phatk110817.cl 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416
  1. // This file is taken and modified from the public-domain poclbm project, and
  2. // I have therefore decided to keep it public-domain.
  3. #ifdef VECTORS4
  4. typedef uint4 u;
  5. #else
  6. #ifdef VECTORS2
  7. typedef uint2 u;
  8. #else
  9. typedef uint u;
  10. #endif
  11. #endif
  12. __constant uint K[64] = {
  13. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  14. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  15. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  16. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  17. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  18. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  19. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  20. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  21. };
  22. __constant uint ConstW[128] = {
  23. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000U, 0x00000000, 0x00000000, 0x00000000,
  24. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000280U,
  25. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  26. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  27. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  28. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  29. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  30. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  31. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  32. 0x80000000U, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000100U,
  33. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  34. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  35. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  36. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  37. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
  38. 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000
  39. };
  40. __constant uint H[8] = {
  41. 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
  42. };
  43. #ifdef BITALIGN
  44. #pragma OPENCL EXTENSION cl_amd_media_ops : enable
  45. #define rot(x, y) amd_bitalign(x, x, (uint)(32 - y))
  46. #else
  47. #define rot(x, y) rotate(x, (uint)y)
  48. #endif
  49. // This part is not from the stock poclbm kernel. It's part of an optimization
  50. // added in the Phoenix Miner.
  51. // Some AMD devices have Vals[0] BFI_INT opcode, which behaves exactly like the
  52. // SHA-256 Ch function, but provides it in exactly one instruction. If
  53. // detected, use it for Ch. Otherwise, construct Ch out of simpler logical
  54. // primitives.
  55. #ifdef BFI_INT
  56. // Well, slight problem... It turns out BFI_INT isn't actually exposed to
  57. // OpenCL (or CAL IL for that matter) in any way. However, there is
  58. // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
  59. // amd_bytealign, takes the same inputs, and provides the same output.
  60. // We can use that as a placeholder for BFI_INT and have the application
  61. // patch it after compilation.
  62. // This is the BFI_INT function
  63. #define Ch(x, y, z) amd_bytealign(x,y,z)
  64. // Ma can also be implemented in terms of BFI_INT...
  65. #define Ma(z, x, y) amd_bytealign(z^x,y,x)
  66. #else
  67. #define Ch(x, y, z) bitselect(x,y,z)
  68. // Ma can also be implemented in terms of bitselect
  69. #define Ma(z, x, y) bitselect(z^x,y,x)
  70. #endif
  71. //Various intermediate calculations for each SHA round
  72. #define s0(n) (S0(Vals[(0 + 128 - (n)) % 8]))
  73. #define S0(n) (rot(n, 30u)^rot(n, 19u)^rot(n,10u))
  74. #define s1(n) (S1(Vals[(4 + 128 - (n)) % 8]))
  75. #define S1(n) (rot(n, 26u)^rot(n, 21u)^rot(n, 7u))
  76. #define ch(n) Ch(Vals[(4 + 128 - (n)) % 8],Vals[(5 + 128 - (n)) % 8],Vals[(6 + 128 - (n)) % 8])
  77. #define maj(n) Ma(Vals[(1 + 128 - (n)) % 8],Vals[(2 + 128 - (n)) % 8],Vals[(0 + 128 - (n)) % 8])
  78. //t1 calc when W is already calculated
  79. #define t1(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W[(n)] + s1(n) + ch(n)
  80. //t1 calc which calculates W
  81. #define t1W(n) K[(n) % 64] + Vals[(7 + 128 - (n)) % 8] + W(n) + s1(n) + ch(n)
  82. //Used for constant W Values (the compiler optimizes out zeros)
  83. #define t1C(n) (K[(n) % 64]+ ConstW[(n)]) + Vals[(7 + 128 - (n)) % 8] + s1(n) + ch(n)
  84. //t2 Calc
  85. #define t2(n) maj(n) + s0(n)
  86. #define rotC(x,n) (x<<n | x >> (32-n))
  87. //W calculation used for SHA round
  88. #define W(n) (W[n] = P4(n) + P3(n) + P2(n) + P1(n))
  89. //Partial W calculations (used for the begining where only some values are nonzero)
  90. #define P1(n) ((rot(W[(n)-2],15u)^rot(W[(n)-2],13u)^((W[(n)-2])>>10U)))
  91. #define P2(n) ((rot(W[(n)-15],25u)^rot(W[(n)-15],14u)^((W[(n)-15])>>3U)))
  92. #define p1(x) ((rot(x,15u)^rot(x,13u)^((x)>>10U)))
  93. #define p2(x) ((rot(x,25u)^rot(x,14u)^((x)>>3U)))
  94. #define P3(n) W[n-7]
  95. #define P4(n) W[n-16]
  96. //Partial Calcs for constant W values
  97. #define P1C(n) ((rotC(ConstW[(n)-2],15)^rotC(ConstW[(n)-2],13)^((ConstW[(n)-2])>>10U)))
  98. #define P2C(n) ((rotC(ConstW[(n)-15],25)^rotC(ConstW[(n)-15],14)^((ConstW[(n)-15])>>3U)))
  99. #define P3C(x) ConstW[x-7]
  100. #define P4C(x) ConstW[x-16]
  101. //SHA round with built in W calc
  102. #define sharoundW(n) Barrier1(n); Vals[(3 + 128 - (n)) % 8] += t1W(n); Vals[(7 + 128 - (n)) % 8] = t1W(n) + t2(n);
  103. //SHA round without W calc
  104. #define sharound(n) Barrier2(n); Vals[(3 + 128 - (n)) % 8] += t1(n); Vals[(7 + 128 - (n)) % 8] = t1(n) + t2(n);
  105. //SHA round for constant W values
  106. #define sharoundC(n) Barrier3(n); Vals[(3 + 128 - (n)) % 8] += t1C(n); Vals[(7 + 128 - (n)) % 8] = t1C(n) + t2(n);
  107. //The compiler is stupid... I put this in there only to stop the compiler from (de)optimizing the order
  108. #define Barrier1(n) t1 = t1C((n+1))
  109. #define Barrier2(n) t1 = t1C((n))
  110. #define Barrier3(n) t1 = t1C((n))
  111. //#define WORKSIZE 256
  112. #define MAXBUFFERS (4095)
  113. __kernel
  114. __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
  115. void search( const uint state0, const uint state1, const uint state2, const uint state3,
  116. const uint state4, const uint state5, const uint state6, const uint state7,
  117. const uint B1, const uint C1, const uint D1,
  118. const uint F1, const uint G1, const uint H1,
  119. const u base,
  120. const uint W16, const uint W17,
  121. const uint PreVal4, const uint PreVal0,
  122. const uint PreW18, const uint PreW19,
  123. const uint PreW31, const uint PreW32,
  124. __global uint * output)
  125. {
  126. u W[124];
  127. u Vals[8];
  128. //Dummy Variable to prevent compiler from reordering between rounds
  129. u t1;
  130. //Vals[0]=state0;
  131. Vals[1]=B1;
  132. Vals[2]=C1;
  133. Vals[3]=D1;
  134. //Vals[4]=PreVal4;
  135. Vals[5]=F1;
  136. Vals[6]=G1;
  137. Vals[7]=H1;
  138. W[16] = W16;
  139. W[17] = W17;
  140. #ifdef VECTORS4
  141. //Less dependencies to get both the local id and group id and then add them
  142. W[3] = base + (uint)(get_local_id(0)) * 4u + (uint)(get_group_id(0)) * (WORKSIZE * 4u);
  143. uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U);
  144. //Since only the 2 LSB is opposite between the nonces, we can save an instruction by flipping the 4 bits in W18 rather than the 1 bit in W3
  145. W[18] = PreW18 + (u){r, r ^ 0x2004000U, r ^ 0x4008000U, r ^ 0x600C000U};
  146. #else
  147. #ifdef VECTORS2
  148. W[3] = base + (uint)(get_local_id(0)) * 2u + (uint)(get_group_id(0)) * (WORKSIZE * 2u);
  149. uint r = rot(W[3].x,25u)^rot(W[3].x,14u)^((W[3].x)>>3U);
  150. W[18] = PreW18 + (u){r, r ^ 0x2004000U};
  151. #else
  152. W[3] = base + get_local_id(0) + get_group_id(0) * (WORKSIZE);
  153. u r = rot(W[3],25u)^rot(W[3],14u)^((W[3])>>3U);
  154. W[18] = PreW18 + r;
  155. #endif
  156. #endif
  157. //the order of the W calcs and Rounds is like this because the compiler needs help finding how to order the instructions
  158. Vals[4] = PreVal4 + W[3];
  159. Vals[0] = PreVal0 + W[3];
  160. sharoundC(4);
  161. W[19] = PreW19 + W[3];
  162. sharoundC(5);
  163. W[20] = P4C(20) + P1(20);
  164. sharoundC(6);
  165. W[21] = P1(21);
  166. sharoundC(7);
  167. W[22] = P3C(22) + P1(22);
  168. sharoundC(8);
  169. W[23] = W[16] + P1(23);
  170. sharoundC(9);
  171. W[24] = W[17] + P1(24);
  172. sharoundC(10);
  173. W[25] = P1(25) + P3(25);
  174. W[26] = P1(26) + P3(26);
  175. sharoundC(11);
  176. W[27] = P1(27) + P3(27);
  177. W[28] = P1(28) + P3(28);
  178. sharoundC(12);
  179. W[29] = P1(29) + P3(29);
  180. sharoundC(13);
  181. W[30] = P1(30) + P2C(30) + P3(30);
  182. W[31] = PreW31 + (P1(31) + P3(31));
  183. sharoundC(14);
  184. W[32] = PreW32 + (P1(32) + P3(32));
  185. sharoundC(15);
  186. sharound(16);
  187. sharound(17);
  188. sharound(18);
  189. sharound(19);
  190. sharound(20);
  191. sharound(21);
  192. sharound(22);
  193. sharound(23);
  194. sharound(24);
  195. sharound(25);
  196. sharound(26);
  197. sharound(27);
  198. sharound(28);
  199. sharound(29);
  200. sharound(30);
  201. sharound(31);
  202. sharound(32);
  203. sharoundW(33);
  204. sharoundW(34);
  205. sharoundW(35);
  206. sharoundW(36);
  207. sharoundW(37);
  208. sharoundW(38);
  209. sharoundW(39);
  210. sharoundW(40);
  211. sharoundW(41);
  212. sharoundW(42);
  213. sharoundW(43);
  214. sharoundW(44);
  215. sharoundW(45);
  216. sharoundW(46);
  217. sharoundW(47);
  218. sharoundW(48);
  219. sharoundW(49);
  220. sharoundW(50);
  221. sharoundW(51);
  222. sharoundW(52);
  223. sharoundW(53);
  224. sharoundW(54);
  225. sharoundW(55);
  226. sharoundW(56);
  227. sharoundW(57);
  228. sharoundW(58);
  229. sharoundW(59);
  230. sharoundW(60);
  231. sharoundW(61);
  232. sharoundW(62);
  233. sharoundW(63);
  234. W[64]=state0+Vals[0];
  235. W[65]=state1+Vals[1];
  236. W[66]=state2+Vals[2];
  237. W[67]=state3+Vals[3];
  238. W[68]=state4+Vals[4];
  239. W[69]=state5+Vals[5];
  240. W[70]=state6+Vals[6];
  241. W[71]=state7+Vals[7];
  242. Vals[0]=H[0];
  243. Vals[1]=H[1];
  244. Vals[2]=H[2];
  245. Vals[3]=H[3];
  246. Vals[4]=H[4];
  247. Vals[5]=H[5];
  248. Vals[6]=H[6];
  249. Vals[7]=H[7];
  250. //sharound(64 + 0);
  251. const u Temp = (0xb0edbdd0U + K[0]) + W[64];
  252. Vals[7] = Temp + 0x08909ae5U;
  253. Vals[3] = 0xa54ff53aU + Temp;
  254. #define P124(n) P2(n) + P1(n) + P4(n)
  255. W[64 + 16] = + P2(64 + 16) + P4(64 + 16);
  256. sharound(64 + 1);
  257. W[64 + 17] = P1C(64 + 17) + P2(64 + 17) + P4(64 + 17);
  258. sharound(64 + 2);
  259. W[64 + 18] = P124(64 + 18);
  260. sharound(64 + 3);
  261. W[64 + 19] = P124(64 + 19);
  262. sharound(64 + 4);
  263. W[64 + 20] = P124(64 + 20);
  264. sharound(64 + 5);
  265. W[64 + 21] = P124(64 + 21);
  266. sharound(64 + 6);
  267. W[64 + 22] = P4(64 + 22) + P3C(64 + 22) + P2(64 + 22) + P1(64 + 22);
  268. sharound(64 + 7);
  269. W[64 + 23] = P4(64 + 23) + P3(64 + 23) + P2C(64 + 23) + P1(64 + 23);
  270. sharoundC(64 + 8);
  271. W[64 + 24] = P1(64 + 24) + P4C(64 + 24) + P3(64 + 24);
  272. sharoundC(64 + 9);
  273. W[64 + 25] = P3(64 + 25) + P1(64 + 25);
  274. sharoundC(64 + 10);
  275. W[64 + 26] = P3(64 + 26) + P1(64 + 26);
  276. sharoundC(64 + 11);
  277. W[64 + 27] = P3(64 + 27) + P1(64 + 27);
  278. sharoundC(64 + 12);
  279. W[64 + 28] = P3(64 + 28) + P1(64 + 28);
  280. sharoundC(64 + 13);
  281. W[64 + 29] = P1(64 + 29) + P3(64 + 29);
  282. W[64 + 30] = P3(64 + 30) + P2C(64 + 30) + P1(64 + 30);
  283. sharoundC(64 + 14);
  284. W[64 + 31] = P4C(64 + 31) + P3(64 + 31) + P2(64 + 31) + P1(64 + 31);
  285. sharoundC(64 + 15);
  286. sharound(64 + 16);
  287. sharound(64 + 17);
  288. sharound(64 + 18);
  289. sharound(64 + 19);
  290. sharound(64 + 20);
  291. sharound(64 + 21);
  292. sharound(64 + 22);
  293. sharound(64 + 23);
  294. sharound(64 + 24);
  295. sharound(64 + 25);
  296. sharound(64 + 26);
  297. sharound(64 + 27);
  298. sharound(64 + 28);
  299. sharound(64 + 29);
  300. sharound(64 + 30);
  301. sharound(64 + 31);
  302. sharoundW(64 + 32);
  303. sharoundW(64 + 33);
  304. sharoundW(64 + 34);
  305. sharoundW(64 + 35);
  306. sharoundW(64 + 36);
  307. sharoundW(64 + 37);
  308. sharoundW(64 + 38);
  309. sharoundW(64 + 39);
  310. sharoundW(64 + 40);
  311. sharoundW(64 + 41);
  312. sharoundW(64 + 42);
  313. sharoundW(64 + 43);
  314. sharoundW(64 + 44);
  315. sharoundW(64 + 45);
  316. sharoundW(64 + 46);
  317. sharoundW(64 + 47);
  318. sharoundW(64 + 48);
  319. sharoundW(64 + 49);
  320. sharoundW(64 + 50);
  321. sharoundW(64 + 51);
  322. sharoundW(64 + 52);
  323. sharoundW(64 + 53);
  324. sharoundW(64 + 54);
  325. sharoundW(64 + 55);
  326. sharoundW(64 + 56);
  327. sharoundW(64 + 57);
  328. sharoundW(64 + 58);
  329. u v = W[117] + W[108] + Vals[3] + Vals[7] + P2(124) + P1(124) + Ch((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64),Vals[1],Vals[2]) ^
  330. -(K[60] + H[7]) - S1((Vals[0] + Vals[4]) + (K[59] + W(59+64)) + s1(64+59)+ ch(59+64));
  331. #define FOUND (0x80)
  332. #define NFLAG (0x7F)
  333. #ifdef VECTORS4
  334. bool result = v.x & v.y & v.z & v.w;
  335. if (!result) {
  336. if (!v.x)
  337. output[FOUND] = output[NFLAG & W[3].x] = W[3].x;
  338. if (!v.y)
  339. output[FOUND] = output[NFLAG & W[3].y] = W[3].y;
  340. if (!v.z)
  341. output[FOUND] = output[NFLAG & W[3].z] = W[3].z;
  342. if (!v.w)
  343. output[FOUND] = output[NFLAG & W[3].w] = W[3].w;
  344. }
  345. #else
  346. #ifdef VECTORS2
  347. bool result = v.x & v.y;
  348. if (!result) {
  349. if (!v.x)
  350. output[FOUND] = output[NFLAG & W[3].x] = W[3].x;
  351. if (!v.y)
  352. output[FOUND] = output[NFLAG & W[3].y] = W[3].y;
  353. }
  354. #else
  355. if (!v)
  356. output[FOUND] = output[NFLAG & W[3]] = W[3];
  357. #endif
  358. #endif
  359. }