phatk120329.cl 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. // This file is taken and modified from the public-domain poclbm project, and
  2. // I have therefore decided to keep it public-domain.
  3. // Modified version copyright 2011-2012 Con Kolivas
  4. #ifdef VECTORS4
  5. typedef uint4 u;
  6. #elif defined VECTORS2
  7. typedef uint2 u;
  8. #else
  9. typedef uint u;
  10. #endif
  11. __constant uint K[64] = {
  12. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  13. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  14. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  15. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  16. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  17. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  18. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  19. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  20. };
  21. __constant uint ConstW[128] = {
  22. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000U, 0x00000000, 0x00000000, 0x00000000,
  23. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000280U,
  24. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  25. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  26. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  27. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  28. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  29. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  30. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  31. 0x80000000U, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000100U,
  32. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  33. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  34. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  35. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  36. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  37. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000
  38. };
  39. __constant uint H[8] = {
  40. 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
  41. };
  42. #ifdef BITALIGN
  43. #pragma OPENCL EXTENSION cl_amd_media_ops : enable
  44. #define rot(x, y) amd_bitalign(x, x, (uint)(32 - y))
  45. // This part is not from the stock poclbm kernel. It's part of an optimization
  46. // added in the Phoenix Miner.
  47. // Some AMD devices have Vals[0] BFI_INT opcode, which behaves exactly like the
  48. // SHA-256 Ch function, but provides it in exactly one instruction. If
  49. // detected, use it for Ch. Otherwise, construct Ch out of simpler logical
  50. // primitives.
  51. #ifdef BFI_INT
  52. // Well, slight problem... It turns out BFI_INT isn't actually exposed to
  53. // OpenCL (or CAL IL for that matter) in any way. However, there is
  54. // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
  55. // amd_bytealign, takes the same inputs, and provides the same output.
  56. // We can use that as a placeholder for BFI_INT and have the application
  57. // patch it after compilation.
  58. // This is the BFI_INT function
  59. #define Ch(x, y, z) amd_bytealign(x,y,z)
  60. // Ma can also be implemented in terms of BFI_INT...
  61. #define Ma(z, x, y) amd_bytealign(z^x,y,x)
  62. #else // BFI_INT
  63. // Later SDKs optimise this to BFI INT without patching and GCN
  64. // actually fails if manually patched with BFI_INT
  65. #define Ch(x, y, z) bitselect((u)z, (u)y, (u)x)
  66. #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
  67. #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
  68. #endif
  69. #else // BITALIGN
  70. #define Ch(x, y, z) (z ^ (x & (y ^ z)))
  71. #define Ma(x, y, z) ((x & z) | (y & (x | z)))
  72. #define rot(x, y) rotate((u)x, (u)y)
  73. #define rotr(x, y) rotate((u)x, (u)(32-y))
  74. #endif
  75. //Various intermediate calculations for each SHA round
  76. #define s0(n) (S0(Vals[(0 + 128 - (n)) % 8]))
  77. #define S0(n) (rot(n, 30u)^rot(n, 19u)^rot(n,10u))
  78. #define s1(n) (S1(Vals[(4 + 128 - (n)) % 8]))
  79. #define S1(n) (rot(n, 26u)^rot(n, 21u)^rot(n, 7u))
  80. #define ch(n) Ch(Vals[(4 + 128 - (n)) % 8],Vals[(5 + 128 - (n)) % 8],Vals[(6 + 128 - (n)) % 8])
  81. #define maj(n) Ma(Vals[(1 + 128 - (n)) % 8],Vals[(2 + 128 - (n)) % 8],Vals[(0 + 128 - (n)) % 8])
  82. //t1 calc when W is already calculated
  83. #define t1(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W[(n)] + s1(n) + ch(n)
  84. //t1 calc which calculates W
  85. #define t1W(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W(n) + s1(n) + ch(n)
  86. //Used for constant W Values (the compiler optimizes out zeros)
  87. #define t1C(n) (K[(n) % 64]+ ConstW[(n)]) + Vals[(7 + 128 - (n)) % 8] + s1(n) + ch(n)
  88. //t2 Calc
  89. #define t2(n) maj(n) + s0(n)
  90. #define rotC(x,n) (x<<n | x >> (32-n))
  91. //W calculation used for SHA round
  92. #define W(n) (W[n] = P4(n) + P3(n) + P2(n) + P1(n))
  93. //Partial W calculations (used for the begining where only some values are nonzero)
  94. #define P1(n) ((rot(W[(n)-2],15u)^rot(W[(n)-2],13u)^((W[(n)-2])>>10U)))
  95. #define P2(n) ((rot(W[(n)-15],25u)^rot(W[(n)-15],14u)^((W[(n)-15])>>3U)))
  96. #define p1(x) ((rot(x,15u)^rot(x,13u)^((x)>>10U)))
  97. #define p2(x) ((rot(x,25u)^rot(x,14u)^((x)>>3U)))
  98. #define P3(n) W[n-7]
  99. #define P4(n) W[n-16]
  100. //Partial Calcs for constant W values
  101. #define P1C(n) ((rotC(ConstW[(n)-2],15)^rotC(ConstW[(n)-2],13)^((ConstW[(n)-2])>>10U)))
  102. #define P2C(n) ((rotC(ConstW[(n)-15],25)^rotC(ConstW[(n)-15],14)^((ConstW[(n)-15])>>3U)))
  103. #define P3C(x) ConstW[x-7]
  104. #define P4C(x) ConstW[x-16]
  105. //SHA round with built in W calc
  106. #define sharoundW(n) Barrier1(n); Vals[(3 + 128 - (n)) % 8] += t1W(n); Vals[(7 + 128 - (n)) % 8] = t1W(n) + t2(n);
  107. //SHA round without W calc
  108. #define sharound(n) Barrier2(n); Vals[(3 + 128 - (n)) % 8] += t1(n); Vals[(7 + 128 - (n)) % 8] = t1(n) + t2(n);
  109. //SHA round for constant W values
  110. #define sharoundC(n) Barrier3(n); Vals[(3 + 128 - (n)) % 8] += t1C(n); Vals[(7 + 128 - (n)) % 8] = t1C(n) + t2(n);
  111. //The compiler is stupid... I put this in there only to stop the compiler from (de)optimizing the order
  112. #define Barrier1(n) t1 = t1C((n+1))
  113. #define Barrier2(n) t1 = t1C((n))
  114. #define Barrier3(n) t1 = t1C((n))
  115. //#define WORKSIZE 256
  116. #define MAXBUFFERS (4095)
  117. __kernel
  118. __attribute__((vec_type_hint(u)))
  119. __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
  120. void search( const uint state0, const uint state1, const uint state2, const uint state3,
  121. const uint state4, const uint state5, const uint state6, const uint state7,
  122. const uint B1, const uint C1, const uint D1,
  123. const uint F1, const uint G1, const uint H1,
  124. const u base,
  125. const uint W16, const uint W17,
  126. const uint PreVal4, const uint PreVal0,
  127. const uint PreW18, const uint PreW19,
  128. const uint PreW31, const uint PreW32,
  129. __global uint * output)
  130. {
  131. u W[124];
  132. u Vals[8];
  133. //Dummy Variable to prevent compiler from reordering between rounds
  134. u t1;
  135. //Vals[0]=state0;
  136. Vals[1]=B1;
  137. Vals[2]=C1;
  138. Vals[3]=D1;
  139. //Vals[4]=PreVal4;
  140. Vals[5]=F1;
  141. Vals[6]=G1;
  142. Vals[7]=H1;
  143. W[16] = W16;
  144. W[17] = W17;
  145. #ifdef VECTORS4
  146. //Less dependencies to get both the local id and group id and then add them
  147. W[3] = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u);
  148. uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U);
  149. //Since only the 2 LSB is opposite between the nonces, we can save an instruction by flipping the 4 bits in W18 rather than the 1 bit in W3
  150. W[18] = PreW18 + (u){r, r ^ 0x2004000U, r ^ 0x4008000U, r ^ 0x600C000U};
  151. #elif defined VECTORS2
  152. W[3] = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u);
  153. uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U);
  154. W[18] = PreW18 + (u){r, r ^ 0x2004000U};
  155. #else
  156. W[3] = base + get_local_id(0) + get_group_id(0) * (WORKSIZE);
  157. u r = rot(W[3],25u)^rot(W[3],14u)^((W[3])>>3U);
  158. W[18] = PreW18 + r;
  159. #endif
  160. //the order of the W calcs and Rounds is like this because the compiler needs help finding how to order the instructions
  161. Vals[4] = PreVal4 + W[3];
  162. Vals[0] = PreVal0 + W[3];
  163. sharoundC(4);
  164. W[19] = PreW19 + W[3];
  165. sharoundC(5);
  166. W[20] = P4C(20) + P1(20);
  167. sharoundC(6);
  168. W[21] = P1(21);
  169. sharoundC(7);
  170. W[22] = P3C(22) + P1(22);
  171. sharoundC(8);
  172. W[23] = W[16] + P1(23);
  173. sharoundC(9);
  174. W[24] = W[17] + P1(24);
  175. sharoundC(10);
  176. W[25] = P1(25) + P3(25);
  177. W[26] = P1(26) + P3(26);
  178. sharoundC(11);
  179. W[27] = P1(27) + P3(27);
  180. W[28] = P1(28) + P3(28);
  181. sharoundC(12);
  182. W[29] = P1(29) + P3(29);
  183. sharoundC(13);
  184. W[30] = P1(30) + P2C(30) + P3(30);
  185. W[31] = PreW31 + (P1(31) + P3(31));
  186. sharoundC(14);
  187. W[32] = PreW32 + (P1(32) + P3(32));
  188. sharoundC(15);
  189. sharound(16);
  190. sharound(17);
  191. sharound(18);
  192. sharound(19);
  193. sharound(20);
  194. sharound(21);
  195. sharound(22);
  196. sharound(23);
  197. sharound(24);
  198. sharound(25);
  199. sharound(26);
  200. sharound(27);
  201. sharound(28);
  202. sharound(29);
  203. sharound(30);
  204. sharound(31);
  205. sharound(32);
  206. sharoundW(33);
  207. sharoundW(34);
  208. sharoundW(35);
  209. sharoundW(36);
  210. sharoundW(37);
  211. sharoundW(38);
  212. sharoundW(39);
  213. sharoundW(40);
  214. sharoundW(41);
  215. sharoundW(42);
  216. sharoundW(43);
  217. sharoundW(44);
  218. sharoundW(45);
  219. sharoundW(46);
  220. sharoundW(47);
  221. sharoundW(48);
  222. sharoundW(49);
  223. sharoundW(50);
  224. sharoundW(51);
  225. sharoundW(52);
  226. sharoundW(53);
  227. sharoundW(54);
  228. sharoundW(55);
  229. sharoundW(56);
  230. sharoundW(57);
  231. sharoundW(58);
  232. sharoundW(59);
  233. sharoundW(60);
  234. sharoundW(61);
  235. sharoundW(62);
  236. sharoundW(63);
  237. W[64]=state0+Vals[0];
  238. W[65]=state1+Vals[1];
  239. W[66]=state2+Vals[2];
  240. W[67]=state3+Vals[3];
  241. W[68]=state4+Vals[4];
  242. W[69]=state5+Vals[5];
  243. W[70]=state6+Vals[6];
  244. W[71]=state7+Vals[7];
  245. Vals[0]=H[0];
  246. Vals[1]=H[1];
  247. Vals[2]=H[2];
  248. Vals[3]=H[3];
  249. Vals[4]=H[4];
  250. Vals[5]=H[5];
  251. Vals[6]=H[6];
  252. Vals[7]=H[7];
  253. //sharound(64 + 0);
  254. const u Temp = (0xb0edbdd0U + K[0]) + W[64];
  255. Vals[7] = Temp + 0x08909ae5U;
  256. Vals[3] = 0xa54ff53aU + Temp;
  257. #define P124(n) P2(n) + P1(n) + P4(n)
  258. W[64 + 16] = + P2(64 + 16) + P4(64 + 16);
  259. sharound(64 + 1);
  260. W[64 + 17] = P1C(64 + 17) + P2(64 + 17) + P4(64 + 17);
  261. sharound(64 + 2);
  262. W[64 + 18] = P124(64 + 18);
  263. sharound(64 + 3);
  264. W[64 + 19] = P124(64 + 19);
  265. sharound(64 + 4);
  266. W[64 + 20] = P124(64 + 20);
  267. sharound(64 + 5);
  268. W[64 + 21] = P124(64 + 21);
  269. sharound(64 + 6);
  270. W[64 + 22] = P4(64 + 22) + P3C(64 + 22) + P2(64 + 22) + P1(64 + 22);
  271. sharound(64 + 7);
  272. W[64 + 23] = P4(64 + 23) + P3(64 + 23) + P2C(64 + 23) + P1(64 + 23);
  273. sharoundC(64 + 8);
  274. W[64 + 24] = P1(64 + 24) + P4C(64 + 24) + P3(64 + 24);
  275. sharoundC(64 + 9);
  276. W[64 + 25] = P3(64 + 25) + P1(64 + 25);
  277. sharoundC(64 + 10);
  278. W[64 + 26] = P3(64 + 26) + P1(64 + 26);
  279. sharoundC(64 + 11);
  280. W[64 + 27] = P3(64 + 27) + P1(64 + 27);
  281. sharoundC(64 + 12);
  282. W[64 + 28] = P3(64 + 28) + P1(64 + 28);
  283. sharoundC(64 + 13);
  284. W[64 + 29] = P1(64 + 29) + P3(64 + 29);
  285. W[64 + 30] = P3(64 + 30) + P2C(64 + 30) + P1(64 + 30);
  286. sharoundC(64 + 14);
  287. W[64 + 31] = P4C(64 + 31) + P3(64 + 31) + P2(64 + 31) + P1(64 + 31);
  288. sharoundC(64 + 15);
  289. sharound(64 + 16);
  290. sharound(64 + 17);
  291. sharound(64 + 18);
  292. sharound(64 + 19);
  293. sharound(64 + 20);
  294. sharound(64 + 21);
  295. sharound(64 + 22);
  296. sharound(64 + 23);
  297. sharound(64 + 24);
  298. sharound(64 + 25);
  299. sharound(64 + 26);
  300. sharound(64 + 27);
  301. sharound(64 + 28);
  302. sharound(64 + 29);
  303. sharound(64 + 30);
  304. sharound(64 + 31);
  305. sharoundW(64 + 32);
  306. sharoundW(64 + 33);
  307. sharoundW(64 + 34);
  308. sharoundW(64 + 35);
  309. sharoundW(64 + 36);
  310. sharoundW(64 + 37);
  311. sharoundW(64 + 38);
  312. sharoundW(64 + 39);
  313. sharoundW(64 + 40);
  314. sharoundW(64 + 41);
  315. sharoundW(64 + 42);
  316. sharoundW(64 + 43);
  317. sharoundW(64 + 44);
  318. sharoundW(64 + 45);
  319. sharoundW(64 + 46);
  320. sharoundW(64 + 47);
  321. sharoundW(64 + 48);
  322. sharoundW(64 + 49);
  323. sharoundW(64 + 50);
  324. sharoundW(64 + 51);
  325. sharoundW(64 + 52);
  326. sharoundW(64 + 53);
  327. sharoundW(64 + 54);
  328. sharoundW(64 + 55);
  329. sharoundW(64 + 56);
  330. sharoundW(64 + 57);
  331. sharoundW(64 + 58);
  332. W[117] += W[108] + Vals[3] + Vals[7] + P2(124) + P1(124) + Ch((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64),Vals[1],Vals[2]) -
  333. (-(K[60] + H[7]) - S1((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64)));
  334. #define FOUND (0x80)
  335. #define NFLAG (0x7F)
  336. #ifdef VECTORS4
  337. if (!(W[117].x & W[117].y & W[117].z & W[117].w)) {
  338. if (!W[117].x)
  339. output[FOUND] = output[NFLAG & W[3].x] = W[3].x;
  340. if (!W[117].y)
  341. output[FOUND] = output[NFLAG & W[3].y] = W[3].y;
  342. if (!W[117].z)
  343. output[FOUND] = output[NFLAG & W[3].z] = W[3].z;
  344. if (!W[117].w)
  345. output[FOUND] = output[NFLAG & W[3].w] = W[3].w;
  346. }
  347. #elif defined VECTORS2
  348. if (!(min(W[117].x, W[117].y))) {
  349. if (!W[117].x)
  350. output[FOUND] = output[NFLAG & W[3].x] = W[3].x;
  351. if (!W[117].y)
  352. output[FOUND] = output[NFLAG & W[3].y] = W[3].y;
  353. }
  354. #else
  355. if (!W[117])
  356. output[FOUND] = output[NFLAG & W[3]] = W[3];
  357. #endif
  358. }