poclbm121016.cl 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344
  1. // -ck modified kernel taken from Phoenix taken from poclbm, with aspects of
  2. // phatk and others.
  3. // Modified version copyright 2011-2012 Con Kolivas
  4. // This file is taken and modified from the public-domain poclbm project, and
  5. // we have therefore decided to keep it public-domain in Phoenix.
  6. #ifdef VECTORS4
  7. typedef uint4 u;
  8. #elif defined VECTORS2
  9. typedef uint2 u;
  10. #else
  11. typedef uint u;
  12. #endif
  13. __constant uint K[64] = {
  14. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  15. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  16. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  17. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  18. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  19. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  20. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  21. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  22. };
  23. // This part is not from the stock poclbm kernel. It's part of an optimization
  24. // added in the Phoenix Miner.
  25. // Some AMD devices have a BFI_INT opcode, which behaves exactly like the
  26. // SHA-256 ch function, but provides it in exactly one instruction. If
  27. // detected, use it for ch. Otherwise, construct ch out of simpler logical
  28. // primitives.
  29. #ifdef BITALIGN
  30. #pragma OPENCL EXTENSION cl_amd_media_ops : enable
  31. #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
  32. #else
  33. #define rotr(x, y) rotate((u)x, (u)(32 - y))
  34. #endif
  35. #ifdef BFI_INT
  36. // Well, slight problem... It turns out BFI_INT isn't actually exposed to
  37. // OpenCL (or CAL IL for that matter) in any way. However, there is
  38. // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
  39. // amd_bytealign, takes the same inputs, and provides the same output.
  40. // We can use that as a placeholder for BFI_INT and have the application
  41. // patch it after compilation.
  42. // This is the BFI_INT function
  43. #define ch(x, y, z) amd_bytealign(x, y, z)
  44. // Ma can also be implemented in terms of BFI_INT...
  45. #define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) )
  46. // AMD's KernelAnalyzer throws errors compiling the kernel if we use
  47. // amd_bytealign on constants with vectors enabled, so we use this to avoid
  48. // problems. (this is used 4 times, and likely optimized out by the compiler.)
  49. #define Ma2(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
  50. #else // BFI_INT
  51. //GCN actually fails if manually patched with BFI_INT
  52. #define ch(x, y, z) bitselect((u)z, (u)y, (u)x)
  53. #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
  54. #define Ma2(x, y, z) Ma(x, y, z)
  55. #endif
  56. __kernel
  57. __attribute__((vec_type_hint(u)))
  58. __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
  59. void search(const uint state0, const uint state1, const uint state2, const uint state3,
  60. const uint state4, const uint state5, const uint state6, const uint state7,
  61. const uint b1, const uint c1,
  62. const uint f1, const uint g1, const uint h1,
  63. #ifndef GOFFSET
  64. const u base,
  65. #endif
  66. const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r,
  67. const uint D1A, const uint C1addK5, const uint B1addK6,
  68. const uint W16addK16, const uint W17addK17,
  69. const uint PreVal4addT1, const uint Preval0,
  70. volatile __global uint * output)
  71. {
  72. u Vals[24];
  73. u *W = &Vals[8];
  74. #ifdef GOFFSET
  75. const u nonce = (uint)(get_global_id(0));
  76. #else
  77. const u nonce = base + (uint)(get_global_id(0));
  78. #endif
  79. Vals[5]=Preval0;
  80. Vals[5]+=nonce;
  81. Vals[0]=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  82. Vals[0]+=ch(Vals[5],b1,c1);
  83. Vals[0]+=D1A;
  84. Vals[2]=Vals[0];
  85. Vals[2]+=h1;
  86. Vals[1]=PreVal4addT1;
  87. Vals[1]+=nonce;
  88. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  89. Vals[6]=C1addK5;
  90. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  91. Vals[6]+=ch(Vals[2],Vals[5],b1);
  92. Vals[3]=Vals[6];
  93. Vals[3]+=g1;
  94. Vals[0]+=Ma2(g1,Vals[1],f1);
  95. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  96. Vals[6]+=Ma2(f1,Vals[0],Vals[1]);
  97. Vals[7]=B1addK6;
  98. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  99. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  100. Vals[4]=Vals[7];
  101. Vals[4]+=f1;
  102. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  103. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  104. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  105. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  106. Vals[5]+=K[7];
  107. Vals[1]+=Vals[5];
  108. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  109. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  110. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  111. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  112. Vals[2]+=K[8];
  113. Vals[0]+=Vals[2];
  114. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  115. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  116. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  117. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  118. Vals[3]+=K[9];
  119. Vals[6]+=Vals[3];
  120. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  121. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  122. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  123. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  124. Vals[4]+=K[10];
  125. Vals[7]+=Vals[4];
  126. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  127. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  128. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  129. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  130. Vals[1]+=K[11];
  131. Vals[5]+=Vals[1];
  132. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  133. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  134. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  135. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  136. Vals[0]+=K[12];
  137. Vals[2]+=Vals[0];
  138. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  139. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  140. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  141. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  142. Vals[6]+=K[13];
  143. Vals[3]+=Vals[6];
  144. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  145. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  146. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  147. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  148. Vals[7]+=K[14];
  149. Vals[4]+=Vals[7];
  150. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  151. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  152. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  153. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  154. Vals[5]+=0xC19BF3F4U;
  155. Vals[1]+=Vals[5];
  156. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  157. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  158. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  159. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  160. Vals[2]+=W16addK16;
  161. Vals[0]+=Vals[2];
  162. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  163. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  164. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  165. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  166. Vals[3]+=W17addK17;
  167. Vals[6]+=Vals[3];
  168. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  169. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  170. W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
  171. W[2]+=fw2;
  172. Vals[4]+=W[2];
  173. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  174. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  175. Vals[4]+=K[18];
  176. Vals[7]+=Vals[4];
  177. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  178. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  179. W[3]=nonce;
  180. W[3]+=fw3;
  181. Vals[1]+=W[3];
  182. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  183. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  184. Vals[1]+=K[19];
  185. Vals[5]+=Vals[1];
  186. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  187. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  188. W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  189. W[4]+=0x80000000U;
  190. Vals[0]+=W[4];
  191. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  192. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  193. Vals[0]+=K[20];
  194. Vals[2]+=Vals[0];
  195. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  196. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  197. W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  198. Vals[6]+=W[5];
  199. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  200. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  201. Vals[6]+=K[21];
  202. Vals[3]+=Vals[6];
  203. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  204. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  205. W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  206. W[6]+=0x00000280U;
  207. Vals[7]+=W[6];
  208. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  209. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  210. Vals[7]+=K[22];
  211. Vals[4]+=Vals[7];
  212. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  213. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  214. W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  215. W[7]+=fw0;
  216. Vals[5]+=W[7];
  217. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  218. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  219. Vals[5]+=K[23];
  220. Vals[1]+=Vals[5];
  221. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  222. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  223. W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  224. W[8]+=fw1;
  225. Vals[2]+=W[8];
  226. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  227. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  228. Vals[2]+=K[24];
  229. Vals[0]+=Vals[2];
  230. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  231. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  232. W[9]=W[2];
  233. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  234. Vals[3]+=W[9];
  235. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  236. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  237. Vals[3]+=K[25];
  238. Vals[6]+=Vals[3];
  239. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  240. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  241. W[10]=W[3];
  242. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  243. Vals[4]+=W[10];
  244. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  245. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  246. Vals[4]+=K[26];
  247. Vals[7]+=Vals[4];
  248. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  249. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  250. W[11]=W[4];
  251. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  252. Vals[1]+=W[11];
  253. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  254. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  255. Vals[1]+=K[27];
  256. Vals[5]+=Vals[1];
  257. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  258. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  259. W[12]=W[5];
  260. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  261. Vals[0]+=W[12];
  262. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  263. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  264. Vals[0]+=K[28];
  265. Vals[2]+=Vals[0];
  266. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  267. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  268. W[13]=W[6];
  269. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  270. Vals[6]+=W[13];
  271. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  272. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  273. Vals[6]+=K[29];
  274. Vals[3]+=Vals[6];
  275. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  276. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  277. W[14]=0x00a00055U;
  278. W[14]+=W[7];
  279. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  280. Vals[7]+=W[14];
  281. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  282. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  283. Vals[7]+=K[30];
  284. Vals[4]+=Vals[7];
  285. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  286. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  287. W[15]=fw15;
  288. W[15]+=W[8];
  289. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  290. Vals[5]+=W[15];
  291. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  292. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  293. Vals[5]+=K[31];
  294. Vals[1]+=Vals[5];
  295. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  296. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  297. W[0]=fw01r;
  298. W[0]+=W[9];
  299. W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
  300. Vals[2]+=W[0];
  301. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  302. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  303. Vals[2]+=K[32];
  304. Vals[0]+=Vals[2];
  305. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  306. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  307. W[1]=fw1;
  308. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  309. W[1]+=W[10];
  310. W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
  311. Vals[3]+=W[1];
  312. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  313. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  314. Vals[3]+=K[33];
  315. Vals[6]+=Vals[3];
  316. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  317. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  318. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  319. W[2]+=W[11];
  320. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  321. Vals[4]+=W[2];
  322. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  323. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  324. Vals[4]+=K[34];
  325. Vals[7]+=Vals[4];
  326. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  327. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  328. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  329. W[3]+=W[12];
  330. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  331. Vals[1]+=W[3];
  332. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  333. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  334. Vals[1]+=K[35];
  335. Vals[5]+=Vals[1];
  336. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  337. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  338. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  339. W[4]+=W[13];
  340. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  341. Vals[0]+=W[4];
  342. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  343. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  344. Vals[0]+=K[36];
  345. Vals[2]+=Vals[0];
  346. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  347. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  348. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  349. W[5]+=W[14];
  350. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  351. Vals[6]+=W[5];
  352. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  353. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  354. Vals[6]+=K[37];
  355. Vals[3]+=Vals[6];
  356. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  357. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  358. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  359. W[6]+=W[15];
  360. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  361. Vals[7]+=W[6];
  362. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  363. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  364. Vals[7]+=K[38];
  365. Vals[4]+=Vals[7];
  366. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  367. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  368. W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
  369. W[7]+=W[0];
  370. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  371. Vals[5]+=W[7];
  372. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  373. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  374. Vals[5]+=K[39];
  375. Vals[1]+=Vals[5];
  376. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  377. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  378. W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
  379. W[8]+=W[1];
  380. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  381. Vals[2]+=W[8];
  382. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  383. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  384. Vals[2]+=K[40];
  385. Vals[0]+=Vals[2];
  386. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  387. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  388. W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
  389. W[9]+=W[2];
  390. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  391. Vals[3]+=W[9];
  392. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  393. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  394. Vals[3]+=K[41];
  395. Vals[6]+=Vals[3];
  396. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  397. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  398. W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
  399. W[10]+=W[3];
  400. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  401. Vals[4]+=W[10];
  402. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  403. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  404. Vals[4]+=K[42];
  405. Vals[7]+=Vals[4];
  406. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  407. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  408. W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
  409. W[11]+=W[4];
  410. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  411. Vals[1]+=W[11];
  412. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  413. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  414. Vals[1]+=K[43];
  415. Vals[5]+=Vals[1];
  416. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  417. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  418. W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
  419. W[12]+=W[5];
  420. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  421. Vals[0]+=W[12];
  422. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  423. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  424. Vals[0]+=K[44];
  425. Vals[2]+=Vals[0];
  426. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  427. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  428. W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
  429. W[13]+=W[6];
  430. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  431. Vals[6]+=W[13];
  432. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  433. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  434. Vals[6]+=K[45];
  435. Vals[3]+=Vals[6];
  436. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  437. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  438. W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
  439. W[14]+=W[7];
  440. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  441. Vals[7]+=W[14];
  442. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  443. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  444. Vals[7]+=K[46];
  445. Vals[4]+=Vals[7];
  446. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  447. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  448. W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
  449. W[15]+=W[8];
  450. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  451. Vals[5]+=W[15];
  452. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  453. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  454. Vals[5]+=K[47];
  455. Vals[1]+=Vals[5];
  456. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  457. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  458. W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
  459. W[0]+=W[9];
  460. W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
  461. Vals[2]+=W[0];
  462. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  463. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  464. Vals[2]+=K[48];
  465. Vals[0]+=Vals[2];
  466. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  467. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  468. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  469. W[1]+=W[10];
  470. W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
  471. Vals[3]+=W[1];
  472. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  473. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  474. Vals[3]+=K[49];
  475. Vals[6]+=Vals[3];
  476. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  477. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  478. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  479. W[2]+=W[11];
  480. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  481. Vals[4]+=W[2];
  482. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  483. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  484. Vals[4]+=K[50];
  485. Vals[7]+=Vals[4];
  486. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  487. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  488. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  489. W[3]+=W[12];
  490. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  491. Vals[1]+=W[3];
  492. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  493. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  494. Vals[1]+=K[51];
  495. Vals[5]+=Vals[1];
  496. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  497. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  498. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  499. W[4]+=W[13];
  500. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  501. Vals[0]+=W[4];
  502. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  503. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  504. Vals[0]+=K[52];
  505. Vals[2]+=Vals[0];
  506. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  507. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  508. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  509. W[5]+=W[14];
  510. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  511. Vals[6]+=W[5];
  512. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  513. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  514. Vals[6]+=K[53];
  515. Vals[3]+=Vals[6];
  516. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  517. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  518. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  519. W[6]+=W[15];
  520. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  521. Vals[7]+=W[6];
  522. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  523. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  524. Vals[7]+=K[54];
  525. Vals[4]+=Vals[7];
  526. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  527. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  528. W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
  529. W[7]+=W[0];
  530. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  531. Vals[5]+=W[7];
  532. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  533. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  534. Vals[5]+=K[55];
  535. Vals[1]+=Vals[5];
  536. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  537. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  538. W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
  539. W[8]+=W[1];
  540. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  541. Vals[2]+=W[8];
  542. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  543. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  544. Vals[2]+=K[56];
  545. Vals[0]+=Vals[2];
  546. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  547. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  548. W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
  549. W[9]+=W[2];
  550. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  551. Vals[3]+=W[9];
  552. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  553. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  554. Vals[3]+=K[57];
  555. Vals[6]+=Vals[3];
  556. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  557. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  558. W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
  559. W[10]+=W[3];
  560. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  561. Vals[4]+=W[10];
  562. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  563. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  564. Vals[4]+=K[58];
  565. Vals[7]+=Vals[4];
  566. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  567. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  568. W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
  569. W[11]+=W[4];
  570. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  571. Vals[1]+=W[11];
  572. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  573. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  574. Vals[1]+=K[59];
  575. Vals[5]+=Vals[1];
  576. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  577. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  578. W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
  579. W[12]+=W[5];
  580. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  581. Vals[0]+=W[12];
  582. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  583. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  584. Vals[0]+=K[60];
  585. Vals[2]+=Vals[0];
  586. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  587. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  588. W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
  589. W[13]+=W[6];
  590. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  591. Vals[6]+=W[13];
  592. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  593. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  594. Vals[6]+=K[61];
  595. Vals[3]+=Vals[6];
  596. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  597. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  598. Vals[7]+=W[14];
  599. Vals[7]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
  600. Vals[7]+=W[7];
  601. Vals[7]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  602. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  603. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  604. Vals[7]+=K[62];
  605. Vals[4]+=Vals[7];
  606. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  607. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  608. Vals[5]+=W[15];
  609. Vals[5]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
  610. Vals[5]+=W[8];
  611. Vals[5]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  612. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  613. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  614. Vals[5]+=K[63];
  615. Vals[1]+=Vals[5];
  616. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  617. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  618. Vals[5]+=state0;
  619. W[7]=state7;
  620. W[7]+=Vals[2];
  621. Vals[2]=0xF377ED68U;
  622. Vals[2]+=Vals[5];
  623. W[3]=state3;
  624. W[3]+=Vals[0];
  625. Vals[0]=0xa54ff53aU;
  626. Vals[0]+=Vals[2];
  627. Vals[2]+=0x08909ae5U;
  628. W[6]=state6;
  629. W[6]+=Vals[3];
  630. Vals[3]=0x90BB1E3CU;
  631. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  632. Vals[3]+=(0x9b05688cU^(Vals[0]&0xca0b3af3U));
  633. Vals[7]+=state1;
  634. Vals[3]+=Vals[7];
  635. W[2]=state2;
  636. W[2]+=Vals[6];
  637. Vals[6]=0x3c6ef372U;
  638. Vals[6]+=Vals[3];
  639. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  640. Vals[3]+=Ma2(0xbb67ae85U,Vals[2],0x6a09e667U);
  641. W[5]=state5;
  642. W[5]+=Vals[4];
  643. Vals[4]=0x50C6645BU;
  644. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  645. Vals[4]+=ch(Vals[6],Vals[0],0x510e527fU);
  646. Vals[4]+=W[2];
  647. W[1]=Vals[7];
  648. Vals[7]=0xbb67ae85U;
  649. Vals[7]+=Vals[4];
  650. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  651. Vals[4]+=Ma2(0x6a09e667U,Vals[3],Vals[2]);
  652. W[4]=state4;
  653. W[4]+=Vals[1];
  654. Vals[1]=0x3AC42E24U;
  655. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  656. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  657. Vals[1]+=W[3];
  658. W[0]=Vals[5];
  659. Vals[5]=Vals[1];
  660. Vals[5]+=0x6a09e667U;
  661. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  662. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  663. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  664. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  665. Vals[0]+=K[4];
  666. Vals[0]+=W[4];
  667. Vals[2]+=Vals[0];
  668. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  669. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  670. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  671. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  672. Vals[6]+=K[5];
  673. Vals[6]+=W[5];
  674. Vals[3]+=Vals[6];
  675. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  676. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  677. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  678. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  679. Vals[7]+=K[6];
  680. Vals[7]+=W[6];
  681. Vals[4]+=Vals[7];
  682. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  683. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  684. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  685. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  686. Vals[5]+=K[7];
  687. Vals[5]+=W[7];
  688. Vals[1]+=Vals[5];
  689. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  690. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  691. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  692. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  693. Vals[2]+=0x5807AA98U;
  694. Vals[0]+=Vals[2];
  695. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  696. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  697. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  698. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  699. Vals[3]+=K[9];
  700. Vals[6]+=Vals[3];
  701. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  702. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  703. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  704. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  705. Vals[4]+=K[10];
  706. Vals[7]+=Vals[4];
  707. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  708. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  709. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  710. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  711. Vals[1]+=K[11];
  712. Vals[5]+=Vals[1];
  713. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  714. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  715. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  716. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  717. Vals[0]+=K[12];
  718. Vals[2]+=Vals[0];
  719. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  720. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  721. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  722. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  723. Vals[6]+=K[13];
  724. Vals[3]+=Vals[6];
  725. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  726. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  727. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  728. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  729. Vals[7]+=K[14];
  730. Vals[4]+=Vals[7];
  731. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  732. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  733. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  734. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  735. Vals[5]+=0xC19BF274U;
  736. Vals[1]+=Vals[5];
  737. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  738. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  739. W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
  740. Vals[2]+=W[0];
  741. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  742. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  743. Vals[2]+=K[16];
  744. Vals[0]+=Vals[2];
  745. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  746. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  747. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  748. W[1]+=0x00a00000U;
  749. Vals[3]+=W[1];
  750. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  751. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  752. Vals[3]+=K[17];
  753. Vals[6]+=Vals[3];
  754. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  755. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  756. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  757. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  758. Vals[4]+=W[2];
  759. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  760. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  761. Vals[4]+=K[18];
  762. Vals[7]+=Vals[4];
  763. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  764. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  765. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  766. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  767. Vals[1]+=W[3];
  768. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  769. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  770. Vals[1]+=K[19];
  771. Vals[5]+=Vals[1];
  772. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  773. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  774. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  775. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  776. Vals[0]+=W[4];
  777. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  778. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  779. Vals[0]+=K[20];
  780. Vals[2]+=Vals[0];
  781. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  782. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  783. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  784. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  785. Vals[6]+=W[5];
  786. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  787. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  788. Vals[6]+=K[21];
  789. Vals[3]+=Vals[6];
  790. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  791. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  792. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  793. W[6]+=0x00000100U;
  794. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  795. Vals[7]+=W[6];
  796. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  797. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  798. Vals[7]+=K[22];
  799. Vals[4]+=Vals[7];
  800. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  801. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  802. W[7]+=0x11002000U;
  803. W[7]+=W[0];
  804. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  805. Vals[5]+=W[7];
  806. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  807. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  808. Vals[5]+=K[23];
  809. Vals[1]+=Vals[5];
  810. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  811. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  812. W[8]=0x80000000U;
  813. W[8]+=W[1];
  814. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  815. Vals[2]+=W[8];
  816. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  817. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  818. Vals[2]+=K[24];
  819. Vals[0]+=Vals[2];
  820. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  821. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  822. W[9]=W[2];
  823. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  824. Vals[3]+=W[9];
  825. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  826. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  827. Vals[3]+=K[25];
  828. Vals[6]+=Vals[3];
  829. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  830. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  831. W[10]=W[3];
  832. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  833. Vals[4]+=W[10];
  834. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  835. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  836. Vals[4]+=K[26];
  837. Vals[7]+=Vals[4];
  838. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  839. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  840. W[11]=W[4];
  841. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  842. Vals[1]+=W[11];
  843. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  844. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  845. Vals[1]+=K[27];
  846. Vals[5]+=Vals[1];
  847. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  848. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  849. W[12]=W[5];
  850. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  851. Vals[0]+=W[12];
  852. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  853. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  854. Vals[0]+=K[28];
  855. Vals[2]+=Vals[0];
  856. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  857. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  858. W[13]=W[6];
  859. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  860. Vals[6]+=W[13];
  861. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  862. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  863. Vals[6]+=K[29];
  864. Vals[3]+=Vals[6];
  865. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  866. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  867. W[14]=0x00400022U;
  868. W[14]+=W[7];
  869. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  870. Vals[7]+=W[14];
  871. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  872. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  873. Vals[7]+=K[30];
  874. Vals[4]+=Vals[7];
  875. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  876. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  877. W[15]=0x00000100U;
  878. W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
  879. W[15]+=W[8];
  880. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  881. Vals[5]+=W[15];
  882. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  883. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  884. Vals[5]+=K[31];
  885. Vals[1]+=Vals[5];
  886. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  887. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  888. W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
  889. W[0]+=W[9];
  890. W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
  891. Vals[2]+=W[0];
  892. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  893. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  894. Vals[2]+=K[32];
  895. Vals[0]+=Vals[2];
  896. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  897. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  898. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  899. W[1]+=W[10];
  900. W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
  901. Vals[3]+=W[1];
  902. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  903. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  904. Vals[3]+=K[33];
  905. Vals[6]+=Vals[3];
  906. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  907. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  908. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  909. W[2]+=W[11];
  910. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  911. Vals[4]+=W[2];
  912. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  913. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  914. Vals[4]+=K[34];
  915. Vals[7]+=Vals[4];
  916. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  917. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  918. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  919. W[3]+=W[12];
  920. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  921. Vals[1]+=W[3];
  922. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  923. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  924. Vals[1]+=K[35];
  925. Vals[5]+=Vals[1];
  926. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  927. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  928. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  929. W[4]+=W[13];
  930. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  931. Vals[0]+=W[4];
  932. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  933. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  934. Vals[0]+=K[36];
  935. Vals[2]+=Vals[0];
  936. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  937. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  938. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  939. W[5]+=W[14];
  940. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  941. Vals[6]+=W[5];
  942. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  943. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  944. Vals[6]+=K[37];
  945. Vals[3]+=Vals[6];
  946. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  947. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  948. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  949. W[6]+=W[15];
  950. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  951. Vals[7]+=W[6];
  952. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  953. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  954. Vals[7]+=K[38];
  955. Vals[4]+=Vals[7];
  956. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  957. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  958. W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
  959. W[7]+=W[0];
  960. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  961. Vals[5]+=W[7];
  962. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  963. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  964. Vals[5]+=K[39];
  965. Vals[1]+=Vals[5];
  966. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  967. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  968. W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
  969. W[8]+=W[1];
  970. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  971. Vals[2]+=W[8];
  972. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  973. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  974. Vals[2]+=K[40];
  975. Vals[0]+=Vals[2];
  976. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  977. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  978. W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
  979. W[9]+=W[2];
  980. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  981. Vals[3]+=W[9];
  982. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  983. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  984. Vals[3]+=K[41];
  985. Vals[6]+=Vals[3];
  986. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  987. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  988. W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
  989. W[10]+=W[3];
  990. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  991. Vals[4]+=W[10];
  992. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  993. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  994. Vals[4]+=K[42];
  995. Vals[7]+=Vals[4];
  996. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  997. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  998. W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
  999. W[11]+=W[4];
  1000. W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  1001. Vals[1]+=W[11];
  1002. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  1003. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  1004. Vals[1]+=K[43];
  1005. Vals[5]+=Vals[1];
  1006. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  1007. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  1008. W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
  1009. W[12]+=W[5];
  1010. W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  1011. Vals[0]+=W[12];
  1012. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  1013. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  1014. Vals[0]+=K[44];
  1015. Vals[2]+=Vals[0];
  1016. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  1017. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  1018. W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
  1019. W[13]+=W[6];
  1020. W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
  1021. Vals[6]+=W[13];
  1022. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  1023. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  1024. Vals[6]+=K[45];
  1025. Vals[3]+=Vals[6];
  1026. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  1027. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  1028. W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
  1029. W[14]+=W[7];
  1030. W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
  1031. Vals[7]+=W[14];
  1032. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  1033. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  1034. Vals[7]+=K[46];
  1035. Vals[4]+=Vals[7];
  1036. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  1037. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  1038. W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
  1039. W[15]+=W[8];
  1040. W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
  1041. Vals[5]+=W[15];
  1042. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  1043. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  1044. Vals[5]+=K[47];
  1045. Vals[1]+=Vals[5];
  1046. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  1047. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  1048. W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
  1049. W[0]+=W[9];
  1050. W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
  1051. Vals[2]+=W[0];
  1052. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  1053. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  1054. Vals[2]+=K[48];
  1055. Vals[0]+=Vals[2];
  1056. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  1057. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  1058. W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
  1059. W[1]+=W[10];
  1060. W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
  1061. Vals[3]+=W[1];
  1062. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  1063. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  1064. Vals[3]+=K[49];
  1065. Vals[6]+=Vals[3];
  1066. Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
  1067. Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
  1068. W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
  1069. W[2]+=W[11];
  1070. W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
  1071. Vals[4]+=W[2];
  1072. Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
  1073. Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
  1074. Vals[4]+=K[50];
  1075. Vals[7]+=Vals[4];
  1076. Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
  1077. Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
  1078. W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
  1079. W[3]+=W[12];
  1080. W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
  1081. Vals[1]+=W[3];
  1082. Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
  1083. Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
  1084. Vals[1]+=K[51];
  1085. Vals[5]+=Vals[1];
  1086. Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
  1087. Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
  1088. W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
  1089. W[4]+=W[13];
  1090. W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
  1091. Vals[0]+=W[4];
  1092. Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
  1093. Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
  1094. Vals[0]+=K[52];
  1095. Vals[2]+=Vals[0];
  1096. Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
  1097. Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
  1098. W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
  1099. W[5]+=W[14];
  1100. W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
  1101. Vals[6]+=W[5];
  1102. Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
  1103. Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
  1104. Vals[6]+=K[53];
  1105. Vals[3]+=Vals[6];
  1106. Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
  1107. Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
  1108. W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
  1109. W[6]+=W[15];
  1110. W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
  1111. Vals[7]+=W[6];
  1112. Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  1113. Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
  1114. Vals[7]+=K[54];
  1115. Vals[4]+=Vals[7];
  1116. Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
  1117. Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
  1118. W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
  1119. W[7]+=W[0];
  1120. W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
  1121. Vals[5]+=W[7];
  1122. Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  1123. Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
  1124. Vals[5]+=K[55];
  1125. Vals[1]+=Vals[5];
  1126. Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
  1127. Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
  1128. W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
  1129. W[8]+=W[1];
  1130. W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
  1131. Vals[2]+=W[8];
  1132. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  1133. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  1134. Vals[2]+=K[56];
  1135. Vals[0]+=Vals[2];
  1136. W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
  1137. W[9]+=W[2];
  1138. W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
  1139. Vals[3]+=W[9];
  1140. Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
  1141. Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
  1142. Vals[3]+=K[57];
  1143. Vals[3]+=Vals[6];
  1144. W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
  1145. W[10]+=W[3];
  1146. W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
  1147. Vals[4]+=W[10];
  1148. Vals[4]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
  1149. Vals[4]+=ch(Vals[3],Vals[0],Vals[1]);
  1150. Vals[4]+=K[58];
  1151. Vals[4]+=Vals[7];
  1152. Vals[1]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
  1153. Vals[1]+=ch(Vals[4],Vals[3],Vals[0]);
  1154. Vals[1]+=W[11];
  1155. Vals[1]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
  1156. Vals[1]+=W[4];
  1157. Vals[1]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
  1158. Vals[1]+=K[59];
  1159. Vals[1]+=Vals[5];
  1160. Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
  1161. Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
  1162. Vals[2]+=W[12];
  1163. Vals[2]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
  1164. Vals[2]+=W[5];
  1165. Vals[2]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
  1166. Vals[2]+=Vals[0];
  1167. Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
  1168. Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
  1169. #define FOUND (0x0F)
  1170. #define SETFOUND(Xnonce) output[output[FOUND]++] = Xnonce
  1171. #if defined(VECTORS2) || defined(VECTORS4)
  1172. if (any(Vals[2] == 0x136032edU)) {
  1173. if (Vals[2].x == 0x136032edU)
  1174. SETFOUND(nonce.x);
  1175. if (Vals[2].y == 0x136032edU)
  1176. SETFOUND(nonce.y);
  1177. #if defined(VECTORS4)
  1178. if (Vals[2].z == 0x136032edU)
  1179. SETFOUND(nonce.z);
  1180. if (Vals[2].w == 0x136032edU)
  1181. SETFOUND(nonce.w);
  1182. #endif
  1183. }
  1184. #else
  1185. if (Vals[2] == 0x136032edU)
  1186. SETFOUND(nonce);
  1187. #endif
  1188. }