| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369 |
- // -ck modified kernel taken from Phoenix taken from poclbm, with aspects of
- // phatk and others.
- // Modified version copyright 2011-2012 Con Kolivas
- // This file is taken and modified from the public-domain poclbm project, and
- // we have therefore decided to keep it public-domain in Phoenix.
- #ifdef VECTORS4
- typedef uint4 u;
- #elif defined VECTORS2
- typedef uint2 u;
- #else
- typedef uint u;
- #endif
- __constant uint K[64] = {
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
- 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
- 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
- 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
- 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
- 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
- 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
- 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
- };
- // This part is not from the stock poclbm kernel. It's part of an optimization
- // added in the Phoenix Miner.
- // Some AMD devices have a BFI_INT opcode, which behaves exactly like the
- // SHA-256 ch function, but provides it in exactly one instruction. If
- // detected, use it for ch. Otherwise, construct ch out of simpler logical
- // primitives.
- #ifdef BITALIGN
- #pragma OPENCL EXTENSION cl_amd_media_ops : enable
- #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
- #else
- #define rotr(x, y) rotate((u)x, (u)(32 - y))
- #endif
- #ifdef BFI_INT
- // Well, slight problem... It turns out BFI_INT isn't actually exposed to
- // OpenCL (or CAL IL for that matter) in any way. However, there is
- // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
- // amd_bytealign, takes the same inputs, and provides the same output.
- // We can use that as a placeholder for BFI_INT and have the application
- // patch it after compilation.
-
- // This is the BFI_INT function
- #define ch(x, y, z) amd_bytealign(x, y, z)
-
- // Ma can also be implemented in terms of BFI_INT...
- #define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) )
- // AMD's KernelAnalyzer throws errors compiling the kernel if we use
- // amd_bytealign on constants with vectors enabled, so we use this to avoid
- // problems. (this is used 4 times, and likely optimized out by the compiler.)
- #define Ma2(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
- #else // BFI_INT
- //GCN actually fails if manually patched with BFI_INT
- #define ch(x, y, z) bitselect((u)z, (u)y, (u)x)
- #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
- #define Ma2(x, y, z) Ma(x, y, z)
- #endif
- __kernel
- __attribute__((vec_type_hint(u)))
- __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
- void search(const uint state0, const uint state1, const uint state2, const uint state3,
- const uint state4, const uint state5, const uint state6, const uint state7,
- const uint b1, const uint c1,
- const uint f1, const uint g1, const uint h1,
- #ifndef GOFFSET
- const u base,
- #endif
- const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r,
- const uint D1A, const uint C1addK5, const uint B1addK6,
- const uint W16addK16, const uint W17addK17,
- const uint PreVal4addT1, const uint Preval0,
- __global uint * output)
- {
- u W[24];
- u *Vals = &W[16]; // Now put at W[16] to be in same array
- #ifdef GOFFSET
- const u nonce = (uint)(get_global_id(0));
- #else
- const u nonce = base + (uint)(get_global_id(0));
- #endif
- Vals[0]=Preval0;
- Vals[0]+=nonce;
- Vals[3]=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],b1,c1);
- Vals[3]+=D1A;
- Vals[7]=Vals[3];
- Vals[7]+=h1;
- Vals[4]=PreVal4addT1;
- Vals[4]+=nonce;
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[2]=C1addK5;
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],b1);
- Vals[6]=Vals[2];
- Vals[6]+=g1;
- Vals[3]+=Ma2(g1,Vals[4],f1);
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
- Vals[1]=B1addK6;
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[5]=Vals[1];
- Vals[5]+=f1;
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[7];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[8];
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[9];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[10];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[11];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[12];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[13];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[14];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=0xC19BF3F4U;
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=W16addK16;
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=W17addK17;
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
- W[2]+=fw2;
- Vals[5]+=W[2];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[18];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]=nonce;
- W[3]+=fw3;
- Vals[4]+=W[3];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[19];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- W[4]=0x80000000U;
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[3]+=W[4];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[20];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=W[5];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[21];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- W[6]=0x00000280U;
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[1]+=W[6];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[22];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]=fw0;
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[0]+=W[7];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[23];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- W[8]=fw1;
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[7]+=W[8];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[24];
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=W[9];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[25];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- W[10]=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=W[10];
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[26];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[11]=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=W[11];
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[27];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- W[12]=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[3]+=W[12];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[28];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[13]=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[2]+=W[13];
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[29];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- W[14]=0x00a00055U;
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[1]+=W[14];
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[30];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[15]=fw15;
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[0]+=W[15];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[31];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- W[0]=fw01r;
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[7]+=W[0];
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[32];
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[1]=fw1;
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[6]+=W[1];
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[33];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[34];
- Vals[5]+=W[2];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[35];
- Vals[4]+=W[3];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[36];
- Vals[3]+=W[4];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[37];
- Vals[2]+=W[5];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[38];
- Vals[1]+=W[6];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[39];
- Vals[0]+=W[7];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[40];
- Vals[7]+=W[8];
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[41];
- Vals[6]+=W[9];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[42];
- Vals[5]+=W[10];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[43];
- Vals[4]+=W[11];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[44];
- Vals[3]+=W[12];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[45];
- Vals[2]+=W[13];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[46];
- Vals[1]+=W[14];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[47];
- Vals[0]+=W[15];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[48];
- Vals[7]+=W[0];
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[49];
- Vals[6]+=W[1];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[50];
- Vals[5]+=W[2];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[51];
- Vals[4]+=W[3];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[52];
- Vals[3]+=W[4];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[53];
- Vals[2]+=W[5];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[54];
- Vals[1]+=W[6];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[55];
- Vals[0]+=W[7];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
- Vals[7]+=K[56];
- Vals[7]+=W[8];
- Vals[3]+=Vals[7];
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
- Vals[6]+=K[57];
- Vals[6]+=W[9];
- Vals[2]+=Vals[6];
- Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
- Vals[5]+=K[58];
- Vals[5]+=W[10];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
- Vals[4]+=K[59];
- Vals[4]+=W[11];
- Vals[0]+=Vals[4];
- Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
- Vals[3]+=K[60];
- Vals[3]+=W[12];
- Vals[7]+=Vals[3];
- Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
- Vals[2]+=K[61];
- Vals[2]+=W[13];
- Vals[6]+=Vals[2];
- Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
- W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
- Vals[1]+=K[62];
- Vals[1]+=W[14];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
- Vals[0]+=K[63];
- Vals[0]+=W[15];
- Vals[4]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
- Vals[0]+=state0;
- W[7]=Vals[0];
- W[7]+=0xF377ED68U;
- W[3]=0xa54ff53aU;
- W[3]+=W[7];
- W[7]+=0x08909ae5U;
- Vals[1]+=state1;
- W[6]=Vals[1];
- W[6]+=0x90BB1E3CU;
- W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
- W[6]+=(0x9b05688cU^(W[3]&0xca0b3af3U));
- W[2]=0x3c6ef372U;
- W[2]+=W[6];
- W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
- W[6]+=Ma2(0xbb67ae85U,W[7],0x6a09e667U);
- Vals[2]+=state2;
- W[5]=Vals[2];
- W[5]+=0x50C6645BU;
- W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
- W[5]+=ch(W[2],W[3],0x510e527fU);
- W[1]=0xbb67ae85U;
- W[1]+=W[5];
- W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
- W[5]+=Ma2(0x6a09e667U,W[6],W[7]);
- Vals[3]+=state3;
- W[4]=Vals[3];
- W[4]+=0x3AC42E24U;
- W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
- W[4]+=ch(W[1],W[2],W[3]);
- W[0]=0x6a09e667U;
- W[0]+=W[4];
- W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
- W[4]+=Ma(W[7],W[5],W[6]);
- Vals[4]+=state4;
- W[3]+=Vals[4];
- W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
- W[3]+=ch(W[0],W[1],W[2]);
- W[3]+=K[4];
- W[7]+=W[3];
- W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
- W[3]+=Ma(W[6],W[4],W[5]);
- Vals[5]+=state5;
- W[2]+=Vals[5];
- W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
- W[2]+=ch(W[7],W[0],W[1]);
- W[2]+=K[5];
- W[6]+=W[2];
- W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
- W[2]+=Ma(W[5],W[3],W[4]);
- Vals[6]+=state6;
- W[1]+=Vals[6];
- W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
- W[1]+=ch(W[6],W[7],W[0]);
- W[1]+=K[6];
- W[5]+=W[1];
- W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
- W[1]+=Ma(W[4],W[2],W[3]);
- Vals[7]+=state7;
- W[0]+=Vals[7];
- W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
- W[0]+=ch(W[5],W[6],W[7]);
- W[0]+=K[7];
- W[4]+=W[0];
- W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
- W[0]+=Ma(W[3],W[1],W[2]);
- W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
- W[7]+=ch(W[4],W[5],W[6]);
- W[7]+=0x5807AA98U;
- W[3]+=W[7];
- W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
- W[7]+=Ma(W[2],W[0],W[1]);
- W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
- W[6]+=ch(W[3],W[4],W[5]);
- W[6]+=K[9];
- W[2]+=W[6];
- W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
- W[6]+=Ma(W[1],W[7],W[0]);
- W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
- W[5]+=ch(W[2],W[3],W[4]);
- W[5]+=K[10];
- W[1]+=W[5];
- W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
- W[5]+=Ma(W[0],W[6],W[7]);
- W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
- W[4]+=ch(W[1],W[2],W[3]);
- W[4]+=K[11];
- W[0]+=W[4];
- W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
- W[4]+=Ma(W[7],W[5],W[6]);
- W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
- W[3]+=ch(W[0],W[1],W[2]);
- W[3]+=K[12];
- W[7]+=W[3];
- W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
- W[3]+=Ma(W[6],W[4],W[5]);
- W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
- W[2]+=ch(W[7],W[0],W[1]);
- W[2]+=K[13];
- W[6]+=W[2];
- W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
- W[2]+=Ma(W[5],W[3],W[4]);
- W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
- W[1]+=ch(W[6],W[7],W[0]);
- W[1]+=K[14];
- W[5]+=W[1];
- W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
- W[1]+=Ma(W[4],W[2],W[3]);
- W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
- W[0]+=ch(W[5],W[6],W[7]);
- W[0]+=0xC19BF274U;
- W[4]+=W[0];
- W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
- W[0]+=Ma(W[3],W[1],W[2]);
- Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
- W[7]+=Vals[0];
- W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
- W[7]+=ch(W[4],W[5],W[6]);
- W[7]+=K[16];
- W[3]+=W[7];
- W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
- W[7]+=Ma(W[2],W[0],W[1]);
- Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
- Vals[1]+=0x00a00000U;
- W[6]+=Vals[1];
- W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
- W[6]+=ch(W[3],W[4],W[5]);
- W[6]+=K[17];
- W[2]+=W[6];
- W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
- W[6]+=Ma(W[1],W[7],W[0]);
- Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
- Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
- W[5]+=Vals[2];
- W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
- W[5]+=ch(W[2],W[3],W[4]);
- W[5]+=K[18];
- W[1]+=W[5];
- W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
- W[5]+=Ma(W[0],W[6],W[7]);
- Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
- Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
- W[4]+=Vals[3];
- W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
- W[4]+=ch(W[1],W[2],W[3]);
- W[4]+=K[19];
- W[0]+=W[4];
- W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
- W[4]+=Ma(W[7],W[5],W[6]);
- Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
- Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
- W[3]+=Vals[4];
- W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
- W[3]+=ch(W[0],W[1],W[2]);
- W[3]+=K[20];
- W[7]+=W[3];
- W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
- W[3]+=Ma(W[6],W[4],W[5]);
- Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
- Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
- W[2]+=Vals[5];
- W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
- W[2]+=ch(W[7],W[0],W[1]);
- W[2]+=K[21];
- W[6]+=W[2];
- W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
- W[2]+=Ma(W[5],W[3],W[4]);
- Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
- Vals[6]+=0x00000100U;
- Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
- W[1]+=Vals[6];
- W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
- W[1]+=ch(W[6],W[7],W[0]);
- W[1]+=K[22];
- W[5]+=W[1];
- W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
- W[1]+=Ma(W[4],W[2],W[3]);
- Vals[7]+=0x11002000U;
- Vals[7]+=Vals[0];
- Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
- W[0]+=Vals[7];
- W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
- W[0]+=ch(W[5],W[6],W[7]);
- W[0]+=K[23];
- W[4]+=W[0];
- W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
- W[0]+=Ma(W[3],W[1],W[2]);
- W[8]=0x80000000U;
- W[8]+=Vals[1];
- W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
- W[7]+=W[8];
- W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
- W[7]+=ch(W[4],W[5],W[6]);
- W[7]+=K[24];
- W[3]+=W[7];
- W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
- W[7]+=Ma(W[2],W[0],W[1]);
- W[9]=Vals[2];
- W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
- W[6]+=W[9];
- W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
- W[6]+=ch(W[3],W[4],W[5]);
- W[6]+=K[25];
- W[2]+=W[6];
- W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
- W[6]+=Ma(W[1],W[7],W[0]);
- W[10]=Vals[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- W[5]+=W[10];
- W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
- W[5]+=ch(W[2],W[3],W[4]);
- W[5]+=K[26];
- W[1]+=W[5];
- W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
- W[5]+=Ma(W[0],W[6],W[7]);
- W[11]=Vals[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- W[4]+=W[11];
- W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
- W[4]+=ch(W[1],W[2],W[3]);
- W[4]+=K[27];
- W[0]+=W[4];
- W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
- W[4]+=Ma(W[7],W[5],W[6]);
- W[12]=Vals[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- W[3]+=W[12];
- W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
- W[3]+=ch(W[0],W[1],W[2]);
- W[3]+=K[28];
- W[7]+=W[3];
- W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
- W[3]+=Ma(W[6],W[4],W[5]);
- W[13]=Vals[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- W[2]+=W[13];
- W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
- W[2]+=ch(W[7],W[0],W[1]);
- W[2]+=K[29];
- W[6]+=W[2];
- W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
- W[2]+=Ma(W[5],W[3],W[4]);
- W[14]=0x00400022U;
- W[14]+=Vals[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- W[1]+=W[14];
- W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
- W[1]+=ch(W[6],W[7],W[0]);
- W[1]+=K[30];
- W[5]+=W[1];
- W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
- W[1]+=Ma(W[4],W[2],W[3]);
- W[15]=0x00000100U;
- W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- W[0]+=W[15];
- W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
- W[0]+=ch(W[5],W[6],W[7]);
- W[0]+=K[31];
- W[4]+=W[0];
- W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
- W[0]+=Ma(W[3],W[1],W[2]);
- Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
- Vals[0]+=W[9];
- Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- W[7]+=Vals[0];
- W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
- W[7]+=ch(W[4],W[5],W[6]);
- W[7]+=K[32];
- W[3]+=W[7];
- W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
- W[7]+=Ma(W[2],W[0],W[1]);
- Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
- Vals[1]+=W[10];
- Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- W[6]+=Vals[1];
- W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
- W[6]+=ch(W[3],W[4],W[5]);
- W[6]+=K[33];
- W[2]+=W[6];
- W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
- W[6]+=Ma(W[1],W[7],W[0]);
- Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
- Vals[2]+=W[11];
- Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
- W[5]+=Vals[2];
- W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
- W[5]+=ch(W[2],W[3],W[4]);
- W[5]+=K[34];
- W[1]+=W[5];
- W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
- W[5]+=Ma(W[0],W[6],W[7]);
- Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
- Vals[3]+=W[12];
- Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
- W[4]+=Vals[3];
- W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
- W[4]+=ch(W[1],W[2],W[3]);
- W[4]+=K[35];
- W[0]+=W[4];
- W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
- W[4]+=Ma(W[7],W[5],W[6]);
- Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
- Vals[4]+=W[13];
- Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
- W[3]+=Vals[4];
- W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
- W[3]+=ch(W[0],W[1],W[2]);
- W[3]+=K[36];
- W[7]+=W[3];
- W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
- W[3]+=Ma(W[6],W[4],W[5]);
- Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
- Vals[5]+=W[14];
- Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
- W[2]+=Vals[5];
- W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
- W[2]+=ch(W[7],W[0],W[1]);
- W[2]+=K[37];
- W[6]+=W[2];
- W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
- W[2]+=Ma(W[5],W[3],W[4]);
- Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
- Vals[6]+=W[15];
- Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
- W[1]+=Vals[6];
- W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
- W[1]+=ch(W[6],W[7],W[0]);
- W[1]+=K[38];
- W[5]+=W[1];
- W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
- W[1]+=Ma(W[4],W[2],W[3]);
- Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- Vals[7]+=Vals[0];
- Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
- W[0]+=Vals[7];
- W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
- W[0]+=ch(W[5],W[6],W[7]);
- W[0]+=K[39];
- W[4]+=W[0];
- W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
- W[0]+=Ma(W[3],W[1],W[2]);
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=Vals[1];
- W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
- W[7]+=W[8];
- W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
- W[7]+=ch(W[4],W[5],W[6]);
- W[7]+=K[40];
- W[3]+=W[7];
- W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
- W[7]+=Ma(W[2],W[0],W[1]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=Vals[2];
- W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
- W[6]+=W[9];
- W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
- W[6]+=ch(W[3],W[4],W[5]);
- W[6]+=K[41];
- W[2]+=W[6];
- W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
- W[6]+=Ma(W[1],W[7],W[0]);
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=Vals[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- W[5]+=W[10];
- W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
- W[5]+=ch(W[2],W[3],W[4]);
- W[5]+=K[42];
- W[1]+=W[5];
- W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
- W[5]+=Ma(W[0],W[6],W[7]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=Vals[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- W[4]+=W[11];
- W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
- W[4]+=ch(W[1],W[2],W[3]);
- W[4]+=K[43];
- W[0]+=W[4];
- W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
- W[4]+=Ma(W[7],W[5],W[6]);
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=Vals[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- W[3]+=W[12];
- W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
- W[3]+=ch(W[0],W[1],W[2]);
- W[3]+=K[44];
- W[7]+=W[3];
- W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
- W[3]+=Ma(W[6],W[4],W[5]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=Vals[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- W[2]+=W[13];
- W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
- W[2]+=ch(W[7],W[0],W[1]);
- W[2]+=K[45];
- W[6]+=W[2];
- W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
- W[2]+=Ma(W[5],W[3],W[4]);
- W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- W[14]+=Vals[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- W[1]+=W[14];
- W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
- W[1]+=ch(W[6],W[7],W[0]);
- W[1]+=K[46];
- W[5]+=W[1];
- W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
- W[1]+=Ma(W[4],W[2],W[3]);
- W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- W[0]+=W[15];
- W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
- W[0]+=ch(W[5],W[6],W[7]);
- W[0]+=K[47];
- W[4]+=W[0];
- W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
- W[0]+=Ma(W[3],W[1],W[2]);
- Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
- Vals[0]+=W[9];
- Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- W[7]+=Vals[0];
- W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
- W[7]+=ch(W[4],W[5],W[6]);
- W[7]+=K[48];
- W[3]+=W[7];
- W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
- W[7]+=Ma(W[2],W[0],W[1]);
- Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
- Vals[1]+=W[10];
- Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- W[6]+=Vals[1];
- W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
- W[6]+=ch(W[3],W[4],W[5]);
- W[6]+=K[49];
- W[2]+=W[6];
- W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
- W[6]+=Ma(W[1],W[7],W[0]);
- Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
- Vals[2]+=W[11];
- Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
- W[5]+=Vals[2];
- W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
- W[5]+=ch(W[2],W[3],W[4]);
- W[5]+=K[50];
- W[1]+=W[5];
- W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
- W[5]+=Ma(W[0],W[6],W[7]);
- Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
- Vals[3]+=W[12];
- Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
- W[4]+=Vals[3];
- W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
- W[4]+=ch(W[1],W[2],W[3]);
- W[4]+=K[51];
- W[0]+=W[4];
- W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
- W[4]+=Ma(W[7],W[5],W[6]);
- Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
- Vals[4]+=W[13];
- Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
- W[3]+=Vals[4];
- W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
- W[3]+=ch(W[0],W[1],W[2]);
- W[3]+=K[52];
- W[7]+=W[3];
- W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
- W[3]+=Ma(W[6],W[4],W[5]);
- Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
- Vals[5]+=W[14];
- Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
- W[2]+=Vals[5];
- W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
- W[2]+=ch(W[7],W[0],W[1]);
- W[2]+=K[53];
- W[6]+=W[2];
- W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
- W[2]+=Ma(W[5],W[3],W[4]);
- Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
- Vals[6]+=W[15];
- Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
- W[1]+=Vals[6];
- W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
- W[1]+=ch(W[6],W[7],W[0]);
- W[1]+=K[54];
- W[5]+=W[1];
- W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
- W[1]+=Ma(W[4],W[2],W[3]);
- Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- Vals[7]+=Vals[0];
- Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
- W[0]+=Vals[7];
- W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
- W[0]+=ch(W[5],W[6],W[7]);
- W[0]+=K[55];
- W[4]+=W[0];
- W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
- W[0]+=Ma(W[3],W[1],W[2]);
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=Vals[1];
- W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
- W[7]+=W[8];
- W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
- W[7]+=ch(W[4],W[5],W[6]);
- W[7]+=K[56];
- W[3]+=W[7];
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=Vals[2];
- W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
- W[6]+=W[9];
- W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
- W[6]+=ch(W[3],W[4],W[5]);
- W[6]+=K[57];
- W[6]+=W[2];
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=Vals[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- W[5]+=W[10];
- W[5]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
- W[5]+=ch(W[6],W[3],W[4]);
- W[5]+=K[58];
- W[5]+=W[1];
- W[4]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
- W[4]+=ch(W[5],W[6],W[3]);
- W[4]+=W[11];
- W[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[4]+=Vals[4];
- W[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- W[4]+=K[59];
- W[4]+=W[0];
- #define FOUND (0x80)
- #define NFLAG (0x7F)
- #if defined(VECTORS2) || defined(VECTORS4)
- W[7]+=Ma(W[2],W[0],W[1]);
- W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
- W[7]+=W[12];
- W[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[7]+=Vals[5];
- W[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- W[7]+=W[3];
- W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
- W[7]+=ch(W[4],W[5],W[6]);
- if (any(W[7] == 0x136032edU)) {
- if (W[7].x == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
- if (W[7].y == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
- #if defined(VECTORS4)
- if (W[7].z == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
- if (W[7].w == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
- #endif
- }
- #else
- if ((W[7]+
- Ma(W[2],W[0],W[1])+
- (rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22))+
- W[12]+
- (rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+
- Vals[5]+
- (rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+
- W[3]+
- (rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25))+
- ch(W[4],W[5],W[6])) == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce] = nonce;
- #endif
- }
|