driver-titan.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827
  1. /*
  2. * Copyright 2014 Vitalii Demianets
  3. * Copyright 2014 KnCMiner
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the Free
  7. * Software Foundation; either version 3 of the License, or (at your option)
  8. * any later version. See COPYING for more details.
  9. */
  10. #include <fcntl.h>
  11. #include <sys/ioctl.h>
  12. #include "deviceapi.h"
  13. #include "logging.h"
  14. #include "miner.h"
  15. #include "util.h"
  16. #include "titan-asic.h"
  17. #define KNC_TITAN_DEFAULT_FREQUENCY 275
  18. #define KNC_TITAN_HWERR_DISABLE_SECS 10
  19. #define KNC_POLL_INTERVAL_US 10000
  20. #define DIE_HEALTH_INTERVAL_SEC 20
  21. /* Broadcast address to all cores in a die */
  22. #define ALL_CORES 0xFFFF
  23. /* Work queue pre-fill level.
  24. * Must be high enough to supply all ASICs with works after a flush */
  25. #define WORK_QUEUE_PREFILL 20
  26. /* Specify here minimum number of leading zeroes in hash */
  27. #define DEFAULT_DIFF_FILTERING_ZEROES 24
  28. #define DEFAULT_DIFF_FILTERING_FLOAT (1. / ((double)(0x00000000FFFFFFFF >> DEFAULT_DIFF_FILTERING_ZEROES)))
  29. #define DEFAULT_DIFF_HASHES_PER_NONCE (1 << DEFAULT_DIFF_FILTERING_ZEROES)
  30. BFG_REGISTER_DRIVER(knc_titan_drv)
  31. /* 3 - default number of threads per core */
  32. static int opt_knc_threads_per_core = 3;
  33. static const struct bfg_set_device_definition knc_titan_set_device_funcs[];
  34. struct knc_titan_core {
  35. int asicno;
  36. int dieno; /* inside asic */
  37. int coreno; /* inside die */
  38. struct knc_titan_die *die;
  39. struct cgpu_info *proc;
  40. int hwerr_in_row;
  41. int hwerr_disable_time;
  42. struct timeval enable_at;
  43. struct timeval first_hwerr;
  44. struct nonce_report last_nonce;
  45. };
  46. struct knc_titan_die {
  47. int asicno;
  48. int dieno; /* inside asic */
  49. int cores;
  50. struct cgpu_info *first_proc;
  51. bool need_flush;
  52. int next_slot;
  53. /* First slot after flush. If next_slot reaches this, then
  54. * we need to re-flush all the cores to avoid duplicating slot numbers
  55. * for different works */
  56. int first_slot;
  57. struct timeval last_share;
  58. /* Don't use this! DC/DCs don't like broadcast urgent setworks */
  59. bool broadcast_flushes;
  60. int freq;
  61. };
  62. struct knc_titan_info {
  63. void *ctx;
  64. struct cgpu_info *cgpu;
  65. int cores;
  66. struct knc_titan_die dies[KNC_TITAN_MAX_ASICS][KNC_TITAN_DIES_PER_ASIC];
  67. struct work *workqueue;
  68. int workqueue_size;
  69. int workqueue_max;
  70. int next_id;
  71. struct work *devicework;
  72. };
  73. static bool knc_titan_detect_one(const char *devpath)
  74. {
  75. static struct cgpu_info *prev_cgpu = NULL;
  76. struct cgpu_info *cgpu;
  77. void *ctx;
  78. struct knc_titan_info *knc;
  79. int cores = 0, asic, die;
  80. struct knc_die_info die_info;
  81. char repr[6];
  82. cgpu = malloc(sizeof(*cgpu));
  83. if (unlikely(!cgpu))
  84. quit(1, "Failed to alloc cgpu_info");
  85. if (!prev_cgpu) {
  86. if (NULL == (ctx = knc_trnsp_new(NULL))) {
  87. free(cgpu);
  88. return false;
  89. }
  90. knc = calloc(1, sizeof(*knc));
  91. if (unlikely(!knc))
  92. quit(1, "Failed to alloc knc_titan_info");
  93. knc->ctx = ctx;
  94. knc->cgpu = cgpu;
  95. knc->workqueue_max = WORK_QUEUE_PREFILL;
  96. } else {
  97. knc = prev_cgpu->device_data;
  98. ctx = knc->ctx;
  99. }
  100. snprintf(repr, sizeof(repr), "%s %s", knc_titan_drv.name, devpath);
  101. asic = atoi(devpath);
  102. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  103. die_info.cores = KNC_TITAN_CORES_PER_DIE; /* core hint */
  104. die_info.version = KNC_VERSION_TITAN;
  105. if (!knc_titan_get_info(repr, ctx, asic, die, &die_info))
  106. die_info.cores = -1;
  107. if (0 < die_info.cores) {
  108. knc->dies[asic][die] = (struct knc_titan_die) {
  109. .asicno = asic,
  110. .dieno = die,
  111. .cores = die_info.cores,
  112. .first_proc = cgpu,
  113. .freq = KNC_TITAN_DEFAULT_FREQUENCY,
  114. };
  115. cores += die_info.cores;
  116. } else {
  117. knc->dies[asic][die] = (struct knc_titan_die) {
  118. .asicno = -INT_MAX,
  119. .dieno = -INT_MAX,
  120. .cores = 0,
  121. .first_proc = NULL,
  122. };
  123. }
  124. }
  125. if (0 == cores) {
  126. free(cgpu);
  127. if (!prev_cgpu) {
  128. free(knc);
  129. knc_trnsp_free(ctx);
  130. }
  131. return false;
  132. }
  133. applog(LOG_NOTICE, "%s: Found ASIC with %d cores", repr, cores);
  134. *cgpu = (struct cgpu_info) {
  135. .drv = &knc_titan_drv,
  136. .device_path = strdup(devpath),
  137. .set_device_funcs = knc_titan_set_device_funcs,
  138. .deven = DEV_ENABLED,
  139. .procs = cores,
  140. .threads = prev_cgpu ? 0 : 1,
  141. .extra_work_queue = -1,
  142. .device_data = knc,
  143. };
  144. const bool rv = add_cgpu_slave(cgpu, prev_cgpu);
  145. if (!prev_cgpu) {
  146. cgpu->extra_work_queue += WORK_QUEUE_PREFILL - opt_queue;
  147. if (0 > cgpu->extra_work_queue)
  148. cgpu->extra_work_queue = 0;
  149. }
  150. prev_cgpu = cgpu;
  151. return rv;
  152. }
  153. static int knc_titan_detect_auto(void)
  154. {
  155. const int first = 0, last = KNC_TITAN_MAX_ASICS - 1;
  156. char devpath[256];
  157. int found = 0, i;
  158. for (i = first; i <= last; ++i) {
  159. sprintf(devpath, "%d", i);
  160. if (knc_titan_detect_one(devpath))
  161. ++found;
  162. }
  163. return found;
  164. }
  165. static void knc_titan_detect(void)
  166. {
  167. generic_detect(&knc_titan_drv, knc_titan_detect_one, knc_titan_detect_auto, GDF_REQUIRE_DNAME | GDF_DEFAULT_NOAUTO);
  168. }
  169. static void knc_titan_clean_flush(const char *repr, void * const ctx, int asic, int die, int core)
  170. {
  171. struct knc_report report;
  172. bool unused;
  173. knc_titan_set_work(repr, ctx, asic, die, core, 0, NULL, true, &unused, &report);
  174. }
  175. static uint32_t nonce_tops[KNC_TITAN_DIES_PER_ASIC][KNC_TITAN_CORES_PER_DIE];
  176. static bool nonce_tops_inited = false;
  177. static void get_nonce_range(int dieno, int coreno, uint32_t *nonce_bottom, uint32_t *nonce_top)
  178. {
  179. if (!nonce_tops_inited) {
  180. uint32_t top;
  181. double nonce_f, nonce_step;
  182. int die, core;
  183. nonce_f = 0.0;
  184. nonce_step = 4294967296.0 / KNC_TITAN_CORES_PER_ASIC;
  185. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  186. for (core = 0; core < KNC_TITAN_CORES_PER_DIE; ++core) {
  187. nonce_f += nonce_step;
  188. if ((core < (KNC_TITAN_CORES_PER_DIE - 1)) || (die < (KNC_TITAN_DIES_PER_ASIC - 1)))
  189. top = nonce_f;
  190. else
  191. top = 0xFFFFFFFF;
  192. nonce_tops[die][core] = top;
  193. }
  194. }
  195. nonce_tops_inited = true;
  196. }
  197. *nonce_top = nonce_tops[dieno][coreno];
  198. if (coreno > 0) {
  199. *nonce_bottom = nonce_tops[dieno][coreno - 1] + 1;
  200. return;
  201. }
  202. if (dieno > 0) {
  203. *nonce_bottom = nonce_tops[dieno - 1][KNC_TITAN_CORES_PER_DIE - 1] + 1;
  204. return;
  205. }
  206. *nonce_bottom = 0;
  207. }
  208. static bool configure_one_die(struct knc_titan_info *knc, int asic, int die)
  209. {
  210. struct cgpu_info *proc, *first_proc;
  211. struct thr_info *mythr;
  212. struct knc_titan_core *knccore;
  213. char *repr;
  214. struct knc_titan_die *die_p;
  215. if ((0 > asic) || (KNC_TITAN_MAX_ASICS <= asic) || (0 > die) || (KNC_TITAN_DIES_PER_ASIC <= die))
  216. return false;
  217. die_p = &(knc->dies[asic][die]);
  218. if (0 >= die_p->cores)
  219. return false;
  220. /* Init nonce ranges for cores */
  221. struct titan_setup_core_params setup_params = {
  222. .bad_address_mask = {0, 0},
  223. .bad_address_match = {0x3FF, 0x3FF},
  224. .difficulty = DEFAULT_DIFF_FILTERING_ZEROES - 1,
  225. .thread_enable = 0xFF,
  226. .thread_base_address = {0, 1, 2, 3, 4, 5, 6, 7},
  227. .lookup_gap_mask = {0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7},
  228. .N_mask = {0, 0, 0, 0, 0, 0, 0, 0},
  229. .N_shift = {0, 0, 0, 0, 0, 0, 0, 0},
  230. .nonce_bottom = 0,
  231. .nonce_top = 0xFFFFFFFF,
  232. };
  233. fill_in_thread_params(opt_knc_threads_per_core, &setup_params);
  234. first_proc = die_p->first_proc;
  235. repr = first_proc->device->dev_repr;
  236. for (proc = first_proc; proc; proc = proc->next_proc) {
  237. mythr = proc->thr[0];
  238. knccore = mythr->cgpu_data;
  239. if ((asic != knccore->asicno) || (die != knccore->dieno))
  240. break;
  241. knc_titan_clean_flush(repr, knc->ctx, knccore->asicno, knccore->dieno, knccore->coreno);
  242. get_nonce_range(knccore->dieno, knccore->coreno, &setup_params.nonce_bottom, &setup_params.nonce_top);
  243. applog(LOG_DEBUG, "%s[%d:%d:%d]: Setup core, nonces 0x%08X - 0x%08X", repr, knccore->asicno, knccore->dieno, knccore->coreno, setup_params.nonce_bottom, setup_params.nonce_top);
  244. knc_titan_setup_core_local(repr, knc->ctx, knccore->asicno, knccore->dieno, knccore->coreno, &setup_params);
  245. }
  246. applog(LOG_NOTICE, "%s[%d-%d] Die configured", repr, asic, die);
  247. die_p->need_flush = true;
  248. timer_set_now(&(die_p->last_share));
  249. die_p->broadcast_flushes = false;
  250. return true;
  251. }
  252. static bool knc_titan_init(struct thr_info * const thr)
  253. {
  254. const int max_cores = KNC_TITAN_CORES_PER_ASIC;
  255. struct thr_info *mythr;
  256. struct cgpu_info * const cgpu = thr->cgpu, *proc;
  257. struct knc_titan_core *knccore;
  258. struct knc_titan_info *knc;
  259. int i, asic, die, core_base;
  260. int total_cores = 0;
  261. int asic_cores[KNC_TITAN_MAX_ASICS] = {0};
  262. for (proc = cgpu; proc; ) {
  263. proc->min_nonce_diff = DEFAULT_DIFF_FILTERING_FLOAT;
  264. if (proc->device != proc) {
  265. applog(LOG_WARNING, "%"PRIpreprv": Extra processor?", proc->proc_repr);
  266. proc = proc->next_proc;
  267. continue;
  268. }
  269. asic = atoi(proc->device_path);
  270. knc = proc->device_data;
  271. die = 0;
  272. core_base = 0;
  273. for (i = 0; i < max_cores; ++i) {
  274. while (i >= (core_base + knc->dies[asic][die].cores)) {
  275. core_base += knc->dies[asic][die].cores;
  276. if (++die >= KNC_TITAN_DIES_PER_ASIC)
  277. break;
  278. }
  279. if (die >= KNC_TITAN_DIES_PER_ASIC)
  280. break;
  281. mythr = proc->thr[0];
  282. mythr->cgpu_data = knccore = malloc(sizeof(*knccore));
  283. if (unlikely(!knccore))
  284. quit(1, "Failed to alloc knc_titan_core");
  285. *knccore = (struct knc_titan_core) {
  286. .asicno = asic,
  287. .dieno = die,
  288. .coreno = i - core_base,
  289. .die = &(knc->dies[asic][die]),
  290. .proc = proc,
  291. .hwerr_in_row = 0,
  292. .hwerr_disable_time = KNC_TITAN_HWERR_DISABLE_SECS,
  293. };
  294. timer_set_now(&knccore->enable_at);
  295. proc->device_data = knc;
  296. ++total_cores;
  297. ++(asic_cores[asic]);
  298. applog(LOG_DEBUG, "%s Allocated core %d:%d:%d", proc->device->dev_repr, asic, die, (i - core_base));
  299. if (0 == knccore->coreno) {
  300. knc->dies[asic][die].first_proc = proc;
  301. }
  302. proc = proc->next_proc;
  303. if ((!proc) || proc->device == proc)
  304. break;
  305. }
  306. knc->cores = total_cores;
  307. }
  308. cgpu_set_defaults(cgpu);
  309. cgpu_setup_control_requests(cgpu);
  310. if (0 >= total_cores)
  311. return false;
  312. knc = cgpu->device_data;
  313. for (asic = 0; asic < KNC_TITAN_MAX_ASICS; ++asic) {
  314. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  315. configure_one_die(knc, asic, die);
  316. knc->dies[asic][die].next_slot = KNC_TITAN_MIN_WORK_SLOT_NUM;
  317. knc->dies[asic][die].first_slot = KNC_TITAN_MIN_WORK_SLOT_NUM;
  318. }
  319. }
  320. timer_set_now(&thr->tv_poll);
  321. return true;
  322. }
  323. static bool die_test_and_add(struct knc_titan_info * const knc, int asic, int die, char * const errbuf)
  324. {
  325. struct knc_die_info die_info;
  326. char repr[6];
  327. snprintf(repr, sizeof(repr), "%s %d", knc_titan_drv.name, asic);
  328. die_info.cores = KNC_TITAN_CORES_PER_DIE; /* core hint */
  329. die_info.version = KNC_VERSION_TITAN;
  330. if (!knc_titan_get_info(repr, knc->ctx, asic, die, &die_info))
  331. die_info.cores = -1;
  332. if (0 < die_info.cores) {
  333. sprintf(errbuf, "Die[%d:%d] not detected", asic, die);
  334. return false;
  335. }
  336. /* TODO: add procs */
  337. sprintf(errbuf, "Die[%d:%d] has %d cores; was not added (addition not implemented)", asic, die, die_info.cores);
  338. return false;
  339. }
  340. static bool die_enable(struct knc_titan_info * const knc, int asic, int die, char * const errbuf)
  341. {
  342. bool res = true;
  343. cgpu_request_control(knc->cgpu);
  344. if (0 >= knc->dies[asic][die].cores)
  345. res = die_test_and_add(knc, asic, die, errbuf);
  346. if (res) {
  347. res = configure_one_die(knc, asic, die);
  348. }
  349. cgpu_release_control(knc->cgpu);
  350. return res;
  351. }
  352. static bool die_disable(struct knc_titan_info * const knc, int asic, int die, char * const errbuf)
  353. {
  354. cgpu_request_control(knc->cgpu);
  355. /* TODO: delete procs */
  356. cgpu_release_control(knc->cgpu);
  357. sprintf(errbuf, "die_disable[%d:%d] not imnplemented", asic, die);
  358. return false;
  359. }
  360. static bool die_reconfigure(struct knc_titan_info * const knc, int asic, int die, char * const errbuf)
  361. {
  362. return die_enable(knc, asic, die, errbuf);
  363. }
  364. static bool knc_titan_prepare_work(struct thr_info *thr, struct work *work)
  365. {
  366. struct cgpu_info * const cgpu = thr->cgpu;
  367. work->nonce_diff = cgpu->min_nonce_diff;
  368. return true;
  369. }
  370. static void knc_titan_set_queue_full(struct knc_titan_info * const knc)
  371. {
  372. const bool full = (knc->workqueue_size >= knc->workqueue_max);
  373. struct cgpu_info *proc;
  374. for (proc = knc->cgpu; proc; proc = proc->next_proc) {
  375. struct thr_info * const thr = proc->thr[0];
  376. thr->queue_full = full;
  377. }
  378. }
  379. static void knc_titan_remove_local_queue(struct knc_titan_info * const knc, struct work * const work)
  380. {
  381. DL_DELETE(knc->workqueue, work);
  382. free_work(work);
  383. --knc->workqueue_size;
  384. }
  385. static void knc_titan_prune_local_queue(struct thr_info *thr)
  386. {
  387. struct cgpu_info * const cgpu = thr->cgpu;
  388. struct knc_titan_info * const knc = cgpu->device_data;
  389. struct work *work, *tmp;
  390. DL_FOREACH_SAFE(knc->workqueue, work, tmp) {
  391. if (stale_work(work, false))
  392. knc_titan_remove_local_queue(knc, work);
  393. }
  394. knc_titan_set_queue_full(knc);
  395. }
  396. static bool knc_titan_queue_append(struct thr_info * const thr, struct work * const work)
  397. {
  398. struct cgpu_info * const cgpu = thr->cgpu;
  399. struct knc_titan_info * const knc = cgpu->device_data;
  400. if (knc->workqueue_size >= knc->workqueue_max) {
  401. knc_titan_prune_local_queue(thr);
  402. if (thr->queue_full)
  403. return false;
  404. }
  405. DL_APPEND(knc->workqueue, work);
  406. ++knc->workqueue_size;
  407. knc_titan_set_queue_full(knc);
  408. if (thr->queue_full)
  409. knc_titan_prune_local_queue(thr);
  410. return true;
  411. }
  412. #define HASH_LAST_ADDED(head, out) \
  413. (out = (head) ? (ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail)) : NULL)
  414. static void knc_titan_queue_flush(struct thr_info * const thr)
  415. {
  416. struct cgpu_info * const cgpu = thr->cgpu;
  417. struct knc_titan_info * const knc = cgpu->device_data;
  418. struct work *work, *tmp;
  419. if (knc->cgpu != cgpu)
  420. return;
  421. DL_FOREACH_SAFE(knc->workqueue, work, tmp){
  422. knc_titan_remove_local_queue(knc, work);
  423. }
  424. knc_titan_set_queue_full(knc);
  425. HASH_LAST_ADDED(knc->devicework, work);
  426. if (work && stale_work(work, true)) {
  427. int asic, die;
  428. for (asic = 0; asic < KNC_TITAN_MAX_ASICS; ++asic) {
  429. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  430. knc->dies[asic][die].need_flush = true;
  431. }
  432. }
  433. timer_set_now(&thr->tv_poll);
  434. }
  435. }
  436. #define MAKE_WORKID(asic, die, slot) ((((uint32_t)(asic)) << 16) | ((uint32_t)(die) << 8) | ((uint32_t)(slot)))
  437. #define ASIC_FROM_WORKID(workid) ((((uint32_t)(workid)) >> 16) & 0xFF)
  438. #define DIE_FROM_WORKID(workid) ((((uint32_t)(workid)) >> 8) & 0xFF)
  439. #define SLOT_FROM_WORKID(workid) (((uint32_t)(workid)) & 0xFF)
  440. static bool knc_titan_process_report(struct knc_titan_info * const knc, struct knc_titan_core * const knccore, struct knc_report * const report)
  441. {
  442. int i, tmp_int;
  443. struct work *work;
  444. struct cgpu_info * const proc = knccore->proc;
  445. bool ret = false;
  446. for (i = 0; i < KNC_TITAN_NONCES_PER_REPORT; ++i) {
  447. if ((report->nonce[i].slot == knccore->last_nonce.slot) &&
  448. (report->nonce[i].nonce == knccore->last_nonce.nonce))
  449. break;
  450. ret = true;
  451. tmp_int = MAKE_WORKID(knccore->asicno, knccore->dieno, report->nonce[i].slot);
  452. HASH_FIND_INT(knc->devicework, &tmp_int, work);
  453. if (!work) {
  454. applog(LOG_WARNING, "%"PRIpreprv"[%d:%d:%d]: Got nonce for unknown work in slot %u", proc->proc_repr, knccore->asicno, knccore->dieno, knccore->coreno, (unsigned)report->nonce[i].slot);
  455. continue;
  456. }
  457. if (submit_nonce(proc->thr[0], work, report->nonce[i].nonce)) {
  458. hashes_done2(proc->thr[0], DEFAULT_DIFF_HASHES_PER_NONCE, NULL);
  459. knccore->hwerr_in_row = 0;
  460. }
  461. }
  462. knccore->last_nonce.slot = report->nonce[0].slot;
  463. knccore->last_nonce.nonce = report->nonce[0].nonce;
  464. return ret;
  465. }
  466. static void knc_titan_poll(struct thr_info * const thr)
  467. {
  468. struct thr_info *mythr;
  469. struct cgpu_info * const cgpu = thr->cgpu, *proc;
  470. struct knc_titan_info * const knc = cgpu->device_data;
  471. struct knc_titan_core *knccore, *core1;
  472. struct work *work, *tmp;
  473. int workaccept = 0;
  474. unsigned long delay_usecs = KNC_POLL_INTERVAL_US;
  475. struct knc_report report;
  476. struct knc_die_info die_info;
  477. int asic;
  478. int die;
  479. struct knc_titan_die *die_p;
  480. struct timeval tv_now, tv_prev;
  481. bool any_was_flushed = false;
  482. knc_titan_prune_local_queue(thr);
  483. timer_set_now(&tv_prev);
  484. for (asic = 0; asic < KNC_TITAN_MAX_ASICS; ++asic) {
  485. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  486. die_p = &(knc->dies[asic][die]);
  487. if (0 >= die_p->cores)
  488. continue;
  489. struct cgpu_info *first_proc = die_p->first_proc;
  490. DL_FOREACH_SAFE(knc->workqueue, work, tmp) {
  491. bool work_accepted = false;
  492. bool need_replace;
  493. if (die_p->first_slot > KNC_TITAN_MIN_WORK_SLOT_NUM)
  494. need_replace = ((die_p->next_slot + 1) == die_p->first_slot);
  495. else
  496. need_replace = (die_p->next_slot == KNC_TITAN_MAX_WORK_SLOT_NUM);
  497. if (die_p->need_flush || need_replace) {
  498. bool unused;
  499. if (die_p->broadcast_flushes) {
  500. /* Use broadcast */
  501. if (knc_titan_set_work(first_proc->device->dev_repr, knc->ctx, asic, die, ALL_CORES, die_p->next_slot, work, true, &unused, &report)) {
  502. work_accepted = true;
  503. }
  504. } else {
  505. /* Use unicasts */
  506. bool work_acc_arr[die_p->cores];
  507. struct knc_report reports[die_p->cores];
  508. for (proc = first_proc; proc; proc = proc->next_proc) {
  509. mythr = proc->thr[0];
  510. core1 = mythr->cgpu_data;
  511. if ((core1->dieno != die) || (core1->asicno != asic))
  512. break;
  513. work_acc_arr[core1->coreno] = false;
  514. }
  515. if (knc_titan_set_work_multi(first_proc->device->dev_repr, knc->ctx, asic, die, 0, die_p->next_slot, work, true, work_acc_arr, reports, die_p->cores)) {
  516. for (proc = first_proc; proc; proc = proc->next_proc) {
  517. mythr = proc->thr[0];
  518. core1 = mythr->cgpu_data;
  519. if ((core1->dieno != die) || (core1->asicno != asic))
  520. break;
  521. if (work_acc_arr[core1->coreno]) {
  522. /* Submit stale shares just in case we are working with multi-coin pool
  523. * and those shares still might be useful (merged mining case etc) */
  524. if (knc_titan_process_report(knc, core1, &(reports[core1->coreno])))
  525. timer_set_now(&(die_p->last_share));
  526. work_accepted = true;
  527. }
  528. }
  529. }
  530. }
  531. } else {
  532. if (!knc_titan_set_work(first_proc->dev_repr, knc->ctx, asic, die, ALL_CORES, die_p->next_slot, work, false, &work_accepted, &report))
  533. work_accepted = false;
  534. }
  535. knccore = first_proc->thr[0]->cgpu_data;
  536. if ((!work_accepted) || (NULL == knccore))
  537. break;
  538. bool was_flushed = false;
  539. if (die_p->need_flush || need_replace) {
  540. struct work *work1, *tmp1;
  541. applog(LOG_NOTICE, "%s[%d-%d] Flushing stale works (%s)", first_proc->dev_repr, asic, die,
  542. die_p->need_flush ? "New work" : "Slot collision");
  543. die_p->need_flush = false;
  544. die_p->first_slot = die_p->next_slot;
  545. HASH_ITER(hh, knc->devicework, work1, tmp1) {
  546. if ( (asic == ASIC_FROM_WORKID(work1->device_id)) &&
  547. (die == DIE_FROM_WORKID(work1->device_id)) ) {
  548. HASH_DEL(knc->devicework, work1);
  549. free_work(work1);
  550. }
  551. }
  552. delay_usecs = 0;
  553. was_flushed = true;
  554. any_was_flushed = true;
  555. }
  556. --knc->workqueue_size;
  557. DL_DELETE(knc->workqueue, work);
  558. work->device_id = MAKE_WORKID(asic, die, die_p->next_slot);
  559. HASH_ADD(hh, knc->devicework, device_id, sizeof(work->device_id), work);
  560. if (++(die_p->next_slot) > KNC_TITAN_MAX_WORK_SLOT_NUM)
  561. die_p->next_slot = KNC_TITAN_MIN_WORK_SLOT_NUM;
  562. ++workaccept;
  563. /* If we know for sure that this work was urgent, then we don't need to hurry up
  564. * with filling next slot, we have plenty of time until current work completes.
  565. * So, better to proceed with other ASICs/dies. */
  566. if (was_flushed)
  567. break;
  568. }
  569. }
  570. }
  571. applog(LOG_DEBUG, "%s: %d jobs accepted to queue (max=%d)", knc_titan_drv.dname, workaccept, knc->workqueue_max);
  572. timer_set_now(&tv_now);
  573. if (any_was_flushed) {
  574. double diff = ((tv_now.tv_sec - tv_prev.tv_sec) * 1000000.0 + (tv_now.tv_usec - tv_prev.tv_usec)) / 1000000.0;
  575. applog(LOG_INFO, "%s: Flush took %f secs", knc_titan_drv.dname, diff);
  576. }
  577. for (asic = 0; asic < KNC_TITAN_MAX_ASICS; ++asic) {
  578. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  579. die_p = &(knc->dies[asic][die]);
  580. if (0 >= die_p->cores)
  581. continue;
  582. die_info.cores = die_p->cores; /* core hint */
  583. die_info.version = KNC_VERSION_TITAN;
  584. if (!knc_titan_get_info(cgpu->dev_repr, knc->ctx, asic, die, &die_info))
  585. continue;
  586. for (proc = die_p->first_proc; proc; proc = proc->next_proc) {
  587. mythr = proc->thr[0];
  588. knccore = mythr->cgpu_data;
  589. if ((knccore->dieno != die) || (knccore->asicno != asic))
  590. break;
  591. if (!die_info.has_report[knccore->coreno])
  592. continue;
  593. if (!knc_titan_get_report(proc->proc_repr, knc->ctx, asic, die, knccore->coreno, &report))
  594. continue;
  595. if (knc_titan_process_report(knc, knccore, &report))
  596. timer_set_now(&(die_p->last_share));
  597. }
  598. }
  599. /* Check die health */
  600. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  601. die_p = &(knc->dies[asic][die]);
  602. if (0 >= die_p->cores)
  603. continue;
  604. if (timer_elapsed(&(die_p->last_share), &tv_now) < DIE_HEALTH_INTERVAL_SEC)
  605. continue;
  606. /* Reconfigure die */
  607. configure_one_die(knc, asic, die);
  608. }
  609. }
  610. if (workaccept) {
  611. if (workaccept >= knc->workqueue_max) {
  612. knc->workqueue_max = workaccept;
  613. delay_usecs = 0;
  614. }
  615. knc_titan_set_queue_full(knc);
  616. }
  617. timer_set_delay_from_now(&thr->tv_poll, delay_usecs);
  618. }
  619. /*
  620. * specify settings / options via RPC or command line
  621. */
  622. /* support for --set-device
  623. * must be set before probing the device
  624. */
  625. static void knc_titan_set_clock_freq(struct cgpu_info * const device, int const val)
  626. {
  627. }
  628. static const char *knc_titan_set_clock(struct cgpu_info * const device, const char * const option, const char * const setting, char * const replybuf, enum bfg_set_device_replytype * const success)
  629. {
  630. knc_titan_set_clock_freq(device, atoi(setting));
  631. return NULL;
  632. }
  633. static const char *knc_titan_die_ena(struct cgpu_info * const device, const char * const option, const char * const setting, char * const replybuf, enum bfg_set_device_replytype * const success)
  634. {
  635. int asic, die;
  636. char str[256];
  637. /* command format: ASIC:N;DIE:N;MODE:ENABLE|DISABLE|RECONFIGURE */
  638. if (3 != sscanf(setting, "ASIC:%d;DIE:%d;MODE:%255s", &asic, &die, str)) {
  639. error_bad_params:
  640. sprintf(replybuf, "Die setup failed, bad parameters");
  641. return replybuf;
  642. }
  643. if (0 == strncasecmp(str, "enable", sizeof(str) - 1)) {
  644. if (!die_enable(device->device_data, asic, die, replybuf))
  645. return replybuf;
  646. } else if (0 == strncasecmp(str, "disable", sizeof(str) - 1)) {
  647. if (!die_disable(device->device_data, asic, die, replybuf))
  648. return replybuf;
  649. } else if (0 == strncasecmp(str, "reconfigure", sizeof(str) - 1)) {
  650. if (!die_reconfigure(device->device_data, asic, die, replybuf)) {
  651. /* Do not return error on reconfigure command!
  652. * (or the whole bfgminer will be restarted) */
  653. *success = SDR_OK;
  654. return replybuf;
  655. }
  656. } else
  657. goto error_bad_params;
  658. sprintf(replybuf, "Die setup Ok; asic %d die %d cmd %s", asic, die, str);
  659. *success = SDR_OK;
  660. return replybuf;
  661. }
  662. static const struct bfg_set_device_definition knc_titan_set_device_funcs[] = {
  663. { "clock", knc_titan_set_clock, NULL },
  664. { "die", knc_titan_die_ena, NULL },
  665. { NULL },
  666. };
  667. /*
  668. * specify settings / options via TUI
  669. */
  670. #ifdef HAVE_CURSES
  671. static void knc_titan_tui_wlogprint_choices(struct cgpu_info * const proc)
  672. {
  673. wlogprint("[C]lock speed ");
  674. }
  675. static const char *knc_titan_tui_handle_choice(struct cgpu_info * const proc, const int input)
  676. {
  677. static char buf[0x100]; /* Static for replies */
  678. switch (input)
  679. {
  680. case 'c': case 'C':
  681. {
  682. sprintf(buf, "Set clock speed");
  683. char * const setting = curses_input(buf);
  684. knc_titan_set_clock_freq(proc->device, atoi(setting));
  685. return "Clock speed changed\n";
  686. }
  687. }
  688. return NULL;
  689. }
  690. static void knc_titan_wlogprint_status(struct cgpu_info * const proc)
  691. {
  692. wlogprint("Clock speed: N/A\n");
  693. }
  694. #endif
  695. struct device_drv knc_titan_drv =
  696. {
  697. /* metadata */
  698. .dname = "titan",
  699. .name = "KNC",
  700. .supported_algos = POW_SCRYPT,
  701. .drv_detect = knc_titan_detect,
  702. .thread_init = knc_titan_init,
  703. /* specify mining type - queue */
  704. .minerloop = minerloop_queue,
  705. .queue_append = knc_titan_queue_append,
  706. .queue_flush = knc_titan_queue_flush,
  707. .poll = knc_titan_poll,
  708. .prepare_work = knc_titan_prepare_work,
  709. /* TUI support - e.g. setting clock via UI */
  710. #ifdef HAVE_CURSES
  711. .proc_wlogprint_status = knc_titan_wlogprint_status,
  712. .proc_tui_wlogprint_choices = knc_titan_tui_wlogprint_choices,
  713. .proc_tui_handle_choice = knc_titan_tui_handle_choice,
  714. #endif
  715. };