| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676 |
- // -ck modified kernel taken from Phoenix taken from poclbm, with aspects of
- // phatk and others.
- // Modified version copyright 2011-2012 Con Kolivas
- // This file is taken and modified from the public-domain poclbm project, and
- // we have therefore decided to keep it public-domain in Phoenix.
- #ifdef VECTORS4
- typedef uint4 u;
- #elif defined VECTORS2
- typedef uint2 u;
- #else
- typedef uint u;
- #endif
- __constant uint K[64] = {
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
- 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
- 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
- 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
- 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
- 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
- 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
- 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
- };
- // This part is not from the stock poclbm kernel. It's part of an optimization
- // added in the Phoenix Miner.
- // Some AMD devices have a BFI_INT opcode, which behaves exactly like the
- // SHA-256 ch function, but provides it in exactly one instruction. If
- // detected, use it for ch. Otherwise, construct ch out of simpler logical
- // primitives.
- #ifdef BITALIGN
- #pragma OPENCL EXTENSION cl_amd_media_ops : enable
- #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
- #ifdef BFI_INT
- // Well, slight problem... It turns out BFI_INT isn't actually exposed to
- // OpenCL (or CAL IL for that matter) in any way. However, there is
- // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
- // amd_bytealign, takes the same inputs, and provides the same output.
- // We can use that as a placeholder for BFI_INT and have the application
- // patch it after compilation.
-
- // This is the BFI_INT function
- #define ch(x, y, z) amd_bytealign(x, y, z)
-
- // Ma can also be implemented in terms of BFI_INT...
- #define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) )
- #else // BFI_INT
- // Later SDKs optimise this to BFI INT without patching and GCN
- // actually fails if manually patched with BFI_INT
- #define ch(x, y, z) bitselect((u)z, (u)y, (u)x)
- #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
- #endif
- #else // BITALIGN
- #define ch(x, y, z) (z ^ (x & (y ^ z)))
- #define Ma(x, y, z) ((x & z) | (y & (x | z)))
- #define rotr(x, y) rotate((u)x, (u)(32 - y))
- #endif
- // AMD's KernelAnalyzer throws errors compiling the kernel if we use
- // amd_bytealign on constants with vectors enabled, so we use this to avoid
- // problems. (this is used 4 times, and likely optimized out by the compiler.)
- #define Ma2(x, y, z) ((y & z) | (x & (y | z)))
- __kernel void search(const uint state0, const uint state1, const uint state2, const uint state3,
- const uint state4, const uint state5, const uint state6, const uint state7,
- const uint b1, const uint c1, const uint d1,
- const uint f1, const uint g1, const uint h1,
- const u base,
- const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r, const uint fcty_e, const uint fcty_e2,
- __global uint * output)
- {
- u W[24];
- //u Vals[8]; Now put at W[16] to be in same array
- #ifdef VECTORS4
- const u nonce = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u);
- #elif defined VECTORS2
- const u nonce = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u);
- #else
- const u nonce = base + get_local_id(0) + get_group_id(0) * (WORKSIZE);
- #endif
- W[20] = fcty_e + nonce;
- W[16] = state0 + W[20];
- W[19] = d1 + (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], b1, c1) + K[ 4] + 0x80000000;
- W[23] = h1 + W[19];
- W[20] += fcty_e2;
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma2(g1, W[20], f1);
- W[18] = c1 + (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], b1) + K[ 5];
- W[22] = g1 + W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma2(f1, W[19], W[20]);
- W[17] = b1 + (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[ 6];
- W[21] = f1 + W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[ 7];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[ 8];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[ 9];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[10];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[11];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[12];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[13];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[14];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[15] + 0x00000280U;
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[16] + fw0;
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[17] + fw1;
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[2] = (rotr(nonce, 7) ^ rotr(nonce, 18) ^ (nonce >> 3U)) + fw2;
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[18] + W[2];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[3] = nonce + fw3;
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[19] + W[3];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[4] = (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U)) + 0x80000000;
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[20] + W[4];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[5] = (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[21] + W[5];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[6] = (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U)) + 0x00000280U;
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[22] + W[6];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[7] = (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U)) + fw0;
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[23] + W[7];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[8] = (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U)) + fw1;
-
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[24] + W[8];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U));
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[25] + W[9];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U));
-
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[26] + W[10];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[27] + W[11];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[28] + W[12];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[29] + W[13];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[14] = 0x00a00055U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[30] + W[14];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[15] = fw15 + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[31] + W[15];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[0] = fw01r + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U));
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[32] + W[0];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[1] = fw1 + (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U));
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[33] + W[1];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U));
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[34] + W[2];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[35] + W[3];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[36] + W[4];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[37] + W[5];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[38] + W[6];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[39] + W[7];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U));
-
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[40] + W[8];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U));
-
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[41] + W[9];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U));
-
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[42] + W[10];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[43] + W[11];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[44] + W[12];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[45] + W[13];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[46] + W[14];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[47] + W[15];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U));
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[48] + W[0];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U));
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[49] + W[1];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U));
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[50] + W[2];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[51] + W[3];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[52] + W[4];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[53] + W[5];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[54] + W[6];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[55] + W[7];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U));
-
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[56] + W[8];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U));
-
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[57] + W[9];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U));
-
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[58] + W[10];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[59] + W[11];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[60] + W[12];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[61] + W[13];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[62] + W[14];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[63] + W[15];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[0] = W[16] + state0;
- W[7] = W[23] + state7;
- W[23] = 0xb0edbdd0 + K[ 0] + W[0];
- W[3] = W[19] + state3;
- W[19] = 0xa54ff53a + W[23];
- W[23] += 0x08909ae5U;
- W[1] = W[17] + state1;
- W[6] = W[22] + state6;
- W[22] = 0x1f83d9abU + (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + (0x9b05688cU ^ (W[19] & 0xca0b3af3U)) + K[ 1] + W[1];
- W[2] = W[18] + state2;
- W[18] = 0x3c6ef372U + W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma2(0xbb67ae85U, W[23], 0x6a09e667U);
- W[5] = W[21] + state5;
- W[21] = 0x9b05688cU + (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], 0x510e527fU) + K[ 2] + W[2];
- W[17] = 0xbb67ae85U + W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma2(0x6a09e667U, W[22], W[23]);
- W[4] = W[20] + state4;
- W[20] = 0x510e527fU + (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[ 3] + W[3];
- W[16] = 0x6a09e667U + W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[ 4] + W[4];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[ 5] + W[5];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[ 6] + W[6];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[ 7] + W[7];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[ 8] + 0x80000000;
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[ 9];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[10];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[11];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[12];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[13];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[14];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[15] + 0x00000100U;
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U));
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[16] + W[0];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + 0x00a00000U;
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[17] + W[1];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U));
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[18] + W[2];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[19] + W[3];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[20] + W[4];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[21] + W[5];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + 0x00000100U + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[22] + W[6];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[7] += 0x11002000U + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[23] + W[7];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[8] = 0x80000000 + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U));
-
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[24] + W[8];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[9] = W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U));
-
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[25] + W[9];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[10] = W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U));
-
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[26] + W[10];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[11] = W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[27] + W[11];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[12] = W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[28] + W[12];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[13] = W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[29] + W[13];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[14] = 0x00400022U + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[30] + W[14];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[15] = 0x00000100U + (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[31] + W[15];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U));
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[32] + W[0];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U));
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[33] + W[1];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U));
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[34] + W[2];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[35] + W[3];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[36] + W[4];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[37] + W[5];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[38] + W[6];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[39] + W[7];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U));
-
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[40] + W[8];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U));
-
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[41] + W[9];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U));
-
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[42] + W[10];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[43] + W[11];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[44] + W[12];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[13] += (rotr(W[14], 7) ^ rotr(W[14], 18) ^ (W[14] >> 3U)) + W[6] + (rotr(W[11], 17) ^ rotr(W[11], 19) ^ (W[11] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[45] + W[13];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[14] += (rotr(W[15], 7) ^ rotr(W[15], 18) ^ (W[15] >> 3U)) + W[7] + (rotr(W[12], 17) ^ rotr(W[12], 19) ^ (W[12] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[46] + W[14];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[15] += (rotr(W[0], 7) ^ rotr(W[0], 18) ^ (W[0] >> 3U)) + W[8] + (rotr(W[13], 17) ^ rotr(W[13], 19) ^ (W[13] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[47] + W[15];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[0] += (rotr(W[1], 7) ^ rotr(W[1], 18) ^ (W[1] >> 3U)) + W[9] + (rotr(W[14], 17) ^ rotr(W[14], 19) ^ (W[14] >> 10U));
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[48] + W[0];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[1] += (rotr(W[2], 7) ^ rotr(W[2], 18) ^ (W[2] >> 3U)) + W[10] + (rotr(W[15], 17) ^ rotr(W[15], 19) ^ (W[15] >> 10U));
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[49] + W[1];
- W[18] += W[22];
- W[22] += (rotr(W[23], 2) ^ rotr(W[23], 13) ^ rotr(W[23], 22)) + Ma(W[17], W[23], W[16]);
- W[2] += (rotr(W[3], 7) ^ rotr(W[3], 18) ^ (W[3] >> 3U)) + W[11] + (rotr(W[0], 17) ^ rotr(W[0], 19) ^ (W[0] >> 10U));
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[50] + W[2];
- W[17] += W[21];
- W[21] += (rotr(W[22], 2) ^ rotr(W[22], 13) ^ rotr(W[22], 22)) + Ma(W[16], W[22], W[23]);
- W[3] += (rotr(W[4], 7) ^ rotr(W[4], 18) ^ (W[4] >> 3U)) + W[12] + (rotr(W[1], 17) ^ rotr(W[1], 19) ^ (W[1] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[51] + W[3];
- W[16] += W[20];
- W[20] += (rotr(W[21], 2) ^ rotr(W[21], 13) ^ rotr(W[21], 22)) + Ma(W[23], W[21], W[22]);
- W[4] += (rotr(W[5], 7) ^ rotr(W[5], 18) ^ (W[5] >> 3U)) + W[13] + (rotr(W[2], 17) ^ rotr(W[2], 19) ^ (W[2] >> 10U));
-
- W[19] += (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[52] + W[4];
- W[23] += W[19];
- W[19] += (rotr(W[20], 2) ^ rotr(W[20], 13) ^ rotr(W[20], 22)) + Ma(W[22], W[20], W[21]);
- W[5] += (rotr(W[6], 7) ^ rotr(W[6], 18) ^ (W[6] >> 3U)) + W[14] + (rotr(W[3], 17) ^ rotr(W[3], 19) ^ (W[3] >> 10U));
-
- W[18] += (rotr(W[23], 6) ^ rotr(W[23], 11) ^ rotr(W[23], 25)) + ch(W[23], W[16], W[17]) + K[53] + W[5];
- W[22] += W[18];
- W[18] += (rotr(W[19], 2) ^ rotr(W[19], 13) ^ rotr(W[19], 22)) + Ma(W[21], W[19], W[20]);
- W[6] += (rotr(W[7], 7) ^ rotr(W[7], 18) ^ (W[7] >> 3U)) + W[15] + (rotr(W[4], 17) ^ rotr(W[4], 19) ^ (W[4] >> 10U));
-
- W[17] += (rotr(W[22], 6) ^ rotr(W[22], 11) ^ rotr(W[22], 25)) + ch(W[22], W[23], W[16]) + K[54] + W[6];
- W[21] += W[17];
- W[17] += (rotr(W[18], 2) ^ rotr(W[18], 13) ^ rotr(W[18], 22)) + Ma(W[20], W[18], W[19]);
- W[7] += (rotr(W[8], 7) ^ rotr(W[8], 18) ^ (W[8] >> 3U)) + W[0] + (rotr(W[5], 17) ^ rotr(W[5], 19) ^ (W[5] >> 10U));
-
- W[16] += (rotr(W[21], 6) ^ rotr(W[21], 11) ^ rotr(W[21], 25)) + ch(W[21], W[22], W[23]) + K[55] + W[7];
- W[20] += W[16];
- W[16] += (rotr(W[17], 2) ^ rotr(W[17], 13) ^ rotr(W[17], 22)) + Ma(W[19], W[17], W[18]);
- W[8] += (rotr(W[9], 7) ^ rotr(W[9], 18) ^ (W[9] >> 3U)) + W[1] + (rotr(W[6], 17) ^ rotr(W[6], 19) ^ (W[6] >> 10U));
-
- W[23] += (rotr(W[20], 6) ^ rotr(W[20], 11) ^ rotr(W[20], 25)) + ch(W[20], W[21], W[22]) + K[56] + W[8];
- W[19] += W[23];
- W[23] += (rotr(W[16], 2) ^ rotr(W[16], 13) ^ rotr(W[16], 22)) + Ma(W[18], W[16], W[17]);
- W[9] += (rotr(W[10], 7) ^ rotr(W[10], 18) ^ (W[10] >> 3U)) + W[2] + (rotr(W[7], 17) ^ rotr(W[7], 19) ^ (W[7] >> 10U));
-
- W[22] += (rotr(W[19], 6) ^ rotr(W[19], 11) ^ rotr(W[19], 25)) + ch(W[19], W[20], W[21]) + K[57] + W[9];
- W[18] += W[22];
- W[10] += (rotr(W[11], 7) ^ rotr(W[11], 18) ^ (W[11] >> 3U)) + W[3] + (rotr(W[8], 17) ^ rotr(W[8], 19) ^ (W[8] >> 10U));
-
- W[21] += (rotr(W[18], 6) ^ rotr(W[18], 11) ^ rotr(W[18], 25)) + ch(W[18], W[19], W[20]) + K[58] + W[10];
- W[17] += W[21];
- W[11] += (rotr(W[12], 7) ^ rotr(W[12], 18) ^ (W[12] >> 3U)) + W[4] + (rotr(W[9], 17) ^ rotr(W[9], 19) ^ (W[9] >> 10U));
-
- W[20] += (rotr(W[17], 6) ^ rotr(W[17], 11) ^ rotr(W[17], 25)) + ch(W[17], W[18], W[19]) + K[59] + W[11];
- W[16] += W[20];
- W[12] += (rotr(W[13], 7) ^ rotr(W[13], 18) ^ (W[13] >> 3U)) + W[5] + (rotr(W[10], 17) ^ rotr(W[10], 19) ^ (W[10] >> 10U));
-
- W[23] += W[19] + (rotr(W[16], 6) ^ rotr(W[16], 11) ^ rotr(W[16], 25)) + ch(W[16], W[17], W[18]) + K[60] + W[12];
- #define FOUND (0x80)
- #define NFLAG (0x7F)
- #if defined(VECTORS4)
- W[23] ^= -0x5be0cd19U;
- bool result = W[23].x & W[23].y & W[23].z & W[23].w;
- if (!result) {
- if (!W[23].x)
- output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
- if (!W[23].y)
- output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
- if (!W[23].z)
- output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
- if (!W[23].w)
- output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
- }
- #elif defined(VECTORS2)
- W[23] ^= -0x5be0cd19U;
- bool result = W[23].x & W[23].y;
- if (!result) {
- if (!W[23].x)
- output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
- if (!W[23].y)
- output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
- }
- #else
- if (W[23] == -0x5be0cd19U)
- output[FOUND] = output[NFLAG & nonce] = nonce;
- #endif
- }
|