driver-minion.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. /*
  2. * Copyright 2014 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <stdbool.h>
  11. #include <stddef.h>
  12. #include <stdint.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <linux/spi/spidev.h>
  16. #include <uthash.h>
  17. #include "deviceapi.h"
  18. #include "logging.h"
  19. #include "lowl-spi.h"
  20. #include "miner.h"
  21. #include "util.h"
  22. static const uint8_t minion_max_chipid = 0x1f;
  23. static const uint8_t minion_chip_signature[] = {0x44, 0x8a, 0xac, 0xb1};
  24. static const unsigned minion_max_queued = 0x10;
  25. static const unsigned minion_poll_us = 10000;
  26. enum minion_register {
  27. MRA_SIGNATURE = 0x00,
  28. MRA_STATUS = 0x01,
  29. MRA_MISC_CTL = 0x06,
  30. MRA_FIFO_STATUS = 0x0b,
  31. MRA_RESULT = 0x20,
  32. MRA_TASK = 0x30,
  33. MRA_NONCE_START = 0x70,
  34. MRA_NONCE_INC = 0x71,
  35. };
  36. struct minion_chip {
  37. uint8_t chipid;
  38. uint8_t core_count;
  39. uint16_t next_taskid;
  40. struct cgpu_info *first_proc;
  41. };
  42. struct minion_bus {
  43. struct spi_port *spi;
  44. };
  45. static
  46. void minion_get(struct spi_port * const spi, const uint8_t chipid, const uint8_t addr, void * const buf, const size_t bufsz)
  47. {
  48. const uint8_t header[] = {chipid, addr | 0x80, bufsz & 0xff, bufsz >> 8};
  49. spi_clear_buf(spi);
  50. spi_emit_buf(spi, header, sizeof(header));
  51. uint8_t dummy[bufsz];
  52. memset(dummy, 0xff, bufsz);
  53. spi_emit_buf(spi, dummy, bufsz);
  54. spi_txrx(spi);
  55. uint8_t * const rdbuf = spi_getrxbuf(spi);
  56. memcpy(buf, &rdbuf[sizeof(header)], bufsz);
  57. }
  58. static
  59. void minion_set(struct spi_port * const spi, const uint8_t chipid, const uint8_t addr, const void * const buf, const size_t bufsz)
  60. {
  61. const uint8_t header[] = {chipid, addr, bufsz & 0xff, bufsz >> 8};
  62. spi_clear_buf(spi);
  63. spi_emit_buf(spi, header, sizeof(header));
  64. spi_emit_buf(spi, buf, bufsz);
  65. spi_txrx(spi);
  66. }
  67. static
  68. unsigned minion_count_cores(struct spi_port * const spi)
  69. {
  70. uint8_t buf[max(4, sizeof(minion_chip_signature))];
  71. unsigned total_core_count = 0;
  72. for (unsigned chipid = 0; chipid <= minion_max_chipid; ++chipid)
  73. {
  74. minion_get(spi, chipid, MRA_SIGNATURE, buf, sizeof(minion_chip_signature));
  75. if (memcmp(buf, minion_chip_signature, sizeof(minion_chip_signature)))
  76. {
  77. for (unsigned i = 0; i < sizeof(minion_chip_signature); ++i)
  78. {
  79. if (buf[i] != 0xff)
  80. {
  81. char hex[(sizeof(minion_chip_signature) * 2) + 1];
  82. bin2hex(hex, buf, sizeof(minion_chip_signature));
  83. applog(LOG_DEBUG, "%s: chipid %u: Bad signature (%s)", spi->repr, chipid, hex);
  84. break;
  85. }
  86. }
  87. continue;
  88. }
  89. minion_get(spi, chipid, MRA_STATUS, buf, 4);
  90. const uint8_t core_count = buf[2];
  91. applog(LOG_DEBUG, "%s: chipid %u: Found %u cores", spi->repr, chipid, core_count);
  92. total_core_count += core_count;
  93. }
  94. return total_core_count;
  95. }
  96. static
  97. bool minion_init(struct thr_info * const thr)
  98. {
  99. struct cgpu_info * const dev = thr->cgpu, *proc = dev;
  100. struct minion_bus * const mbus = dev->device_data;
  101. struct spi_port * const spi = mbus->spi;
  102. uint8_t buf[max(4, sizeof(minion_chip_signature))];
  103. struct minion_chip * const chips = malloc(sizeof(*chips) * ((size_t)minion_max_chipid + 1));
  104. for (unsigned chipid = 0; proc; ++chipid)
  105. {
  106. struct minion_chip * const chip = &chips[chipid];
  107. spi->repr = proc->proc_repr;
  108. minion_get(spi, chipid, MRA_SIGNATURE, buf, sizeof(minion_chip_signature));
  109. if (memcmp(buf, minion_chip_signature, sizeof(minion_chip_signature)))
  110. continue;
  111. minion_get(spi, chipid, MRA_STATUS, buf, 4);
  112. if (!buf[2])
  113. continue;
  114. *chip = (struct minion_chip){
  115. .chipid = chipid,
  116. .core_count = buf[2],
  117. .first_proc = proc,
  118. };
  119. minion_set(spi, chipid, MRA_NONCE_START, "\0\0\0\0", 4);
  120. pk_u32le(buf, 0, 0xffffffff / chip->core_count);
  121. minion_set(spi, chipid, MRA_NONCE_INC, buf, 4);
  122. minion_get(spi, chipid, MRA_MISC_CTL, buf, 4);
  123. buf[0] |= 1 << 2; // Enable "no nonce" result reports
  124. minion_set(spi, chipid, MRA_MISC_CTL, buf, 4);
  125. timer_set_delay_from_now(&proc->thr[0]->tv_poll, minion_poll_us);
  126. for (unsigned i = 0; i < chip->core_count; ++i)
  127. {
  128. struct thr_info * const thr = proc->thr[0];
  129. thr->cgpu_data = chip;
  130. proc = proc->next_proc;
  131. }
  132. }
  133. return true;
  134. }
  135. static
  136. bool minion_queue_full(struct minion_chip * const chip)
  137. {
  138. struct cgpu_info *proc = chip->first_proc;
  139. struct thr_info *thr = proc->thr[0];
  140. const bool full = (HASH_COUNT(thr->work) >= minion_max_queued);
  141. if (full != thr->queue_full)
  142. {
  143. for (unsigned i = 0; i < chip->core_count; (proc = proc->next_proc), ++i)
  144. {
  145. thr = proc->thr[0];
  146. thr->queue_full = full;
  147. }
  148. }
  149. return full;
  150. }
  151. static
  152. bool minion_queue_append(struct thr_info *thr, struct work * const work)
  153. {
  154. struct cgpu_info *proc = thr->cgpu;
  155. struct minion_bus * const mbus = proc->device_data;
  156. struct minion_chip * const chip = thr->cgpu_data;
  157. proc = chip->first_proc;
  158. thr = proc->thr[0];
  159. if (minion_queue_full(chip))
  160. return false;
  161. struct spi_port * const spi = mbus->spi;
  162. const uint8_t chipid = chip->chipid;
  163. uint8_t taskdata[0x30];
  164. spi->repr = proc->proc_repr;
  165. work->device_id = ++chip->next_taskid;
  166. pk_u16be(taskdata, 0, work->device_id);
  167. memset(&taskdata[2], 0, 2);
  168. memcpy(&taskdata[4], work->midstate, 0x20);
  169. memcpy(&taskdata[0x24], &work->data[0x40], 0xc);
  170. minion_set(spi, chipid, MRA_TASK, taskdata, sizeof(taskdata));
  171. HASH_ADD(hh, thr->work, device_id, sizeof(work->device_id), work);
  172. minion_queue_full(chip);
  173. return true;
  174. }
  175. static
  176. void minion_queue_flush(struct thr_info * const thr)
  177. {
  178. }
  179. static
  180. void minion_poll(struct thr_info * const chip_thr)
  181. {
  182. struct cgpu_info * const first_proc = chip_thr->cgpu;
  183. struct minion_bus * const mbus = first_proc->device_data;
  184. struct minion_chip * const chip = chip_thr->cgpu_data;
  185. struct spi_port * const spi = mbus->spi;
  186. const uint8_t chipid = chip->chipid;
  187. spi->repr = first_proc->proc_repr;
  188. uint8_t buf[4];
  189. minion_get(spi, chipid, MRA_FIFO_STATUS, buf, 4);
  190. const uint8_t res_fifo_len = buf[0];
  191. if (res_fifo_len)
  192. {
  193. static const size_t resbuf_i_len = 8;
  194. const size_t resbuf_len = (size_t)res_fifo_len * resbuf_i_len;
  195. uint8_t resbuf[resbuf_len], *resbuf_i = resbuf;
  196. minion_get(spi, chipid, MRA_RESULT, resbuf, resbuf_len);
  197. for (unsigned i = 0; i < res_fifo_len; (resbuf_i += resbuf_i_len), ++i)
  198. {
  199. const uint8_t coreid = resbuf_i[2];
  200. work_device_id_t taskid = upk_u16be(resbuf_i, 0);
  201. const bool have_nonce = !(resbuf_i[3] & 0x80);
  202. struct cgpu_info *proc;
  203. struct thr_info *core_thr;
  204. if (likely(coreid < chip->core_count))
  205. {
  206. proc = first_proc;
  207. for (int j = 0; j < coreid; ++j)
  208. proc = proc->next_proc;
  209. core_thr = proc->thr[0];
  210. }
  211. else
  212. {
  213. proc = first_proc;
  214. core_thr = proc->thr[0];
  215. inc_hw_errors_only(core_thr);
  216. applog(LOG_ERR, "%"PRIpreprv": Core id out of range (%u >= %u)", proc->proc_repr, coreid, chip->core_count);
  217. }
  218. struct work *work;
  219. HASH_FIND(hh, chip_thr->work, &taskid, sizeof(taskid), work);
  220. if (unlikely(!work))
  221. {
  222. inc_hw_errors_only(core_thr);
  223. applog(LOG_ERR, "%"PRIpreprv": Unknown task %"PRIwdi, proc->proc_repr, taskid);
  224. continue;
  225. }
  226. if (have_nonce)
  227. {
  228. const uint32_t nonce = upk_u32le(resbuf_i, 4);
  229. submit_nonce(core_thr, work, nonce);
  230. }
  231. // Delete the previous work
  232. uint16_t taskid_truncated = taskid;
  233. --taskid_truncated;
  234. taskid = taskid_truncated;
  235. HASH_FIND(hh, chip_thr->work, &taskid, sizeof(taskid), work);
  236. if (work)
  237. {
  238. HASH_DEL(chip_thr->work, work);
  239. free_work(work);
  240. }
  241. }
  242. minion_queue_full(chip);
  243. }
  244. timer_set_delay_from_now(&chip_thr->tv_poll, minion_poll_us);
  245. }
  246. BFG_REGISTER_DRIVER(minion_drv)
  247. static
  248. bool minion_detect_one(const char * const devpath)
  249. {
  250. spi_init();
  251. struct spi_port *spi = malloc(sizeof(*spi));
  252. // Be careful, read lowl-spi.h comments for warnings
  253. memset(spi, 0, sizeof(*spi));
  254. spi->speed = 50000000;
  255. spi->mode = SPI_MODE_0;
  256. spi->bits = 8;
  257. spi->txrx = linux_spi_txrx2;
  258. if (spi_open(spi, devpath) < 0)
  259. {
  260. free(spi);
  261. applogr(false, LOG_ERR, "%s: Failed to open %s", minion_drv.dname, devpath);
  262. }
  263. spi->repr = minion_drv.dname;
  264. spi->logprio = LOG_WARNING;
  265. const unsigned total_core_count = minion_count_cores(spi);
  266. struct minion_bus * const mbus = malloc(sizeof(*mbus));
  267. *mbus = (struct minion_bus){
  268. .spi = spi,
  269. };
  270. struct cgpu_info * const cgpu = malloc(sizeof(*cgpu));
  271. *cgpu = (struct cgpu_info){
  272. .drv = &minion_drv,
  273. .device_path = strdup(devpath),
  274. .device_data = mbus,
  275. .deven = DEV_ENABLED,
  276. .procs = total_core_count,
  277. .threads = 1,
  278. };
  279. return add_cgpu(cgpu);
  280. }
  281. static
  282. int minion_detect_auto(void)
  283. {
  284. return minion_detect_one("/dev/spidev0.0") ? 1 : 0;
  285. }
  286. static
  287. void minion_detect(void)
  288. {
  289. generic_detect(&minion_drv, minion_detect_one, minion_detect_auto, GDF_REQUIRE_DNAME | GDF_DEFAULT_NOAUTO);
  290. }
  291. struct device_drv minion_drv = {
  292. .dname = "minion",
  293. .name = "MNN",
  294. .drv_detect = minion_detect,
  295. .thread_init = minion_init,
  296. .minerloop = minerloop_queue,
  297. .queue_append = minion_queue_append,
  298. .queue_flush = minion_queue_flush,
  299. .poll = minion_poll,
  300. };