| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563 |
- /*
- * DiabloMiner - OpenCL miner for BitCoin
- * Copyright (C) 2010, 2011 Patrick McFarland <diablod3@gmail.com>
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
- typedef uint z;
- #if BITALIGN
- #pragma OPENCL EXTENSION cl_amd_media_ops : enable
- #define Zrotr(a, b) amd_bitalign((z)a, (z)a, (z)b)
- #define Ch(a, b, c) amd_bytealign(a, b, c)
- #define Ma(a, b, c) amd_bytealign((b), (a | c), (c & a))
- #else
- #define Zrotr(a, b) rotate((z)a, (z)(32 - b))
- #define Ch(a, b, c) (c ^ (a & (b ^ c)))
- #define Ma(a, b, c) ((b & c) | (a & (b | c)))
- #endif
- #define WORKSIZE 128
- #define Ma2(a, b, c) ((b & c) | (a & (b | c)))
- __constant uint K[64] = {
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
- 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
- 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
- 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
- 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
- 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
- 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
- 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
- };
- typedef struct {
- uint ctx_a; uint ctx_b; uint ctx_c; uint ctx_d;
- uint ctx_e; uint ctx_f; uint ctx_g; uint ctx_h;
- uint cty_a; uint cty_b; uint cty_c; uint cty_d;
- uint cty_e; uint cty_f; uint cty_g; uint cty_h;
- uint merkle; uint ntime; uint nbits; uint nonce;
- uint fW0; uint fW1; uint fW2; uint fW3; uint fW15;
- uint fW01r; uint fcty_e; uint fcty_e2;
- } dev_blk_ctx;
- __kernel __attribute__((reqd_work_group_size(WORKSIZE, 1, 1))) void search(
- __constant dev_blk_ctx *ctx,
- __global uint * output)
- {
- const uint fW0 = ctx->fW0;
- const uint fW1 = ctx->fW1;
- const uint fW2 = ctx->fW2;
- const uint fW3 = ctx->fW3;
- const uint fW15 = ctx->fW15;
- const uint fW01r = ctx->fW01r;
- const uint fcty_e = ctx->fcty_e;
- const uint fcty_e2 = ctx->fcty_e2;
- const uint fcty_e_plus_e2 = fcty_e + fcty_e2;
- const uint state0 = ctx->ctx_a;
- const uint fcty_e_plus_state0 = fcty_e + state0;
- const uint state1 = ctx->ctx_b;
- const uint state2 = ctx->ctx_c;
- const uint state3 = ctx->ctx_d;
- const uint state4 = ctx->ctx_e;
- const uint state5 = ctx->ctx_f;
- const uint state6 = ctx->ctx_g;
- const uint state7 = ctx->ctx_h;
- const uint b1 = ctx->cty_b;
- const uint c1 = ctx->cty_c;
- const uint d1 = ctx->cty_d;
- const uint f1 = ctx->cty_f;
- const uint g1 = ctx->cty_g;
- const uint h1 = ctx->cty_h;
- const uint base = ctx->nonce;
-
- z ZA, ZB, ZC, ZD, ZE, ZF, ZG, ZH;
- z ZW0, ZW1, ZW2, ZW3, ZW4, ZW5, ZW6, ZW7, ZW8, ZW9, ZW10, ZW11, ZW12, ZW13, ZW14, ZW15;
- z Znonce = base + get_global_id(0);
- #ifdef DOLOOPS
- Znonce *= (z)loops;
- uint it;
- const z Zloopnonce = Znonce;
- for(it = loops; it != 0; it--) {
- Znonce = (loops - it) ^ Zloopnonce;
- #endif
-
- ZW3 = Znonce + fW3;
-
- ZE = Znonce + fcty_e_plus_e2 ;
- ZA = Znonce + fcty_e_plus_state0;
- ZD = d1 + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, b1, c1);
- ZH = h1 + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma2(g1, ZE, f1);
- ZC = c1 + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, b1) + K[ 5];
- ZG = g1 + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma2(f1, ZD, ZE);
- ZB = b1 + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[ 6];
- ZF = f1 + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[ 7];
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[ 8];
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[ 9];
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[10];
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[11];
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[12];
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[13];
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[14];
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[15] + 0x00000280U;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[16] + fW0;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[17] + fW1;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW2 = (Zrotr(Znonce, 7) ^ Zrotr(Znonce, 18) ^ (Znonce >> 3U)) + fW2;
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[18] + ZW2;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[19] + ZW3;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW4 = (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U)) + 0x80000000U;
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[20] + ZW4;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW5 = (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[21] + ZW5;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW6 = (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U)) + 0x00000280U;
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[22] + ZW6;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW7 = (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U)) + fW0;
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[23] + ZW7;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW8 = (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U)) + fW1;
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[24] + ZW8;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW9 = ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[25] + ZW9;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW10 = ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[26] + ZW10;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW11 = ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[27] + ZW11;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW12 = ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[28] + ZW12;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW13 = ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[29] + ZW13;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW14 = 0x00a00055U + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[30] + ZW14;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW15 = fW15 + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[31] + ZW15;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW0 = fW01r + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[32] + ZW0;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW1 = fW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[33] + ZW1;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[34] + ZW2;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[35] + ZW3;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[36] + ZW4;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[37] + ZW5;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[38] + ZW6;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[39] + ZW7;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[40] + ZW8;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[41] + ZW9;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[42] + ZW10;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[43] + ZW11;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[44] + ZW12;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[45] + ZW13;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[46] + ZW14;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[47] + ZW15;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[48] + ZW0;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[49] + ZW1;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[50] + ZW2;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[51] + ZW3;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[52] + ZW4;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[53] + ZW5;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[54] + ZW6;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[55] + ZW7;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[56] + ZW8;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[57] + ZW9;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[58] + ZW10;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[59] + ZW11;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[60] + ZW12;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[61] + ZW13;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[62] + ZW14;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[63] + ZW15;
- ZW0 = ZA + state0 + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW1 = ZB + state1;
- ZW2 = ZC + state2;
- ZW3 = ZD + state3;
- ZW4 = ZE + ZA + state4;
- ZW5 = ZF + state5;
- ZW6 = ZG + state6;
- ZW7 = ZH + state7;
- ZD = 0x98C7E2A2U + ZW0;
- ZH = 0xFC08884DU + ZW0;
- ZC = 0xCD2A11AEU + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, 0x510e527fU, 0x9b05688cU) + ZW1;
- ZG = 0xC3910C8EU + ZC + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma2(0xbb67ae85U, ZH, 0x6a09e667U);
- ZB = 0x0C2E12E0U + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, 0x510e527fU) + ZW2;
- ZF = 0x4498517BU + ZB + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma2(ZG, ZH, 0x6a09e667U);
- ZA = 0xA4CE148BU + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + ZW3;
- ZE = 0x95F61999U + ZA + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma2(ZH, ZF, ZG);
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[ 4] + ZW4;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[ 5] + ZW5;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[ 6] + ZW6;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[ 7] + ZW7;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[ 8] + 0x80000000U;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[ 9];
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[10];
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[11];
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[12];
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[13];
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[14];
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[15] + 0x00000100U;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[16] + ZW0;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + 0x00a00000U;
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[17] + ZW1;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[18] + ZW2;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[19] + ZW3;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[20] + ZW4;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[21] + ZW5;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + 0x00000100U + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[22] + ZW6;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW7 = ZW7 + 0x11002000U + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[23] + ZW7;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW8 = 0x80000000U + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[24] + ZW8;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW9 = ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[25] + ZW9;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW10 = ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[26] + ZW10;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW11 = ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[27] + ZW11;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW12 = ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[28] + ZW12;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW13 = ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[29] + ZW13;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW14 = 0x00400022U + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[30] + ZW14;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW15 = 0x00000100U + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[31] + ZW15;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[32] + ZW0;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[33] + ZW1;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[34] + ZW2;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[35] + ZW3;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[36] + ZW4;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[37] + ZW5;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[38] + ZW6;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[39] + ZW7;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[40] + ZW8;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[41] + ZW9;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[42] + ZW10;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW11 = ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[43] + ZW11;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW12 = ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[44] + ZW12;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW13 = ZW13 + (Zrotr(ZW14, 7) ^ Zrotr(ZW14, 18) ^ (ZW14 >> 3U)) + ZW6 + (Zrotr(ZW11, 17) ^ Zrotr(ZW11, 19) ^ (ZW11 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[45] + ZW13;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW14 = ZW14 + (Zrotr(ZW15, 7) ^ Zrotr(ZW15, 18) ^ (ZW15 >> 3U)) + ZW7 + (Zrotr(ZW12, 17) ^ Zrotr(ZW12, 19) ^ (ZW12 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[46] + ZW14;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW15 = ZW15 + (Zrotr(ZW0, 7) ^ Zrotr(ZW0, 18) ^ (ZW0 >> 3U)) + ZW8 + (Zrotr(ZW13, 17) ^ Zrotr(ZW13, 19) ^ (ZW13 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[47] + ZW15;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW0 = ZW0 + (Zrotr(ZW1, 7) ^ Zrotr(ZW1, 18) ^ (ZW1 >> 3U)) + ZW9 + (Zrotr(ZW14, 17) ^ Zrotr(ZW14, 19) ^ (ZW14 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[48] + ZW0;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW1 = ZW1 + (Zrotr(ZW2, 7) ^ Zrotr(ZW2, 18) ^ (ZW2 >> 3U)) + ZW10 + (Zrotr(ZW15, 17) ^ Zrotr(ZW15, 19) ^ (ZW15 >> 10U));
- ZG = ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[49] + ZW1;
- ZC = ZC + ZG;
- ZG = ZG + (Zrotr(ZH, 2) ^ Zrotr(ZH, 13) ^ Zrotr(ZH, 22)) + Ma(ZB, ZH, ZA);
- ZW2 = ZW2 + (Zrotr(ZW3, 7) ^ Zrotr(ZW3, 18) ^ (ZW3 >> 3U)) + ZW11 + (Zrotr(ZW0, 17) ^ Zrotr(ZW0, 19) ^ (ZW0 >> 10U));
- ZF = ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[50] + ZW2;
- ZB = ZB + ZF;
- ZF = ZF + (Zrotr(ZG, 2) ^ Zrotr(ZG, 13) ^ Zrotr(ZG, 22)) + Ma(ZA, ZG, ZH);
- ZW3 = ZW3 + (Zrotr(ZW4, 7) ^ Zrotr(ZW4, 18) ^ (ZW4 >> 3U)) + ZW12 + (Zrotr(ZW1, 17) ^ Zrotr(ZW1, 19) ^ (ZW1 >> 10U));
- ZE = ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[51] + ZW3;
- ZA = ZA + ZE;
- ZE = ZE + (Zrotr(ZF, 2) ^ Zrotr(ZF, 13) ^ Zrotr(ZF, 22)) + Ma(ZH, ZF, ZG);
- ZW4 = ZW4 + (Zrotr(ZW5, 7) ^ Zrotr(ZW5, 18) ^ (ZW5 >> 3U)) + ZW13 + (Zrotr(ZW2, 17) ^ Zrotr(ZW2, 19) ^ (ZW2 >> 10U));
- ZD = ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + K[52] + ZW4;
- ZH = ZH + ZD;
- ZD = ZD + (Zrotr(ZE, 2) ^ Zrotr(ZE, 13) ^ Zrotr(ZE, 22)) + Ma(ZG, ZE, ZF);
- ZW5 = ZW5 + (Zrotr(ZW6, 7) ^ Zrotr(ZW6, 18) ^ (ZW6 >> 3U)) + ZW14 + (Zrotr(ZW3, 17) ^ Zrotr(ZW3, 19) ^ (ZW3 >> 10U));
- ZC = ZC + (Zrotr(ZH, 6) ^ Zrotr(ZH, 11) ^ Zrotr(ZH, 25)) + Ch(ZH, ZA, ZB) + K[53] + ZW5;
- ZG = ZG + ZC;
- ZC = ZC + (Zrotr(ZD, 2) ^ Zrotr(ZD, 13) ^ Zrotr(ZD, 22)) + Ma(ZF, ZD, ZE);
- ZW6 = ZW6 + (Zrotr(ZW7, 7) ^ Zrotr(ZW7, 18) ^ (ZW7 >> 3U)) + ZW15 + (Zrotr(ZW4, 17) ^ Zrotr(ZW4, 19) ^ (ZW4 >> 10U));
- ZB = ZB + (Zrotr(ZG, 6) ^ Zrotr(ZG, 11) ^ Zrotr(ZG, 25)) + Ch(ZG, ZH, ZA) + K[54] + ZW6;
- ZF = ZF + ZB;
- ZB = ZB + (Zrotr(ZC, 2) ^ Zrotr(ZC, 13) ^ Zrotr(ZC, 22)) + Ma(ZE, ZC, ZD);
- ZW7 = ZW7 + (Zrotr(ZW8, 7) ^ Zrotr(ZW8, 18) ^ (ZW8 >> 3U)) + ZW0 + (Zrotr(ZW5, 17) ^ Zrotr(ZW5, 19) ^ (ZW5 >> 10U));
- ZA = ZA + (Zrotr(ZF, 6) ^ Zrotr(ZF, 11) ^ Zrotr(ZF, 25)) + Ch(ZF, ZG, ZH) + K[55] + ZW7;
- ZE = ZE + ZA;
- ZA = ZA + (Zrotr(ZB, 2) ^ Zrotr(ZB, 13) ^ Zrotr(ZB, 22)) + Ma(ZD, ZB, ZC);
- ZW8 = ZW8 + (Zrotr(ZW9, 7) ^ Zrotr(ZW9, 18) ^ (ZW9 >> 3U)) + ZW1 + (Zrotr(ZW6, 17) ^ Zrotr(ZW6, 19) ^ (ZW6 >> 10U));
- ZH = ZH + (Zrotr(ZE, 6) ^ Zrotr(ZE, 11) ^ Zrotr(ZE, 25)) + Ch(ZE, ZF, ZG) + K[56] + ZW8;
- ZD = ZD + ZH;
- ZH = ZH + (Zrotr(ZA, 2) ^ Zrotr(ZA, 13) ^ Zrotr(ZA, 22)) + Ma(ZC, ZA, ZB);
- ZW9 = ZW9 + (Zrotr(ZW10, 7) ^ Zrotr(ZW10, 18) ^ (ZW10 >> 3U)) + ZW2 + (Zrotr(ZW7, 17) ^ Zrotr(ZW7, 19) ^ (ZW7 >> 10U));
- ZC = ZC + ZG + (Zrotr(ZD, 6) ^ Zrotr(ZD, 11) ^ Zrotr(ZD, 25)) + Ch(ZD, ZE, ZF) + K[57] + ZW9;
- ZW10 = ZW10 + (Zrotr(ZW11, 7) ^ Zrotr(ZW11, 18) ^ (ZW11 >> 3U)) + ZW3 + (Zrotr(ZW8, 17) ^ Zrotr(ZW8, 19) ^ (ZW8 >> 10U));
- ZB = ZB + ZF + (Zrotr(ZC, 6) ^ Zrotr(ZC, 11) ^ Zrotr(ZC, 25)) + Ch(ZC, ZD, ZE) + K[58] + ZW10;
- ZA = ZA + ZE + (Zrotr(ZB, 6) ^ Zrotr(ZB, 11) ^ Zrotr(ZB, 25)) + Ch(ZB, ZC, ZD) + K[59] + ZW11 + (Zrotr(ZW12, 7) ^ Zrotr(ZW12, 18) ^ (ZW12 >> 3U)) + ZW4 + (Zrotr(ZW9, 17) ^ Zrotr(ZW9, 19) ^ (ZW9 >> 10U));
- ZH = ZH + ZD + (Zrotr(ZA, 6) ^ Zrotr(ZA, 11) ^ Zrotr(ZA, 25)) + Ch(ZA, ZB, ZC) + ZW12 + (Zrotr(ZW13, 7) ^ Zrotr(ZW13, 18) ^ (ZW13 >> 3U)) + ZW5 + (Zrotr(ZW10, 17) ^ Zrotr(ZW10, 19) ^ (ZW10 >> 10U));
- if(ZH == 0x136032ED) { output[Znonce & 0xFF] = Znonce;}
- #ifdef DOLOOPS
- }
- #endif
- }
|