Invalid avalon-options for "
  417. "asic_count (%s) must be 1 ~ %d",
  418. colon2, AVALON_DEFAULT_ASIC_NUM);
  419. quit(1, err_buf);
  420. }
  421. if (colon3 && *colon3) {
  422. colon4 = strchr(colon3, ':');
  423. if (colon4)
  424. *(colon4++) = '\0';
  425. tmp = atoi(colon3);
  426. if (tmp > 0 && tmp <= 0xff)
  427. *timeout = tmp;
  428. else {
  429. sprintf(err_buf,
  430. "Invalid avalon-options for "
  431. "timeout (%s) must be 1 ~ %d",
  432. colon3, 0xff);
  433. quit(1, err_buf);
  434. }
  435. if (colon4 && *colon4) {
  436. tmp = atoi(colon4);
  437. switch (tmp) {
  438. case 256:
  439. case 270:
  440. case 282:
  441. case 300:
  442. *frequency = tmp;
  443. break;
  444. default:
  445. sprintf(err_buf,
  446. "Invalid avalon-options for "
  447. "frequency must be 256/270/282/300");
  448. quit(1, err_buf);
  449. }
  450. }
  451. }
  452. }
  453. }
  454. }
  455. static bool avalon_detect_one(const char *devpath)
  456. {
  457. struct avalon_info *info;
  458. struct avalon_result ar;
  459. int fd, ret;
  460. int baud, miner_count, asic_count, timeout, frequency = 0;
  461. struct cgpu_info *avalon;
  462. int this_option_offset = ++option_offset;
  463. get_options(this_option_offset, &baud, &miner_count, &asic_count,
  464. &timeout, &frequency);
  465. applog(LOG_DEBUG, "Avalon Detect: Attempting to open %s "
  466. "(baud=%d miner_count=%d asic_count=%d timeout=%d frequency=%d)",
  467. devpath, baud, miner_count, asic_count, timeout, frequency);
  468. fd = avalon_open2(devpath, baud, true);
  469. if (unlikely(fd == -1)) {
  470. applog(LOG_ERR, "Avalon Detect: Failed to open %s", devpath);
  471. return false;
  472. }
  473. /* We have a real Avalon! */
  474. avalon = calloc(1, sizeof(struct cgpu_info));
  475. avalon->drv = &avalon_drv;
  476. avalon->device_path = strdup(devpath);
  477. avalon->device_fd = fd;
  478. avalon->threads = AVALON_MINER_THREADS;
  479. add_cgpu(avalon);
  480. ret = avalon_reset(fd, &ar);
  481. if (ret) {
  482. ; /* FIXME: I think IT IS avalon and wait on reset;
  483. * avalon_close(fd);
  484. * return false; */
  485. }
  486. avalon_infos = realloc(avalon_infos,
  487. sizeof(struct avalon_info *) *
  488. (total_devices + 1));
  489. applog(LOG_INFO, "Avalon Detect: Found at %s, mark as %d",
  490. devpath, avalon->device_id);
  491. avalon_infos[avalon->device_id] = (struct avalon_info *)
  492. malloc(sizeof(struct avalon_info));
  493. if (unlikely(!(avalon_infos[avalon->device_id])))
  494. quit(1, "Failed to malloc avalon_infos");
  495. info = avalon_infos[avalon->device_id];
  496. memset(info, 0, sizeof(struct avalon_info));
  497. info->baud = baud;
  498. info->miner_count = miner_count;
  499. info->asic_count = asic_count;
  500. info->timeout = timeout;
  501. info->read_count = ((float)info->timeout * AVALON_HASH_TIME_FACTOR *
  502. AVALON_TIME_FACTOR) / (float)info->miner_count;
  503. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
  504. info->temp_max = 0;
  505. /* This is for check the temp/fan every 3~4s */
  506. info->temp_history_count = (4 / (float)((float)info->timeout * ((float)1.67/0x32))) + 1;
  507. if (info->temp_history_count <= 0)
  508. info->temp_history_count = 1;
  509. info->temp_history_index = 0;
  510. info->temp_sum = 0;
  511. info->temp_old = 0;
  512. info->frequency = frequency;
  513. /* Do something for failed reset ? */
  514. if (0) {
  515. /* Set asic to idle mode after detect */
  516. avalon_idle(avalon);
  517. avalon->device_fd = -1;
  518. avalon_close(fd);
  519. }
  520. return true;
  521. }
  522. static inline void avalon_detect()
  523. {
  524. serial_detect(&avalon_drv, avalon_detect_one);
  525. }
  526. static void __avalon_init(struct cgpu_info *avalon)
  527. {
  528. applog(LOG_INFO, "Avalon: Opened on %s", avalon->device_path);
  529. }
  530. static void avalon_init(struct cgpu_info *avalon)
  531. {
  532. struct avalon_result ar;
  533. int fd, ret;
  534. avalon->device_fd = -1;
  535. fd = avalon_open(avalon->device_path,
  536. avalon_infos[avalon->device_id]->baud);
  537. if (unlikely(fd == -1)) {
  538. applog(LOG_ERR, "Avalon: Failed to open on %s",
  539. avalon->device_path);
  540. return;
  541. }
  542. ret = avalon_reset(fd, &ar);
  543. if (ret) {
  544. avalon_close(fd);
  545. return;
  546. }
  547. avalon->device_fd = fd;
  548. __avalon_init(avalon);
  549. }
  550. static bool avalon_prepare(struct thr_info *thr)
  551. {
  552. struct cgpu_info *avalon = thr->cgpu;
  553. struct avalon_info *info = avalon_infos[avalon->device_id];
  554. struct timeval now;
  555. free(avalon->works);
  556. avalon->works = calloc(info->miner_count * sizeof(struct work *), 4);
  557. if (!avalon->works)
  558. quit(1, "Failed to calloc avalon works in avalon_prepare");
  559. if (avalon->device_fd == -1)
  560. avalon_init(avalon);
  561. else
  562. __avalon_init(avalon);
  563. gettimeofday(&now, NULL);
  564. get_datestamp(avalon->init, &now);
  565. return true;
  566. }
  567. static void avalon_free_work(struct thr_info *thr)
  568. {
  569. struct cgpu_info *avalon;
  570. struct avalon_info *info;
  571. struct work **works;
  572. int i;
  573. avalon = thr->cgpu;
  574. avalon->queued = 0;
  575. if (unlikely(!avalon->works))
  576. return;
  577. works = avalon->works;
  578. info = avalon_infos[avalon->device_id];
  579. for (i = 0; i < info->miner_count * 4; i++) {
  580. if (works[i]) {
  581. work_completed(avalon, works[i]);
  582. works[i] = NULL;
  583. }
  584. }
  585. }
  586. static void avalon_free_work_array(struct thr_info *thr)
  587. {
  588. struct cgpu_info *avalon;
  589. struct work **works;
  590. int i, j, mc;
  591. avalon = thr->cgpu;
  592. avalon->queued = 0;
  593. if (unlikely(!avalon->works))
  594. return;
  595. works = avalon->works;
  596. mc = avalon_infos[avalon->device_id]->miner_count;
  597. if (++avalon->work_array > 3)
  598. avalon->work_array = 0;
  599. for (i = avalon->work_array * mc, j = 0; j < mc; i++, j++) {
  600. if (likely(works[i])) {
  601. work_completed(avalon, works[i]);
  602. works[i] = NULL;
  603. }
  604. }
  605. }
  606. static void do_avalon_close(struct thr_info *thr)
  607. {
  608. struct avalon_result ar;
  609. struct cgpu_info *avalon = thr->cgpu;
  610. struct avalon_info *info = avalon_infos[avalon->device_id];
  611. avalon_free_work(thr);
  612. sleep(1);
  613. avalon_reset(avalon->device_fd, &ar);
  614. avalon_idle(avalon);
  615. avalon_close(avalon->device_fd);
  616. avalon->device_fd = -1;
  617. info->no_matching_work = 0;
  618. }
  619. static inline void record_temp_fan(struct avalon_info *info, struct avalon_result *ar, float *temp_avg)
  620. {
  621. int max;
  622. info->fan0 = ar->fan0 * AVALON_FAN_FACTOR;
  623. info->fan1 = ar->fan1 * AVALON_FAN_FACTOR;
  624. info->fan2 = ar->fan2 * AVALON_FAN_FACTOR;
  625. info->temp0 = ar->temp0;
  626. info->temp1 = ar->temp1;
  627. info->temp2 = ar->temp2;
  628. if (ar->temp0 & 0x80) {
  629. ar->temp0 &= 0x7f;
  630. info->temp0 = 0 - ((~ar->temp0 & 0x7f) + 1);
  631. }
  632. if (ar->temp1 & 0x80) {
  633. ar->temp1 &= 0x7f;
  634. info->temp1 = 0 - ((~ar->temp1 & 0x7f) + 1);
  635. }
  636. if (ar->temp2 & 0x80) {
  637. ar->temp2 &= 0x7f;
  638. info->temp2 = 0 - ((~ar->temp2 & 0x7f) + 1);
  639. }
  640. *temp_avg = info->temp2;
  641. max = info->temp_max;
  642. if (info->temp0 > max)
  643. max = info->temp0;
  644. if (info->temp1 > max)
  645. max = info->temp1;
  646. if (info->temp2 > max)
  647. max = info->temp2;
  648. if (max >= 100) { /* FIXME: fix the root cause on fpga controller firmware */
  649. if (opt_debug) {
  650. applog(LOG_DEBUG, "Avalon: temp_max: %d", max);
  651. hexdump((uint8_t *)ar, AVALON_READ_SIZE);
  652. }
  653. return;
  654. }
  655. info->temp_max = max;
  656. }
  657. static inline void adjust_fan(struct avalon_info *info)
  658. {
  659. int temp_new;
  660. temp_new = info->temp_sum / info->temp_history_count;
  661. if (temp_new < 35) {
  662. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM;
  663. info->temp_old = temp_new;
  664. } else if (temp_new > 55) {
  665. info->fan_pwm = AVALON_DEFAULT_FAN_MAX_PWM;
  666. info->temp_old = temp_new;
  667. } else if (abs(temp_new - info->temp_old) >= 2) {
  668. info->fan_pwm = AVALON_DEFAULT_FAN_MIN_PWM + (temp_new - 35) * 6.4;
  669. info->temp_old = temp_new;
  670. }
  671. }
  672. static bool avalon_fill(struct cgpu_info *avalon)
  673. {
  674. struct work *work;
  675. int mc = avalon_infos[avalon->device_id]->miner_count;
  676. if (avalon->queued >= mc)
  677. return true;
  678. work = get_queued(avalon);
  679. if (unlikely(!work))
  680. return false;
  681. avalon->works[avalon->work_array * mc + avalon->queued++] = work;
  682. if (avalon->queued >= mc)
  683. return true;
  684. return false;
  685. }
  686. static int64_t avalon_scanhash(struct thr_info *thr)
  687. {
  688. struct cgpu_info *avalon;
  689. struct work **works;
  690. int fd, ret, full;
  691. struct avalon_info *info;
  692. struct avalon_task at;
  693. struct avalon_result ar;
  694. int i;
  695. int avalon_get_work_count;
  696. int start_count, end_count;
  697. struct timeval tv_start, tv_finish, elapsed;
  698. uint32_t nonce;
  699. int64_t hash_count;
  700. static int first_try = 0;
  701. int result_count, result_wrong;
  702. avalon = thr->cgpu;
  703. works = avalon->works;
  704. info = avalon_infos[avalon->device_id];
  705. avalon_get_work_count = info->miner_count;
  706. if (unlikely(avalon->device_fd == -1)) {
  707. if (!avalon_prepare(thr)) {
  708. applog(LOG_ERR, "AVA%i: Comms error(open)",
  709. avalon->device_id);
  710. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  711. /* fail the device if the reopen attempt fails */
  712. return -1;
  713. }
  714. }
  715. fd = avalon->device_fd;
  716. #ifndef WIN32
  717. tcflush(fd, TCOFLUSH);
  718. #endif
  719. start_count = avalon->work_array * avalon_get_work_count;
  720. end_count = start_count + avalon_get_work_count;
  721. i = start_count;
  722. while (true) {
  723. avalon_init_task(&at, 0, 0, info->fan_pwm,
  724. info->timeout, info->asic_count,
  725. info->miner_count, 1, 0, info->frequency);
  726. avalon_create_task(&at, works[i]);
  727. ret = avalon_send_task(fd, &at, avalon);
  728. if (unlikely(ret == AVA_SEND_ERROR ||
  729. (ret == AVA_SEND_BUFFER_EMPTY &&
  730. (i + 1 == end_count) &&
  731. first_try))) {
  732. do_avalon_close(thr);
  733. applog(LOG_ERR, "AVA%i: Comms error(buffer)",
  734. avalon->device_id);
  735. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  736. first_try = 0;
  737. sleep(1);
  738. avalon_init(avalon);
  739. return 0; /* This should never happen */
  740. }
  741. if (ret == AVA_SEND_BUFFER_EMPTY && (i + 1 == end_count)) {
  742. first_try = 1;
  743. avalon_free_work_array(thr);
  744. return 0xffffffff;
  745. }
  746. works[i]->blk.nonce = 0xffffffff;
  747. if (ret == AVA_SEND_BUFFER_FULL)
  748. break;
  749. i++;
  750. }
  751. if (unlikely(first_try))
  752. first_try = 0;
  753. elapsed.tv_sec = elapsed.tv_usec = 0;
  754. gettimeofday(&tv_start, NULL);
  755. result_count = 0;
  756. result_wrong = 0;
  757. hash_count = 0;
  758. while (true) {
  759. full = avalon_buffer_full(fd);
  760. applog(LOG_DEBUG, "Avalon: Buffer full: %s",
  761. ((full == AVA_BUFFER_FULL) ? "Yes" : "No"));
  762. if (unlikely(full == AVA_BUFFER_EMPTY))
  763. break;
  764. ret = avalon_get_result(fd, &ar, thr, &tv_finish);
  765. if (unlikely(ret == AVA_GETS_ERROR)) {
  766. do_avalon_close(thr);
  767. applog(LOG_ERR,
  768. "AVA%i: Comms error(read)", avalon->device_id);
  769. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  770. return 0;
  771. }
  772. if (unlikely(ret == AVA_GETS_TIMEOUT)) {
  773. timersub(&tv_finish, &tv_start, &elapsed);
  774. applog(LOG_DEBUG, "Avalon: no nonce in (%ld.%06lds)",
  775. elapsed.tv_sec, elapsed.tv_usec);
  776. continue;
  777. }
  778. if (unlikely(ret == AVA_GETS_RESTART)) {
  779. /* Reset the wrong count in case there has only been
  780. * a small number of nonces tested before the restart.
  781. */
  782. result_wrong = 0;
  783. break;
  784. }
  785. result_count++;
  786. if (!avalon_decode_nonce(thr, &ar, &nonce)) {
  787. info->no_matching_work++;
  788. result_wrong++;
  789. if (opt_debug) {
  790. timersub(&tv_finish, &tv_start, &elapsed);
  791. applog(LOG_DEBUG,"Avalon: no matching work: %d"
  792. " (%ld.%06lds)", info->no_matching_work,
  793. elapsed.tv_sec, elapsed.tv_usec);
  794. }
  795. continue;
  796. }
  797. hash_count += nonce;
  798. if (opt_debug) {
  799. timersub(&tv_finish, &tv_start, &elapsed);
  800. applog(LOG_DEBUG,
  801. "Avalon: nonce = 0x%08x = 0x%08llx hashes "
  802. "(%ld.%06lds)", nonce, hash_count,
  803. elapsed.tv_sec, elapsed.tv_usec);
  804. }
  805. }
  806. if (result_wrong && result_count == result_wrong) {
  807. /* This mean FPGA controller give all wrong result
  808. * try to reset the Avalon */
  809. do_avalon_close(thr);
  810. applog(LOG_ERR,
  811. "AVA%i: FPGA controller mess up", avalon->device_id);
  812. dev_error(avalon, REASON_DEV_COMMS_ERROR);
  813. sleep(1);
  814. avalon_init(avalon);
  815. return 0;
  816. }
  817. avalon_free_work_array(thr);
  818. record_temp_fan(info, &ar, &(avalon->temp));
  819. applog(LOG_INFO,
  820. "Avalon: Fan1: %d/m, Fan2: %d/m, Fan3: %d/m\t"
  821. "Temp1: %dC, Temp2: %dC, Temp3: %dC, TempMAX: %dC",
  822. info->fan0, info->fan1, info->fan2,
  823. info->temp0, info->temp1, info->temp2, info->temp_max);
  824. info->temp_history_index++;
  825. info->temp_sum += info->temp2;
  826. applog(LOG_DEBUG, "Avalon: temp_index: %d, temp_count: %d, temp_old: %d",
  827. info->temp_history_index, info->temp_history_count, info->temp_old);
  828. if (info->temp_history_index == info->temp_history_count) {
  829. adjust_fan(info);
  830. info->temp_history_index = 0;
  831. info->temp_sum = 0;
  832. }
  833. /*
  834. * FIXME: Each work split to 10 pieces, each piece send to a
  835. * asic(256MHs). one work can be mulit-nonce back. it is not
  836. * easy calculate correct hash on such situation. so I simplely
  837. * add each nonce to hash_count. base on Utility/m hash_count*2
  838. * give a very good result.
  839. *
  840. * Any patch will be great.
  841. */
  842. return hash_count * 2;
  843. }
  844. static struct api_data *avalon_api_stats(struct cgpu_info *cgpu)
  845. {
  846. struct api_data *root = NULL;
  847. struct avalon_info *info = avalon_infos[cgpu->device_id];
  848. root = api_add_int(root, "baud", &(info->baud), false);
  849. root = api_add_int(root, "miner_count", &(info->miner_count),false);
  850. root = api_add_int(root, "asic_count", &(info->asic_count), false);
  851. root = api_add_int(root, "read_count", &(info->read_count), false);
  852. root = api_add_int(root, "timeout", &(info->timeout), false);
  853. root = api_add_int(root, "frequency", &(info->frequency), false);
  854. root = api_add_int(root, "fan1", &(info->fan0), false);
  855. root = api_add_int(root, "fan2", &(info->fan1), false);
  856. root = api_add_int(root, "fan3", &(info->fan2), false);
  857. root = api_add_int(root, "temp1", &(info->temp0), false);
  858. root = api_add_int(root, "temp2", &(info->temp1), false);
  859. root = api_add_int(root, "temp3", &(info->temp2), false);
  860. root = api_add_int(root, "temp_max", &(info->temp_max), false);
  861. root = api_add_int(root, "no_matching_work", &(info->no_matching_work), false);
  862. root = api_add_int(root, "matching_work_count", &(info->matching_work), false);
  863. return root;
  864. }
  865. static void avalon_shutdown(struct thr_info *thr)
  866. {
  867. do_avalon_close(thr);
  868. }
  869. struct device_drv avalon_drv = {
  870. .dname = "avalon",
  871. .name = "AVA",
  872. .drv_detect = avalon_detect,
  873. .thread_prepare = avalon_prepare,
  874. .hash_work = hash_queued_work,
  875. .queue_full = avalon_fill,
  876. .scanwork = avalon_scanhash,
  877. .get_api_stats = avalon_api_stats,
  878. .reinit_device = avalon_init,
  879. .thread_shutdown = avalon_shutdown,
  880. };