driver-x6500.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #ifdef WIN32
  11. #include <winsock2.h>
  12. #endif
  13. #include <math.h>
  14. #include <sys/time.h>
  15. #include <libusb.h>
  16. #include "compat.h"
  17. #include "deviceapi.h"
  18. #include "dynclock.h"
  19. #include "jtag.h"
  20. #include "logging.h"
  21. #include "miner.h"
  22. #include "fpgautils.h"
  23. #include "ft232r.h"
  24. #define X6500_USB_PRODUCT "X6500 FPGA Miner"
  25. #define X6500_BITSTREAM_FILENAME "fpgaminer_x6500-overclocker-0402.bit"
  26. // NOTE: X6500_BITSTREAM_USERID is bitflipped
  27. #define X6500_BITSTREAM_USERID "\x40\x20\x24\x42"
  28. #define X6500_MINIMUM_CLOCK 2
  29. #define X6500_DEFAULT_CLOCK 200
  30. #define X6500_MAXIMUM_CLOCK 250
  31. struct device_api x6500_api;
  32. #define fromlebytes(ca, j) (ca[j] | (((uint16_t)ca[j+1])<<8) | (((uint32_t)ca[j+2])<<16) | (((uint32_t)ca[j+3])<<24))
  33. static
  34. void int2bits(uint32_t n, uint8_t *b, uint8_t bits)
  35. {
  36. uint8_t i;
  37. for (i = (bits + 7) / 8; i > 0; )
  38. b[--i] = 0;
  39. for (i = 0; i < bits; ++i) {
  40. if (n & 1)
  41. b[i/8] |= 0x80 >> (i % 8);
  42. n >>= 1;
  43. }
  44. }
  45. static
  46. uint32_t bits2int(uint8_t *b, uint8_t bits)
  47. {
  48. uint32_t n, i;
  49. n = 0;
  50. for (i = 0; i < bits; ++i)
  51. if (b[i/8] & (0x80 >> (i % 8)))
  52. n |= 1<<i;
  53. return n;
  54. }
  55. static
  56. void checksum(uint8_t *b, uint8_t bits)
  57. {
  58. uint8_t i;
  59. uint8_t checksum = 1;
  60. for(i = 0; i < bits; ++i)
  61. checksum ^= (b[i/8] & (0x80 >> (i % 8))) ? 1 : 0;
  62. if (checksum)
  63. b[i/8] |= 0x80 >> (i % 8);
  64. }
  65. static
  66. void x6500_jtag_set(struct jtag_port *jp, uint8_t pinoffset)
  67. {
  68. jp->tck = pinoffset << 3;
  69. jp->tms = pinoffset << 2;
  70. jp->tdi = pinoffset << 1;
  71. jp->tdo = pinoffset << 0;
  72. jp->ignored = ~(jp->tdo | jp->tdi | jp->tms | jp->tck);
  73. }
  74. static uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr);
  75. static
  76. void x6500_set_register(struct jtag_port *jp, uint8_t addr, uint32_t nv)
  77. {
  78. uint8_t buf[38];
  79. retry:
  80. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  81. int2bits(nv, &buf[0], 32);
  82. int2bits(addr, &buf[4], 4);
  83. buf[4] |= 8;
  84. checksum(buf, 37);
  85. jtag_write(jp, JTAG_REG_DR, buf, 38);
  86. jtag_run(jp);
  87. #ifdef DEBUG_X6500_SET_REGISTER
  88. if (x6500_get_register(jp, addr) != nv)
  89. #else
  90. if (0)
  91. #endif
  92. {
  93. applog(LOG_WARNING, "x6500_set_register failed %x=%08x", addr, nv);
  94. goto retry;
  95. }
  96. }
  97. static
  98. uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr)
  99. {
  100. uint8_t buf[4] = {0};
  101. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  102. int2bits(addr, &buf[0], 4);
  103. checksum(buf, 5);
  104. jtag_write(jp, JTAG_REG_DR, buf, 6);
  105. jtag_read (jp, JTAG_REG_DR, buf, 32);
  106. jtag_reset(jp);
  107. return bits2int(buf, 32);
  108. }
  109. static bool x6500_foundusb(libusb_device *dev, const char *product, const char *serial)
  110. {
  111. struct cgpu_info *x6500;
  112. x6500 = calloc(1, sizeof(*x6500));
  113. x6500->api = &x6500_api;
  114. mutex_init(&x6500->device_mutex);
  115. x6500->device_path = strdup(serial);
  116. x6500->deven = DEV_ENABLED;
  117. x6500->threads = 1;
  118. x6500->procs = 2;
  119. x6500->name = strdup(product);
  120. x6500->cutofftemp = 85;
  121. x6500->cgpu_data = dev;
  122. return add_cgpu(x6500);
  123. }
  124. static bool x6500_detect_one(const char *serial)
  125. {
  126. return ft232r_detect(X6500_USB_PRODUCT, serial, x6500_foundusb);
  127. }
  128. static int x6500_detect_auto()
  129. {
  130. return ft232r_detect(X6500_USB_PRODUCT, NULL, x6500_foundusb);
  131. }
  132. static void x6500_detect()
  133. {
  134. serial_detect_auto(&x6500_api, x6500_detect_one, x6500_detect_auto);
  135. }
  136. static bool x6500_prepare(struct thr_info *thr)
  137. {
  138. struct cgpu_info *x6500 = thr->cgpu;
  139. if (x6500->proc_id)
  140. return true;
  141. struct ft232r_device_handle *ftdi = ft232r_open(x6500->cgpu_data);
  142. x6500->device_ft232r = NULL;
  143. if (!ftdi)
  144. return false;
  145. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  146. return false;
  147. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  148. return false;
  149. x6500->device_ft232r = ftdi;
  150. struct jtag_port_a *jtag_a;
  151. unsigned char *pdone = calloc(1, sizeof(*jtag_a) + 1);
  152. *pdone = 101;
  153. jtag_a = (void*)(pdone + 1);
  154. jtag_a->ftdi = ftdi;
  155. x6500->cgpu_data = jtag_a;
  156. for (struct cgpu_info *slave = x6500->next_proc; slave; slave = slave->next_proc)
  157. {
  158. slave->device_ft232r = x6500->device_ft232r;
  159. slave->cgpu_data = x6500->cgpu_data;
  160. }
  161. return true;
  162. }
  163. struct x6500_fpga_data {
  164. struct jtag_port jtag;
  165. struct timeval tv_hashstart;
  166. int64_t hashes_left;
  167. struct dclk_data dclk;
  168. uint8_t freqMaxMaxM;
  169. // Time the clock was last reduced due to temperature
  170. time_t last_cutoff_reduced;
  171. float temp;
  172. uint32_t prepwork_last_register;
  173. };
  174. #define bailout2(...) do { \
  175. applog(__VA_ARGS__); \
  176. return false; \
  177. } while(0)
  178. static bool
  179. x6500_fpga_upload_bitstream(struct cgpu_info *x6500, struct jtag_port *jp1)
  180. {
  181. char buf[0x100];
  182. unsigned long len, flen;
  183. unsigned char *pdone = (unsigned char*)x6500->cgpu_data - 1;
  184. struct ft232r_device_handle *ftdi = jp1->a->ftdi;
  185. FILE *f = open_xilinx_bitstream(x6500->api->dname, x6500->dev_repr, X6500_BITSTREAM_FILENAME, &len);
  186. if (!f)
  187. return false;
  188. flen = len;
  189. applog(LOG_WARNING, "%s: Programming %s...",
  190. x6500->dev_repr, x6500->device_path);
  191. x6500->status = LIFE_INIT;
  192. // "Magic" jtag_port configured to access both FPGAs concurrently
  193. struct jtag_port jpt = {
  194. .a = jp1->a,
  195. };
  196. struct jtag_port *jp = &jpt;
  197. uint8_t i, j;
  198. x6500_jtag_set(jp, 0x11);
  199. // Need to reset here despite previous FPGA state, since we are programming all at once
  200. jtag_reset(jp);
  201. jtag_write(jp, JTAG_REG_IR, "\xd0", 6); // JPROGRAM
  202. // Poll each FPGA status individually since they might not be ready at the same time
  203. for (j = 0; j < 2; ++j) {
  204. x6500_jtag_set(jp, j ? 0x10 : 1);
  205. do {
  206. i = 0xd0; // Re-set JPROGRAM while reading status
  207. jtag_read(jp, JTAG_REG_IR, &i, 6);
  208. } while (i & 8);
  209. applog(LOG_DEBUG, "%s%c: JPROGRAM ready",
  210. x6500->dev_repr, 'a' + j);
  211. }
  212. x6500_jtag_set(jp, 0x11);
  213. jtag_write(jp, JTAG_REG_IR, "\xa0", 6); // CFG_IN
  214. nmsleep(1000);
  215. if (fread(buf, 32, 1, f) != 1)
  216. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  217. jtag_swrite(jp, JTAG_REG_DR, buf, 256);
  218. len -= 32;
  219. // Put ft232r chip in asynchronous bitbang mode so we don't need to read back tdo
  220. // This takes upload time down from about an hour to about 3 minutes
  221. if (!ft232r_set_bitmode(ftdi, 0xee, 1))
  222. return false;
  223. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  224. return false;
  225. jp->a->bufread = 0;
  226. jp->a->async = true;
  227. ssize_t buflen;
  228. char nextstatus = 25;
  229. while (len) {
  230. buflen = len < 32 ? len : 32;
  231. if (fread(buf, buflen, 1, f) != 1)
  232. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  233. jtag_swrite_more(jp, buf, buflen * 8, len == (unsigned long)buflen);
  234. *pdone = 100 - ((len * 100) / flen);
  235. if (*pdone >= nextstatus)
  236. {
  237. nextstatus += 25;
  238. applog(LOG_WARNING, "%s: Programming %s... %d%% complete...", x6500->dev_repr, x6500->device_path, *pdone);
  239. }
  240. len -= buflen;
  241. }
  242. // Switch back to synchronous bitbang mode
  243. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  244. return false;
  245. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  246. return false;
  247. jp->a->bufread = 0;
  248. jp->a->async = false;
  249. jp->a->bufread = 0;
  250. jtag_write(jp, JTAG_REG_IR, "\x30", 6); // JSTART
  251. for (i=0; i<16; ++i)
  252. jtag_run(jp);
  253. i = 0xff; // BYPASS
  254. jtag_read(jp, JTAG_REG_IR, &i, 6);
  255. if (!(i & 4))
  256. return false;
  257. applog(LOG_WARNING, "%s: Done programming %s", x6500->dev_repr, x6500->device_path);
  258. *pdone = 101;
  259. return true;
  260. }
  261. static bool x6500_change_clock(struct thr_info *thr, int multiplier)
  262. {
  263. struct x6500_fpga_data *fpga = thr->cgpu_data;
  264. struct jtag_port *jp = &fpga->jtag;
  265. x6500_set_register(jp, 0xD, multiplier * 2);
  266. ft232r_flush(jp->a->ftdi);
  267. fpga->dclk.freqM = multiplier;
  268. return true;
  269. }
  270. static bool x6500_dclk_change_clock(struct thr_info *thr, int multiplier)
  271. {
  272. struct cgpu_info *x6500 = thr->cgpu;
  273. struct x6500_fpga_data *fpga = thr->cgpu_data;
  274. uint8_t oldFreq = fpga->dclk.freqM;
  275. if (!x6500_change_clock(thr, multiplier)) {
  276. return false;
  277. }
  278. dclk_msg_freqchange(x6500->proc_repr, oldFreq * 2, fpga->dclk.freqM * 2, NULL);
  279. return true;
  280. }
  281. static bool x6500_thread_init(struct thr_info *thr)
  282. {
  283. struct cgpu_info *x6500 = thr->cgpu;
  284. struct ft232r_device_handle *ftdi = x6500->device_ft232r;
  285. // Setup mutex request based on notifier and pthread cond
  286. notifier_init(thr->mutex_request);
  287. pthread_cond_init(&x6500->device_cond, NULL);
  288. for ( ; x6500; x6500 = x6500->next_proc)
  289. {
  290. thr = x6500->thr[0];
  291. struct x6500_fpga_data *fpga;
  292. struct jtag_port *jp;
  293. int fpgaid = x6500->proc_id;
  294. uint8_t pinoffset = fpgaid ? 0x10 : 1;
  295. unsigned char buf[4] = {0};
  296. int i;
  297. if (!ftdi)
  298. return false;
  299. fpga = calloc(1, sizeof(*fpga));
  300. jp = &fpga->jtag;
  301. jp->a = x6500->cgpu_data;
  302. x6500_jtag_set(jp, pinoffset);
  303. thr->cgpu_data = fpga;
  304. if (!jtag_reset(jp)) {
  305. applog(LOG_ERR, "%s: JTAG reset failed",
  306. x6500->dev_repr);
  307. return false;
  308. }
  309. i = jtag_detect(jp);
  310. if (i != 1) {
  311. applog(LOG_ERR, "%s: JTAG detect returned %d",
  312. x6500->dev_repr, i);
  313. return false;
  314. }
  315. if (!(1
  316. && jtag_write(jp, JTAG_REG_IR, "\x10", 6)
  317. && jtag_read (jp, JTAG_REG_DR, buf, 32)
  318. && jtag_reset(jp)
  319. )) {
  320. applog(LOG_ERR, "%s: JTAG error reading user code",
  321. x6500->dev_repr);
  322. return false;
  323. }
  324. if (memcmp(buf, X6500_BITSTREAM_USERID, 4)) {
  325. applog(LOG_ERR, "%"PRIprepr": FPGA not programmed",
  326. x6500->proc_repr);
  327. if (!x6500_fpga_upload_bitstream(x6500, jp))
  328. return false;
  329. } else if (opt_force_dev_init && x6500->status == LIFE_INIT) {
  330. applog(LOG_DEBUG, "%"PRIprepr": FPGA is already programmed, but --force-dev-init is set",
  331. x6500->proc_repr);
  332. if (!x6500_fpga_upload_bitstream(x6500, jp))
  333. return false;
  334. } else
  335. applog(LOG_DEBUG, "%s"PRIprepr": FPGA is already programmed :)",
  336. x6500->proc_repr);
  337. dclk_prepare(&fpga->dclk);
  338. x6500_change_clock(thr, X6500_DEFAULT_CLOCK / 2);
  339. for (i = 0; 0xffffffff != x6500_get_register(jp, 0xE); ++i)
  340. {}
  341. if (i)
  342. applog(LOG_WARNING, "%"PRIprepr": Flushed %d nonces from buffer at init",
  343. x6500->proc_repr, i);
  344. fpga->dclk.minGoodSamples = 3;
  345. fpga->freqMaxMaxM =
  346. fpga->dclk.freqMaxM = X6500_MAXIMUM_CLOCK / 2;
  347. fpga->dclk.freqMDefault = fpga->dclk.freqM;
  348. applog(LOG_WARNING, "%"PRIprepr": Frequency set to %u MHz (range: %u-%u)",
  349. x6500->proc_repr,
  350. fpga->dclk.freqM * 2,
  351. X6500_MINIMUM_CLOCK,
  352. fpga->dclk.freqMaxM * 2);
  353. }
  354. return true;
  355. }
  356. static
  357. void x6500_get_temperature(struct cgpu_info *x6500)
  358. {
  359. struct x6500_fpga_data *fpga = x6500->thr[0]->cgpu_data;
  360. struct jtag_port *jp = &fpga->jtag;
  361. struct ft232r_device_handle *ftdi = jp->a->ftdi;
  362. int i, code[2];
  363. bool sio[2];
  364. code[0] = 0;
  365. code[1] = 0;
  366. ft232r_flush(ftdi);
  367. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  368. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  369. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  370. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  371. if (!(ft232r_set_cbus_bits(ftdi, false, false))) return;
  372. for (i = 16; i--; ) {
  373. if (ft232r_set_cbus_bits(ftdi, true, false)) {
  374. if (!(ft232r_get_cbus_bits(ftdi, &sio[0], &sio[1]))) {
  375. return;
  376. }
  377. } else {
  378. return;
  379. }
  380. code[0] |= sio[0] << i;
  381. code[1] |= sio[1] << i;
  382. if (!ft232r_set_cbus_bits(ftdi, false, false)) {
  383. return;
  384. }
  385. }
  386. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  387. return;
  388. }
  389. if (!(ft232r_set_cbus_bits(ftdi, true, true))) {
  390. return;
  391. }
  392. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  393. return;
  394. }
  395. if (!ft232r_set_bitmode(ftdi, 0xee, 4)) {
  396. return;
  397. }
  398. ft232r_purge_buffers(jp->a->ftdi, FTDI_PURGE_BOTH);
  399. jp->a->bufread = 0;
  400. x6500 = x6500->device;
  401. for (i = 0; i < 2; ++i, x6500 = x6500->next_proc) {
  402. struct thr_info *thr = x6500->thr[0];
  403. fpga = thr->cgpu_data;
  404. if (!fpga) continue;
  405. if (code[i] == 0xffff || !code[i]) {
  406. fpga->temp = 0;
  407. continue;
  408. }
  409. if ((code[i] >> 15) & 1)
  410. code[i] -= 0x10000;
  411. fpga->temp = (float)(code[i] >> 2) * 0.03125f;
  412. applog(LOG_DEBUG,"x6500_get_temperature: fpga[%d]->temp=%.1fC",i,fpga->temp);
  413. int temperature = round(fpga->temp);
  414. if (temperature > x6500->targettemp + opt_hysteresis) {
  415. time_t now = time(NULL);
  416. if (fpga->last_cutoff_reduced != now) {
  417. fpga->last_cutoff_reduced = now;
  418. int oldFreq = fpga->dclk.freqM;
  419. if (x6500_change_clock(thr, oldFreq - 1))
  420. applog(LOG_NOTICE, "%"PRIprepr": Frequency dropped from %u to %u MHz (temp: %.1fC)",
  421. x6500->proc_repr,
  422. oldFreq * 2, fpga->dclk.freqM * 2,
  423. fpga->temp
  424. );
  425. fpga->dclk.freqMaxM = fpga->dclk.freqM;
  426. }
  427. }
  428. else
  429. if (fpga->dclk.freqMaxM < fpga->freqMaxMaxM && temperature < x6500->targettemp) {
  430. if (temperature < x6500->targettemp - opt_hysteresis) {
  431. fpga->dclk.freqMaxM = fpga->freqMaxMaxM;
  432. } else if (fpga->dclk.freqM == fpga->dclk.freqMaxM) {
  433. ++fpga->dclk.freqMaxM;
  434. }
  435. }
  436. }
  437. }
  438. static
  439. bool x6500_all_idle(struct cgpu_info *any_proc)
  440. {
  441. for (struct cgpu_info *proc = any_proc->device; proc; proc = proc->next_proc)
  442. if (proc->thr[0]->tv_poll.tv_sec != -1 || proc->deven == DEV_ENABLED)
  443. return false;
  444. return true;
  445. }
  446. static bool x6500_get_stats(struct cgpu_info *x6500)
  447. {
  448. float hottest = 0;
  449. if (x6500_all_idle(x6500)) {
  450. struct cgpu_info *cgpu = x6500->device;
  451. // Getting temperature more efficiently while running
  452. pthread_mutex_t *mutexp = &cgpu->device_mutex;
  453. mutex_lock(mutexp);
  454. notifier_wake(cgpu->thr[0]->mutex_request);
  455. pthread_cond_wait(&cgpu->device_cond, mutexp);
  456. x6500_get_temperature(x6500);
  457. pthread_cond_signal(&cgpu->device_cond);
  458. mutex_unlock(mutexp);
  459. }
  460. for (int i = x6500->threads; i--; ) {
  461. struct thr_info *thr = x6500->thr[i];
  462. struct x6500_fpga_data *fpga = thr->cgpu_data;
  463. if (!fpga)
  464. continue;
  465. float temp = fpga->temp;
  466. if (temp > hottest)
  467. hottest = temp;
  468. }
  469. x6500->temp = hottest;
  470. return true;
  471. }
  472. static
  473. bool get_x6500_upload_percent(char *buf, struct cgpu_info *x6500)
  474. {
  475. char info[18] = " | ";
  476. unsigned char pdone = *((unsigned char*)x6500->cgpu_data - 1);
  477. if (pdone != 101) {
  478. sprintf(&info[1], "%3d%%", pdone);
  479. info[5] = ' ';
  480. strcat(buf, info);
  481. return true;
  482. }
  483. return false;
  484. }
  485. static
  486. void get_x6500_statline_before(char *buf, struct cgpu_info *x6500)
  487. {
  488. if (get_x6500_upload_percent(buf, x6500))
  489. return;
  490. char info[18] = " | ";
  491. struct x6500_fpga_data *fpga = x6500->thr[0]->cgpu_data;
  492. if (fpga->temp) {
  493. sprintf(&info[1], "%.1fC", fpga->temp);
  494. info[strlen(info)] = ' ';
  495. strcat(buf, info);
  496. return;
  497. }
  498. strcat(buf, " | ");
  499. }
  500. static
  501. void get_x6500_dev_statline_before(char *buf, struct cgpu_info *x6500)
  502. {
  503. if (get_x6500_upload_percent(buf, x6500))
  504. return;
  505. char info[18] = " | ";
  506. struct x6500_fpga_data *fpga0 = x6500->thr[0]->cgpu_data;
  507. struct x6500_fpga_data *fpga1 = x6500->next_proc->thr[0]->cgpu_data;
  508. if (x6500->temp) {
  509. sprintf(&info[1], "%.1fC/%.1fC", fpga0->temp, fpga1->temp);
  510. info[strlen(info)] = ' ';
  511. strcat(buf, info);
  512. return;
  513. }
  514. strcat(buf, " | ");
  515. }
  516. static struct api_data*
  517. get_x6500_api_extra_device_status(struct cgpu_info *x6500)
  518. {
  519. struct api_data *root = NULL;
  520. struct thr_info *thr = x6500->thr[0];
  521. struct x6500_fpga_data *fpga = thr->cgpu_data;
  522. double d;
  523. if (fpga->temp)
  524. root = api_add_temp(root, "Temperature", &fpga->temp, true);
  525. d = (double)fpga->dclk.freqM * 2;
  526. root = api_add_freq(root, "Frequency", &d, true);
  527. d = (double)fpga->dclk.freqMaxM * 2;
  528. root = api_add_freq(root, "Cool Max Frequency", &d, true);
  529. d = (double)fpga->freqMaxMaxM * 2;
  530. root = api_add_freq(root, "Max Frequency", &d, true);
  531. return root;
  532. }
  533. static
  534. bool x6500_job_prepare(struct thr_info *thr, struct work *work, __maybe_unused uint64_t max_nonce)
  535. {
  536. struct cgpu_info *x6500 = thr->cgpu;
  537. struct x6500_fpga_data *fpga = thr->cgpu_data;
  538. struct jtag_port *jp = &fpga->jtag;
  539. for (int i = 1, j = 0; i < 9; ++i, j += 4)
  540. x6500_set_register(jp, i, fromlebytes(work->midstate, j));
  541. for (int i = 9, j = 64; i < 11; ++i, j += 4)
  542. x6500_set_register(jp, i, fromlebytes(work->data, j));
  543. x6500_get_temperature(x6500);
  544. ft232r_flush(jp->a->ftdi);
  545. fpga->prepwork_last_register = fromlebytes(work->data, 72);
  546. work->blk.nonce = 0xffffffff;
  547. return true;
  548. }
  549. static int64_t calc_hashes(struct thr_info *, struct timeval *);
  550. static
  551. void x6500_job_start(struct thr_info *thr)
  552. {
  553. struct cgpu_info *x6500 = thr->cgpu;
  554. struct x6500_fpga_data *fpga = thr->cgpu_data;
  555. struct jtag_port *jp = &fpga->jtag;
  556. struct timeval tv_now;
  557. if (thr->prev_work)
  558. {
  559. dclk_preUpdate(&fpga->dclk);
  560. dclk_updateFreq(&fpga->dclk, x6500_dclk_change_clock, thr);
  561. }
  562. x6500_set_register(jp, 11, fpga->prepwork_last_register);
  563. ft232r_flush(jp->a->ftdi);
  564. gettimeofday(&tv_now, NULL);
  565. if (!thr->prev_work)
  566. fpga->tv_hashstart = tv_now;
  567. else
  568. if (thr->prev_work != thr->work)
  569. calc_hashes(thr, &tv_now);
  570. fpga->hashes_left = 0x100000000;
  571. mt_job_transition(thr);
  572. if (opt_debug) {
  573. char *xdata = bin2hex(thr->work->data, 80);
  574. applog(LOG_DEBUG, "%"PRIprepr": Started work: %s",
  575. x6500->proc_repr, xdata);
  576. free(xdata);
  577. }
  578. uint32_t usecs = 0x80000000 / fpga->dclk.freqM;
  579. usecs -= 1000000;
  580. timer_set_delay(&thr->tv_morework, &tv_now, usecs);
  581. timer_set_delay(&thr->tv_poll, &tv_now, 10000);
  582. job_start_complete(thr);
  583. }
  584. static
  585. int64_t calc_hashes(struct thr_info *thr, struct timeval *tv_now)
  586. {
  587. struct x6500_fpga_data *fpga = thr->cgpu_data;
  588. struct timeval tv_delta;
  589. int64_t hashes, hashes_left;
  590. timersub(tv_now, &fpga->tv_hashstart, &tv_delta);
  591. hashes = (((int64_t)tv_delta.tv_sec * 1000000) + tv_delta.tv_usec) * fpga->dclk.freqM * 2;
  592. hashes_left = fpga->hashes_left;
  593. if (unlikely(hashes > hashes_left))
  594. hashes = hashes_left;
  595. fpga->hashes_left -= hashes;
  596. hashes_done(thr, hashes, &tv_delta, NULL);
  597. fpga->tv_hashstart = *tv_now;
  598. return hashes;
  599. }
  600. static
  601. int64_t x6500_process_results(struct thr_info *thr, struct work *work)
  602. {
  603. struct cgpu_info *x6500 = thr->cgpu;
  604. struct x6500_fpga_data *fpga = thr->cgpu_data;
  605. struct jtag_port *jtag = &fpga->jtag;
  606. struct timeval tv_now;
  607. int64_t hashes;
  608. uint32_t nonce;
  609. bool bad;
  610. while (1) {
  611. gettimeofday(&tv_now, NULL);
  612. nonce = x6500_get_register(jtag, 0xE);
  613. if (nonce != 0xffffffff) {
  614. bad = !(work && test_nonce(work, nonce, false));
  615. if (!bad) {
  616. submit_nonce(thr, work, nonce);
  617. applog(LOG_DEBUG, "%"PRIprepr": Nonce for current work: %08lx",
  618. x6500->proc_repr,
  619. (unsigned long)nonce);
  620. dclk_gotNonces(&fpga->dclk);
  621. } else if (likely(thr->prev_work) && test_nonce(thr->prev_work, nonce, false)) {
  622. submit_nonce(thr, thr->prev_work, nonce);
  623. applog(LOG_DEBUG, "%"PRIprepr": Nonce for PREVIOUS work: %08lx",
  624. x6500->proc_repr,
  625. (unsigned long)nonce);
  626. } else {
  627. applog(LOG_DEBUG, "%"PRIprepr": Nonce with H not zero : %08lx",
  628. x6500->proc_repr,
  629. (unsigned long)nonce);
  630. ++hw_errors;
  631. ++x6500->hw_errors;
  632. dclk_gotNonces(&fpga->dclk);
  633. dclk_errorCount(&fpga->dclk, 1.);
  634. }
  635. // Keep reading nonce buffer until it's empty
  636. // This is necessary to avoid getting hw errors from Freq B after we've moved on to Freq A
  637. continue;
  638. }
  639. hashes = calc_hashes(thr, &tv_now);
  640. break;
  641. }
  642. return hashes;
  643. }
  644. static
  645. void x6500_fpga_poll(struct thr_info *thr)
  646. {
  647. struct x6500_fpga_data *fpga = thr->cgpu_data;
  648. x6500_process_results(thr, thr->work);
  649. if (unlikely(!fpga->hashes_left))
  650. {
  651. mt_disable_start(thr);
  652. thr->tv_poll.tv_sec = -1;
  653. }
  654. else
  655. timer_set_delay_from_now(&thr->tv_poll, 10000);
  656. }
  657. struct device_api x6500_api = {
  658. .dname = "x6500",
  659. .name = "XBS",
  660. .api_detect = x6500_detect,
  661. .get_dev_statline_before = get_x6500_dev_statline_before,
  662. .thread_prepare = x6500_prepare,
  663. .thread_init = x6500_thread_init,
  664. .get_stats = x6500_get_stats,
  665. .get_statline_before = get_x6500_statline_before,
  666. .get_api_extra_device_status = get_x6500_api_extra_device_status,
  667. .poll = x6500_fpga_poll,
  668. .minerloop = minerloop_async,
  669. .job_prepare = x6500_job_prepare,
  670. .job_start = x6500_job_start,
  671. // .thread_shutdown = x6500_fpga_shutdown,
  672. };