ft232r.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #ifdef WIN32
  11. #include <winsock2.h>
  12. #endif
  13. #include <errno.h>
  14. #include <stdbool.h>
  15. #include <stdint.h>
  16. #include <string.h>
  17. #include <libusb.h>
  18. #include "compat.h"
  19. #include "fpgautils.h"
  20. #include "ft232r.h"
  21. #include "logging.h"
  22. #include "lowlevel.h"
  23. #include "miner.h"
  24. #define FT232R_IDVENDOR 0x0403
  25. #define FT232R_IDPRODUCT 0x6001
  26. static
  27. void ft232r_devinfo_free(struct lowlevel_device_info * const info)
  28. {
  29. libusb_device * const dev = info->lowl_data;
  30. if (dev)
  31. libusb_unref_device(dev);
  32. }
  33. static
  34. bool _ft232r_devinfo_scan_cb(struct lowlevel_device_info * const usbinfo, void * const userp)
  35. {
  36. struct lowlevel_device_info **devinfo_list_p = userp, *info;
  37. info = malloc(sizeof(*info));
  38. *info = (struct lowlevel_device_info){
  39. .lowl = &lowl_ft232r,
  40. .lowl_data = libusb_ref_device(usbinfo->lowl_data),
  41. };
  42. lowlevel_devinfo_semicpy(info, usbinfo);
  43. LL_PREPEND(*devinfo_list_p, info);
  44. // Never *consume* the lowl_usb entry - especially since this is during the scan!
  45. return false;
  46. }
  47. static
  48. struct lowlevel_device_info *ft232r_devinfo_scan()
  49. {
  50. struct lowlevel_device_info *devinfo_list = NULL;
  51. lowlevel_detect_id(_ft232r_devinfo_scan_cb, &devinfo_list, &lowl_usb, FT232R_IDVENDOR, FT232R_IDPRODUCT);
  52. return devinfo_list;
  53. }
  54. #define FTDI_REQTYPE (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
  55. #define FTDI_REQTYPE_IN (FTDI_REQTYPE | LIBUSB_ENDPOINT_IN)
  56. #define FTDI_REQTYPE_OUT (FTDI_REQTYPE | LIBUSB_ENDPOINT_OUT)
  57. #define FTDI_REQUEST_RESET 0
  58. #define FTDI_REQUEST_SET_BAUDRATE 3
  59. #define FTDI_REQUEST_SET_BITMODE 0x0b
  60. #define FTDI_REQUEST_GET_PINS 0x0c
  61. #define FTDI_REQUEST_GET_BITMODE 0x0c
  62. #define FTDI_BAUDRATE_3M 0,0
  63. #define FTDI_INDEX 1
  64. #define FTDI_TIMEOUT 1000
  65. struct ft232r_device_handle {
  66. libusb_device_handle *h;
  67. uint8_t i;
  68. uint8_t o;
  69. unsigned char ibuf[256];
  70. int ibufLen;
  71. uint16_t osz;
  72. unsigned char *obuf;
  73. uint16_t obufsz;
  74. };
  75. struct ft232r_device_handle *ft232r_open(struct lowlevel_device_info *info)
  76. {
  77. libusb_device * const dev = info->lowl_data;
  78. info->lowl_data = NULL;
  79. if (!dev)
  80. return NULL;
  81. // FIXME: Cleanup on errors
  82. libusb_device_handle *devh;
  83. struct ft232r_device_handle *ftdi;
  84. if (libusb_open(dev, &devh)) {
  85. applog(LOG_ERR, "ft232r_open: Error opening device");
  86. return NULL;
  87. }
  88. libusb_reset_device(devh);
  89. libusb_detach_kernel_driver(devh, 0);
  90. if (libusb_set_configuration(devh, 1)) {
  91. applog(LOG_ERR, "ft232r_open: Error setting configuration");
  92. return NULL;
  93. }
  94. if (libusb_claim_interface(devh, 0)) {
  95. applog(LOG_ERR, "ft232r_open: Error claiming interface");
  96. return NULL;
  97. }
  98. if (libusb_control_transfer(devh, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BAUDRATE, FTDI_BAUDRATE_3M, NULL, 0, FTDI_TIMEOUT) < 0) {
  99. applog(LOG_ERR, "ft232r_open: Error performing control transfer");
  100. return NULL;
  101. }
  102. struct libusb_config_descriptor *cfg;
  103. if (libusb_get_config_descriptor(dev, 0, &cfg)) {
  104. applog(LOG_ERR, "ft232r_open: Error getting config descriptor");
  105. return NULL;
  106. }
  107. const struct libusb_interface_descriptor *altcfg = &cfg->interface[0].altsetting[0];
  108. if (altcfg->bNumEndpoints < 2) {
  109. applog(LOG_ERR, "ft232r_open: Too few endpoints");
  110. return NULL;
  111. }
  112. ftdi = calloc(1, sizeof(*ftdi));
  113. ftdi->h = devh;
  114. ftdi->i = altcfg->endpoint[0].bEndpointAddress;
  115. ftdi->o = altcfg->endpoint[1].bEndpointAddress;
  116. ftdi->osz = 0x1000;
  117. ftdi->obuf = malloc(ftdi->osz);
  118. libusb_free_config_descriptor(cfg);
  119. return ftdi;
  120. }
  121. void ft232r_close(struct ft232r_device_handle *dev)
  122. {
  123. libusb_release_interface(dev->h, 0);
  124. libusb_reset_device(dev->h);
  125. libusb_close(dev->h);
  126. free(dev);
  127. }
  128. bool ft232r_purge_buffers(struct ft232r_device_handle *dev, enum ft232r_reset_purge purge)
  129. {
  130. if (ft232r_flush(dev) < 0)
  131. return false;
  132. if (purge & FTDI_PURGE_RX) {
  133. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_RX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  134. return false;
  135. dev->ibufLen = 0;
  136. }
  137. if (purge & FTDI_PURGE_TX)
  138. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_TX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  139. return false;
  140. return true;
  141. }
  142. bool ft232r_set_bitmode(struct ft232r_device_handle *dev, uint8_t mask, uint8_t mode)
  143. {
  144. if (ft232r_flush(dev) < 0)
  145. return false;
  146. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  147. return false;
  148. return !libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, (mode << 8) | mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT);
  149. }
  150. static ssize_t ft232r_readwrite(struct ft232r_device_handle *dev, unsigned char endpoint, void *data, size_t count)
  151. {
  152. int transferred;
  153. switch (libusb_bulk_transfer(dev->h, endpoint, data, count, &transferred, FTDI_TIMEOUT)) {
  154. case LIBUSB_ERROR_TIMEOUT:
  155. if (!transferred) {
  156. errno = ETIMEDOUT;
  157. return -1;
  158. }
  159. case 0:
  160. return transferred;
  161. default:
  162. errno = EIO;
  163. return -1;
  164. }
  165. }
  166. ssize_t ft232r_flush(struct ft232r_device_handle *dev)
  167. {
  168. if (!dev->obufsz)
  169. return 0;
  170. ssize_t r = ft232r_readwrite(dev, dev->o, dev->obuf, dev->obufsz);
  171. if (r == dev->obufsz) {
  172. dev->obufsz = 0;
  173. } else if (r > 0) {
  174. dev->obufsz -= r;
  175. memmove(dev->obuf, &dev->obuf[r], dev->obufsz);
  176. }
  177. return r;
  178. }
  179. ssize_t ft232r_write(struct ft232r_device_handle *dev, void *data, size_t count)
  180. {
  181. uint16_t bufleft;
  182. ssize_t r;
  183. bufleft = dev->osz - dev->obufsz;
  184. if (count < bufleft) {
  185. // Just add to output buffer
  186. memcpy(&dev->obuf[dev->obufsz], data, count);
  187. dev->obufsz += count;
  188. return count;
  189. }
  190. // Fill up buffer and flush
  191. memcpy(&dev->obuf[dev->obufsz], data, bufleft);
  192. dev->obufsz += bufleft;
  193. r = ft232r_flush(dev);
  194. if (unlikely(r <= 0)) {
  195. // In this case, no bytes were written supposedly, so remove this data from buffer
  196. dev->obufsz -= bufleft;
  197. return r;
  198. }
  199. // Even if not all <bufleft> bytes from this write got out, the remaining are still buffered
  200. return bufleft;
  201. }
  202. typedef ssize_t (*ft232r_rwfunc_t)(struct ft232r_device_handle *, void*, size_t);
  203. static ssize_t ft232r_rw_all(ft232r_rwfunc_t rwfunc, struct ft232r_device_handle *dev, void *data, size_t count)
  204. {
  205. char *p = data;
  206. ssize_t writ = 0, total = 0;
  207. while (count && (writ = rwfunc(dev, p, count)) > 0) {
  208. p += writ;
  209. count -= writ;
  210. total += writ;
  211. }
  212. return total ?: writ;
  213. }
  214. ssize_t ft232r_write_all(struct ft232r_device_handle *dev, void *data, size_t count)
  215. {
  216. return ft232r_rw_all(ft232r_write, dev, data, count);
  217. }
  218. ssize_t ft232r_read(struct ft232r_device_handle *dev, void *data, size_t count)
  219. {
  220. ssize_t r;
  221. int adj;
  222. // Flush any pending output before reading
  223. r = ft232r_flush(dev);
  224. if (r < 0)
  225. return r;
  226. // First 2 bytes of every 0x40 are FTDI status or something
  227. while (dev->ibufLen <= 2) {
  228. // TODO: Implement a timeout for status byte repeating
  229. int transferred = ft232r_readwrite(dev, dev->i, dev->ibuf, sizeof(dev->ibuf));
  230. if (transferred <= 0)
  231. return transferred;
  232. dev->ibufLen = transferred;
  233. for (adj = 0x40; dev->ibufLen > adj; adj += 0x40 - 2) {
  234. dev->ibufLen -= 2;
  235. memmove(&dev->ibuf[adj], &dev->ibuf[adj+2], dev->ibufLen - adj);
  236. }
  237. }
  238. unsigned char *ibufs = &dev->ibuf[2];
  239. size_t ibufsLen = dev->ibufLen - 2;
  240. if (count > ibufsLen)
  241. count = ibufsLen;
  242. memcpy(data, ibufs, count);
  243. dev->ibufLen -= count;
  244. ibufsLen -= count;
  245. if (ibufsLen) {
  246. memmove(ibufs, &ibufs[count], ibufsLen);
  247. applog(LOG_DEBUG, "ft232r_read: %"PRIu64" bytes extra", (uint64_t)ibufsLen);
  248. }
  249. return count;
  250. }
  251. ssize_t ft232r_read_all(struct ft232r_device_handle *dev, void *data, size_t count)
  252. {
  253. return ft232r_rw_all(ft232r_read, dev, data, count);
  254. }
  255. bool ft232r_get_pins(struct ft232r_device_handle *dev, uint8_t *pins)
  256. {
  257. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_PINS, 0, FTDI_INDEX, pins, 1, FTDI_TIMEOUT) == 1;
  258. }
  259. bool ft232r_get_bitmode(struct ft232r_device_handle *dev, uint8_t *out_mode)
  260. {
  261. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_BITMODE, 0, FTDI_INDEX, out_mode, 1, FTDI_TIMEOUT) == 1;
  262. }
  263. bool ft232r_set_cbus_bits(struct ft232r_device_handle *dev, bool sc, bool cs)
  264. {
  265. uint8_t pin_state = (cs ? (1<<2) : 0)
  266. | (sc ? (1<<3) : 0);
  267. return ft232r_set_bitmode(dev, 0xc0 | pin_state, 0x20);
  268. }
  269. bool ft232r_get_cbus_bits(struct ft232r_device_handle *dev, bool *out_sio0, bool *out_sio1)
  270. {
  271. uint8_t data;
  272. if (!ft232r_get_bitmode(dev, &data))
  273. return false;
  274. *out_sio0 = data & 1;
  275. *out_sio1 = data & 2;
  276. return true;
  277. }
  278. struct lowlevel_driver lowl_ft232r = {
  279. .dname = "ft232r",
  280. .devinfo_scan = ft232r_devinfo_scan,
  281. .devinfo_free = ft232r_devinfo_free,
  282. };
  283. #if 0
  284. int main() {
  285. libusb_init(NULL);
  286. ft232r_scan();
  287. ft232r_scan_free();
  288. libusb_exit(NULL);
  289. }
  290. void applog(int prio, const char *fmt, ...)
  291. {
  292. va_list ap;
  293. va_start(ap, fmt);
  294. vprintf(fmt, ap);
  295. puts("");
  296. va_end(ap);
  297. }
  298. #endif