ft232r.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. /*
  2. * Copyright 2012 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #ifdef WIN32
  11. #include <winsock2.h>
  12. #endif
  13. #include <errno.h>
  14. #include <stdbool.h>
  15. #include <stdint.h>
  16. #include <string.h>
  17. #include <libusb.h>
  18. #include "compat.h"
  19. #include "fpgautils.h"
  20. #include "ft232r.h"
  21. #include "logging.h"
  22. #include "miner.h"
  23. #define FT232R_IDVENDOR 0x0403
  24. #define FT232R_IDPRODUCT 0x6001
  25. struct ft232r_device_info {
  26. libusb_device *libusb_dev;
  27. char *product;
  28. char *serial;
  29. };
  30. static struct ft232r_device_info **ft232r_devinfo_list;
  31. void ft232r_scan_free()
  32. {
  33. if (!ft232r_devinfo_list)
  34. return;
  35. struct ft232r_device_info *info;
  36. for (struct ft232r_device_info **infop = ft232r_devinfo_list; (info = *infop); ++infop) {
  37. libusb_unref_device(info->libusb_dev);
  38. free(info->product);
  39. free(info->serial);
  40. free(info);
  41. }
  42. free(ft232r_devinfo_list);
  43. ft232r_devinfo_list = NULL;
  44. }
  45. void ft232r_scan()
  46. {
  47. ssize_t count, n, i, found = 0;
  48. libusb_device **list;
  49. struct libusb_device_descriptor desc;
  50. libusb_device_handle *handle;
  51. struct ft232r_device_info *info;
  52. int err;
  53. unsigned char buf[0x100];
  54. ft232r_scan_free();
  55. count = libusb_get_device_list(NULL, &list);
  56. if (unlikely(count < 0)) {
  57. applog(LOG_ERR, "ft232r_scan: Error getting USB device list: %s", libusb_error_name(count));
  58. ft232r_devinfo_list = calloc(1, sizeof(struct ft232r_device_info *));
  59. return;
  60. }
  61. ft232r_devinfo_list = malloc(sizeof(struct ft232r_device_info *) * (count + 1));
  62. for (i = 0; i < count; ++i) {
  63. err = libusb_get_device_descriptor(list[i], &desc);
  64. if (unlikely(err)) {
  65. applog(LOG_ERR, "ft232r_scan: Error getting device descriptor: %s", libusb_error_name(err));
  66. continue;
  67. }
  68. if (!(desc.idVendor == FT232R_IDVENDOR && desc.idProduct == FT232R_IDPRODUCT)) {
  69. applog(LOG_DEBUG, "ft232r_scan: Found %04x:%04x - not a ft232r", desc.idVendor, desc.idProduct);
  70. continue;
  71. }
  72. err = libusb_open(list[i], &handle);
  73. if (unlikely(err)) {
  74. applog(LOG_ERR, "ft232r_scan: Error opening device: %s", libusb_error_name(err));
  75. continue;
  76. }
  77. n = libusb_get_string_descriptor_ascii(handle, desc.iProduct, buf, sizeof(buf)-1);
  78. if (unlikely(n < 0)) {
  79. libusb_close(handle);
  80. applog(LOG_ERR, "ft232r_scan: Error getting iProduct string: %s", libusb_error_name(n));
  81. continue;
  82. }
  83. buf[n] = '\0';
  84. info = malloc(sizeof(struct ft232r_device_info));
  85. info->product = strdup((char*)buf);
  86. n = libusb_get_string_descriptor_ascii(handle, desc.iSerialNumber, buf, sizeof(buf)-1);
  87. libusb_close(handle);
  88. if (unlikely(n < 0)) {
  89. applog(LOG_ERR, "ft232r_scan: Error getting iSerialNumber string: %s", libusb_error_name(n));
  90. n = 0;
  91. }
  92. buf[n] = '\0';
  93. info->serial = strdup((char*)buf);
  94. info->libusb_dev = libusb_ref_device(list[i]);
  95. ft232r_devinfo_list[found++] = info;
  96. applog(LOG_DEBUG, "ft232r_scan: Found \"%s\" serial \"%s\"", info->product, info->serial);
  97. }
  98. ft232r_devinfo_list[found] = NULL;
  99. libusb_free_device_list(list, 1);
  100. }
  101. int ft232r_detect(const char *product_needle, const char *serial, foundusb_func_t cb)
  102. {
  103. struct ft232r_device_info *info;
  104. int found = 0;
  105. for (struct ft232r_device_info **infop = ft232r_devinfo_list; (info = *infop); ++infop) {
  106. if (serial) {
  107. // If we are searching for a specific serial, pay no attention to the product id
  108. if (strcmp(serial, info->serial))
  109. continue;
  110. }
  111. else
  112. if (!strstr(info->product, product_needle))
  113. continue;
  114. if (!info->libusb_dev)
  115. continue;
  116. if (!cb(info->libusb_dev, info->product, info->serial))
  117. continue;
  118. info->libusb_dev = NULL;
  119. ++found;
  120. }
  121. return found;
  122. }
  123. #define FTDI_REQTYPE (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
  124. #define FTDI_REQTYPE_IN (FTDI_REQTYPE | LIBUSB_ENDPOINT_IN)
  125. #define FTDI_REQTYPE_OUT (FTDI_REQTYPE | LIBUSB_ENDPOINT_OUT)
  126. #define FTDI_REQUEST_RESET 0
  127. #define FTDI_REQUEST_SET_BAUDRATE 3
  128. #define FTDI_REQUEST_SET_BITMODE 0x0b
  129. #define FTDI_REQUEST_GET_PINS 0x0c
  130. #define FTDI_REQUEST_GET_BITMODE 0x0c
  131. #define FTDI_BAUDRATE_3M 0,0
  132. #define FTDI_INDEX 1
  133. #define FTDI_TIMEOUT 1000
  134. struct ft232r_device_handle {
  135. libusb_device_handle *h;
  136. uint8_t i;
  137. uint8_t o;
  138. unsigned char ibuf[256];
  139. int ibufLen;
  140. uint16_t osz;
  141. unsigned char *obuf;
  142. uint16_t obufsz;
  143. };
  144. struct ft232r_device_handle *ft232r_open(libusb_device *dev)
  145. {
  146. // FIXME: Cleanup on errors
  147. libusb_device_handle *devh;
  148. struct ft232r_device_handle *ftdi;
  149. if (libusb_open(dev, &devh)) {
  150. applog(LOG_ERR, "ft232r_open: Error opening device");
  151. return NULL;
  152. }
  153. libusb_reset_device(devh);
  154. libusb_detach_kernel_driver(devh, 0);
  155. if (libusb_set_configuration(devh, 1)) {
  156. applog(LOG_ERR, "ft232r_open: Error setting configuration");
  157. return NULL;
  158. }
  159. if (libusb_claim_interface(devh, 0)) {
  160. applog(LOG_ERR, "ft232r_open: Error claiming interface");
  161. return NULL;
  162. }
  163. if (libusb_control_transfer(devh, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BAUDRATE, FTDI_BAUDRATE_3M, NULL, 0, FTDI_TIMEOUT) < 0) {
  164. applog(LOG_ERR, "ft232r_open: Error performing control transfer");
  165. return NULL;
  166. }
  167. ftdi = calloc(1, sizeof(*ftdi));
  168. ftdi->h = devh;
  169. struct libusb_config_descriptor *cfg;
  170. if (libusb_get_config_descriptor(dev, 0, &cfg)) {
  171. applog(LOG_ERR, "ft232r_open: Error getting config descriptor");
  172. return NULL;
  173. }
  174. const struct libusb_interface_descriptor *altcfg = &cfg->interface[0].altsetting[0];
  175. if (altcfg->bNumEndpoints < 2) {
  176. applog(LOG_ERR, "ft232r_open: Too few endpoints");
  177. return NULL;
  178. }
  179. ftdi->i = altcfg->endpoint[0].bEndpointAddress;
  180. ftdi->o = altcfg->endpoint[1].bEndpointAddress;
  181. ftdi->osz = 0x1000;
  182. ftdi->obuf = malloc(ftdi->osz);
  183. libusb_free_config_descriptor(cfg);
  184. return ftdi;
  185. }
  186. void ft232r_close(struct ft232r_device_handle *dev)
  187. {
  188. libusb_release_interface(dev->h, 0);
  189. libusb_reset_device(dev->h);
  190. libusb_close(dev->h);
  191. }
  192. bool ft232r_purge_buffers(struct ft232r_device_handle *dev, enum ft232r_reset_purge purge)
  193. {
  194. if (ft232r_flush(dev) < 0)
  195. return false;
  196. if (purge & FTDI_PURGE_RX) {
  197. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_RX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  198. return false;
  199. dev->ibufLen = 0;
  200. }
  201. if (purge & FTDI_PURGE_TX)
  202. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_TX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  203. return false;
  204. return true;
  205. }
  206. bool ft232r_set_bitmode(struct ft232r_device_handle *dev, uint8_t mask, uint8_t mode)
  207. {
  208. if (ft232r_flush(dev) < 0)
  209. return false;
  210. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  211. return false;
  212. return !libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, (mode << 8) | mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT);
  213. }
  214. static ssize_t ft232r_readwrite(struct ft232r_device_handle *dev, unsigned char endpoint, void *data, size_t count)
  215. {
  216. int transferred;
  217. switch (libusb_bulk_transfer(dev->h, endpoint, data, count, &transferred, FTDI_TIMEOUT)) {
  218. case LIBUSB_ERROR_TIMEOUT:
  219. if (!transferred) {
  220. errno = ETIMEDOUT;
  221. return -1;
  222. }
  223. case 0:
  224. return transferred;
  225. default:
  226. errno = EIO;
  227. return -1;
  228. }
  229. }
  230. ssize_t ft232r_flush(struct ft232r_device_handle *dev)
  231. {
  232. if (!dev->obufsz)
  233. return 0;
  234. ssize_t r = ft232r_readwrite(dev, dev->o, dev->obuf, dev->obufsz);
  235. if (r == dev->obufsz) {
  236. dev->obufsz = 0;
  237. } else if (r > 0) {
  238. dev->obufsz -= r;
  239. memmove(dev->obuf, &dev->obuf[r], dev->obufsz);
  240. }
  241. return r;
  242. }
  243. ssize_t ft232r_write(struct ft232r_device_handle *dev, void *data, size_t count)
  244. {
  245. uint16_t bufleft;
  246. ssize_t r;
  247. bufleft = dev->osz - dev->obufsz;
  248. if (count < bufleft) {
  249. // Just add to output buffer
  250. memcpy(&dev->obuf[dev->obufsz], data, count);
  251. dev->obufsz += count;
  252. return count;
  253. }
  254. // Fill up buffer and flush
  255. memcpy(&dev->obuf[dev->obufsz], data, bufleft);
  256. dev->obufsz += bufleft;
  257. r = ft232r_flush(dev);
  258. if (unlikely(r <= 0)) {
  259. // In this case, no bytes were written supposedly, so remove this data from buffer
  260. dev->obufsz -= bufleft;
  261. return r;
  262. }
  263. // Even if not all <bufleft> bytes from this write got out, the remaining are still buffered
  264. return bufleft;
  265. }
  266. typedef ssize_t (*ft232r_rwfunc_t)(struct ft232r_device_handle *, void*, size_t);
  267. static ssize_t ft232r_rw_all(ft232r_rwfunc_t rwfunc, struct ft232r_device_handle *dev, void *data, size_t count)
  268. {
  269. char *p = data;
  270. ssize_t writ, total = 0;
  271. while (count && (writ = rwfunc(dev, p, count)) > 0) {
  272. p += writ;
  273. count -= writ;
  274. total += writ;
  275. }
  276. return total ?: writ;
  277. }
  278. ssize_t ft232r_write_all(struct ft232r_device_handle *dev, void *data, size_t count)
  279. {
  280. return ft232r_rw_all(ft232r_write, dev, data, count);
  281. }
  282. ssize_t ft232r_read(struct ft232r_device_handle *dev, void *data, size_t count)
  283. {
  284. ssize_t r;
  285. int adj;
  286. // Flush any pending output before reading
  287. r = ft232r_flush(dev);
  288. if (r < 0)
  289. return r;
  290. // First 2 bytes of every 0x40 are FTDI status or something
  291. while (dev->ibufLen <= 2) {
  292. // TODO: Implement a timeout for status byte repeating
  293. int transferred = ft232r_readwrite(dev, dev->i, dev->ibuf, sizeof(dev->ibuf));
  294. if (transferred <= 0)
  295. return transferred;
  296. dev->ibufLen = transferred;
  297. for (adj = 0x40; dev->ibufLen > adj; adj += 0x40 - 2) {
  298. dev->ibufLen -= 2;
  299. memmove(&dev->ibuf[adj], &dev->ibuf[adj+2], dev->ibufLen - adj);
  300. }
  301. }
  302. unsigned char *ibufs = &dev->ibuf[2];
  303. size_t ibufsLen = dev->ibufLen - 2;
  304. if (count > ibufsLen)
  305. count = ibufsLen;
  306. memcpy(data, ibufs, count);
  307. dev->ibufLen -= count;
  308. ibufsLen -= count;
  309. if (ibufsLen) {
  310. memmove(ibufs, &ibufs[count], ibufsLen);
  311. applog(LOG_DEBUG, "ft232r_read: %"PRIu64" bytes extra", (uint64_t)ibufsLen);
  312. }
  313. return count;
  314. }
  315. ssize_t ft232r_read_all(struct ft232r_device_handle *dev, void *data, size_t count)
  316. {
  317. return ft232r_rw_all(ft232r_read, dev, data, count);
  318. }
  319. bool ft232r_get_pins(struct ft232r_device_handle *dev, uint8_t *pins)
  320. {
  321. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_PINS, 0, FTDI_INDEX, pins, 1, FTDI_TIMEOUT) == 1;
  322. }
  323. bool ft232r_get_bitmode(struct ft232r_device_handle *dev, uint8_t *out_mode)
  324. {
  325. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_BITMODE, 0, FTDI_INDEX, out_mode, 1, FTDI_TIMEOUT) == 1;
  326. }
  327. bool ft232r_set_cbus_bits(struct ft232r_device_handle *dev, bool sc, bool cs)
  328. {
  329. uint8_t pin_state = (cs ? (1<<2) : 0)
  330. | (sc ? (1<<3) : 0);
  331. return ft232r_set_bitmode(dev, 0xc0 | pin_state, 0x20);
  332. }
  333. bool ft232r_get_cbus_bits(struct ft232r_device_handle *dev, bool *out_sio0, bool *out_sio1)
  334. {
  335. uint8_t data;
  336. if (!ft232r_get_bitmode(dev, &data))
  337. return false;
  338. *out_sio0 = data & 1;
  339. *out_sio1 = data & 2;
  340. return true;
  341. }
  342. #if 0
  343. int main() {
  344. libusb_init(NULL);
  345. ft232r_scan();
  346. ft232r_scan_free();
  347. libusb_exit(NULL);
  348. }
  349. void applog(int prio, const char *fmt, ...)
  350. {
  351. va_list ap;
  352. va_start(ap, fmt);
  353. vprintf(fmt, ap);
  354. puts("");
  355. va_end(ap);
  356. }
  357. #endif