driver-bitfury.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952
  1. /*
  2. * Copyright 2013 bitfury
  3. * Copyright 2013 Anatoly Legkodymov
  4. * Copyright 2013 Luke Dashjr
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a copy
  7. * of this software and associated documentation files (the "Software"), to deal
  8. * in the Software without restriction, including without limitation the rights
  9. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10. * copies of the Software, and to permit persons to whom the Software is
  11. * furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice shall be included in
  14. * all copies or substantial portions of the Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  19. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22. * THE SOFTWARE.
  23. */
  24. #include "config.h"
  25. #include <limits.h>
  26. #include "miner.h"
  27. #include <unistd.h>
  28. #include <sha2.h>
  29. #include "deviceapi.h"
  30. #include "driver-bitfury.h"
  31. #include "libbitfury.h"
  32. #include "util.h"
  33. #include "spidevc.h"
  34. #define GOLDEN_BACKLOG 5
  35. #define LINE_LEN 2048
  36. struct device_drv bitfury_drv;
  37. int calc_stat(time_t * stat_ts, time_t stat, struct timeval now);
  38. double shares_to_ghashes(int shares, int seconds);
  39. static
  40. int bitfury_autodetect()
  41. {
  42. RUNONCE(0);
  43. int chip_n;
  44. struct cgpu_info *bitfury_info;
  45. bitfury_info = calloc(1, sizeof(struct cgpu_info));
  46. bitfury_info->drv = &bitfury_drv;
  47. bitfury_info->threads = 1;
  48. applog(LOG_INFO, "INFO: bitfury_detect");
  49. spi_init();
  50. if (!sys_spi)
  51. return 0;
  52. chip_n = libbitfury_detectChips1(sys_spi);
  53. if (!chip_n) {
  54. applog(LOG_WARNING, "No Bitfury chips detected!");
  55. return 0;
  56. } else {
  57. applog(LOG_WARNING, "BITFURY: %d chips detected!", chip_n);
  58. }
  59. bitfury_info->procs = chip_n;
  60. add_cgpu(bitfury_info);
  61. return 1;
  62. }
  63. static void bitfury_detect(void)
  64. {
  65. noserial_detect_manual(&bitfury_drv, bitfury_autodetect);
  66. }
  67. static
  68. void *bitfury_just_io(struct bitfury_device * const bitfury)
  69. {
  70. struct spi_port * const spi = bitfury->spi;
  71. const int chip = bitfury->fasync;
  72. void *rv;
  73. spi_clear_buf(spi);
  74. spi_emit_break(spi);
  75. spi_emit_fasync(spi, chip);
  76. rv = spi_emit_data(spi, 0x3000, &bitfury->atrvec[0], 19 * 4);
  77. spi_txrx(spi);
  78. return rv;
  79. }
  80. static
  81. void bitfury_debug_nonce_array(const struct cgpu_info * const proc, const char *msg, const uint32_t * const inp)
  82. {
  83. const struct bitfury_device * const bitfury = proc->device_data;
  84. const int active = bitfury->active;
  85. char s[((1 + 8) * 0x10) + 1];
  86. char *sp = s;
  87. for (int i = 0; i < 0x10; ++i)
  88. sp += sprintf(sp, "%c%08lx",
  89. (active == i) ? '>' : ' ',
  90. (unsigned long)bitfury_decnonce(inp[i]));
  91. applog(LOG_DEBUG, "%"PRIpreprv": %s%s (job=%08lx)",
  92. proc->proc_repr, msg, s, (unsigned long)inp[0x10]);
  93. }
  94. static
  95. bool bitfury_init_oldbuf(struct cgpu_info * const proc, const uint32_t *inp)
  96. {
  97. struct bitfury_device * const bitfury = proc->device_data;
  98. uint32_t * const oldbuf = &bitfury->oldbuf[0];
  99. uint32_t * const buf = &bitfury->newbuf[0];
  100. int i, differ, tried = 0;
  101. if (!inp)
  102. inp = bitfury_just_io(bitfury);
  103. tryagain:
  104. if (tried > 3)
  105. {
  106. applog(LOG_ERR, "%"PRIpreprv": %s: Giving up after %d tries",
  107. proc->proc_repr, __func__, tried);
  108. bitfury->desync_counter = 99;
  109. return false;
  110. }
  111. ++tried;
  112. memcpy(buf, inp, 0x10 * 4);
  113. inp = bitfury_just_io(bitfury);
  114. differ = -1;
  115. for (i = 0; i < 0x10; ++i)
  116. {
  117. if (inp[i] != buf[i])
  118. {
  119. if (differ != -1)
  120. {
  121. applog(LOG_DEBUG, "%"PRIpreprv": %s: Second differ at %d; trying again",
  122. proc->proc_repr, __func__, i);
  123. goto tryagain;
  124. }
  125. differ = i;
  126. applog(LOG_DEBUG, "%"PRIpreprv": %s: Differ at %d",
  127. proc->proc_repr, __func__, i);
  128. if (tried > 3)
  129. break;
  130. }
  131. }
  132. if (-1 == differ)
  133. {
  134. applog(LOG_DEBUG, "%"PRIpreprv": %s: No differ found; trying again",
  135. proc->proc_repr, __func__);
  136. goto tryagain;
  137. }
  138. bitfury->active = differ;
  139. memcpy(&oldbuf[0], &inp[bitfury->active], 4 * (0x10 - bitfury->active));
  140. memcpy(&oldbuf[0x10 - bitfury->active], &inp[0], 4 * bitfury->active);
  141. bitfury->oldjob = inp[0x10];
  142. bitfury->desync_counter = 0;
  143. if (opt_debug)
  144. bitfury_debug_nonce_array(proc, "Init", inp);
  145. return true;
  146. }
  147. bool bitfury_init_chip(struct cgpu_info * const proc)
  148. {
  149. struct bitfury_device * const bitfury = proc->device_data;
  150. struct bitfury_payload payload = {
  151. .midstate = "\xf9\x9a\xf0\xd5\x72\x34\x41\xdc\x9e\x10\xd1\x1f\xeb\xcd\xe3\xf5"
  152. "\x52\xf1\x14\x63\x06\x14\xd1\x12\x15\x25\x39\xd1\x7d\x77\x5a\xfd",
  153. .m7 = 0xafbd0b42,
  154. .ntime = 0xb6c24563,
  155. .nbits = 0x6dfa4352,
  156. };
  157. payload_to_atrvec(bitfury->atrvec, &payload);
  158. bitfury_init_freq_stat(&bitfury->chip_stat, 52, 56);
  159. return bitfury_init_oldbuf(proc, NULL);
  160. }
  161. static
  162. bool bitfury_init(struct thr_info *thr)
  163. {
  164. struct cgpu_info *proc;
  165. struct bitfury_device *bitfury;
  166. for (proc = thr->cgpu; proc; proc = proc->next_proc)
  167. {
  168. bitfury = proc->device_data = malloc(sizeof(struct bitfury_device));
  169. *bitfury = (struct bitfury_device){
  170. .spi = sys_spi,
  171. .fasync = proc->proc_id,
  172. };
  173. bitfury_init_chip(proc);
  174. }
  175. return true;
  176. }
  177. static
  178. bool bitfury_queue_full(struct cgpu_info *cgpu)
  179. {
  180. struct cgpu_info *proc;
  181. struct bitfury_device *bitfury;
  182. for (proc = cgpu; proc; proc = proc->next_proc)
  183. {
  184. bitfury = proc->device_data;
  185. if (bitfury->work)
  186. continue;
  187. bitfury->work = get_queued(cgpu);
  188. if (!bitfury->work)
  189. return false;
  190. work_to_payload(&bitfury->payload, bitfury->work);
  191. }
  192. return true;
  193. }
  194. int64_t bitfury_scanHash(struct thr_info *thr)
  195. {
  196. struct cgpu_info * const cgpu = thr->cgpu;
  197. struct bitfury_device * const sds = cgpu->device_data;
  198. struct cgpu_info *proc;
  199. struct thr_info *pthr;
  200. struct bitfury_device *bitfury;
  201. struct timeval now;
  202. char line[LINE_LEN];
  203. int short_stat = 10;
  204. int long_stat = 1800;
  205. int i;
  206. if (!bitfury_queue_full(cgpu))
  207. return 0;
  208. for (proc = cgpu; proc; proc = proc->next_proc)
  209. {
  210. const int chip = proc->proc_id;
  211. pthr = proc->thr[0];
  212. bitfury = proc->device_data;
  213. bitfury->job_switched = 0;
  214. payload_to_atrvec(bitfury->atrvec, &bitfury->payload);
  215. libbitfury_sendHashData1(chip, bitfury, pthr);
  216. }
  217. cgsleep_ms(5);
  218. cgtime(&now);
  219. for (proc = cgpu; proc; proc = proc->next_proc)
  220. {
  221. pthr = proc->thr[0];
  222. bitfury = proc->device_data;
  223. if (bitfury->job_switched) {
  224. int i,j;
  225. unsigned int * const res = bitfury->results;
  226. struct work * const work = bitfury->work;
  227. struct work * const owork = bitfury->owork;
  228. struct work * const o2work = bitfury->o2work;
  229. i = bitfury->results_n;
  230. for (j = i - 1; j >= 0; j--) {
  231. if (owork) {
  232. submit_nonce(pthr, owork, bswap_32(res[j]));
  233. bitfury->stat_ts[bitfury->stat_counter++] =
  234. now.tv_sec;
  235. if (bitfury->stat_counter == BITFURY_STAT_N) {
  236. bitfury->stat_counter = 0;
  237. }
  238. }
  239. if (o2work) {
  240. // TEST
  241. //submit_nonce(pthr, owork, bswap_32(res[j]));
  242. }
  243. }
  244. bitfury->results_n = 0;
  245. bitfury->job_switched = 0;
  246. if (bitfury->old_nonce && o2work) {
  247. submit_nonce(pthr, o2work, bswap_32(bitfury->old_nonce));
  248. i++;
  249. }
  250. if (bitfury->future_nonce) {
  251. submit_nonce(pthr, work, bswap_32(bitfury->future_nonce));
  252. i++;
  253. }
  254. if (o2work)
  255. work_completed(cgpu, o2work);
  256. bitfury->o2work = bitfury->owork;
  257. bitfury->owork = bitfury->work;
  258. bitfury->work = NULL;
  259. hashes_done2(pthr, 0xbd000000, NULL);
  260. }
  261. }
  262. if (now.tv_sec - sds->short_out_t > short_stat) {
  263. int shares_first = 0, shares_last = 0, shares_total = 0;
  264. char stat_lines[32][LINE_LEN] = {{0}};
  265. int len, k;
  266. double gh[32][8] = {{0}};
  267. double ghsum = 0, gh1h = 0, gh2h = 0;
  268. unsigned strange_counter = 0;
  269. for (proc = cgpu; proc; proc = proc->next_proc)
  270. {
  271. const int chip = proc->proc_id;
  272. bitfury = proc->device_data;
  273. int shares_found = calc_stat(bitfury->stat_ts, short_stat, now);
  274. double ghash;
  275. len = strlen(stat_lines[bitfury->slot]);
  276. ghash = shares_to_ghashes(shares_found, short_stat);
  277. gh[bitfury->slot][chip & 0x07] = ghash;
  278. snprintf(stat_lines[bitfury->slot] + len, LINE_LEN - len, "%.1f-%3.0f ", ghash, bitfury->mhz);
  279. if(sds->short_out_t && ghash < 0.5) {
  280. applog(LOG_WARNING, "Chip_id %d FREQ CHANGE", chip);
  281. send_freq(bitfury->spi, bitfury->slot, bitfury->fasync, bitfury->osc6_bits - 1);
  282. cgsleep_ms(1);
  283. send_freq(bitfury->spi, bitfury->slot, bitfury->fasync, bitfury->osc6_bits);
  284. }
  285. shares_total += shares_found;
  286. shares_first += chip < 4 ? shares_found : 0;
  287. shares_last += chip > 3 ? shares_found : 0;
  288. strange_counter += bitfury->strange_counter;
  289. bitfury->strange_counter = 0;
  290. }
  291. sprintf(line, "vvvvwww SHORT stat %ds: wwwvvvv", short_stat);
  292. applog(LOG_WARNING, "%s", line);
  293. sprintf(line, "stranges: %u", strange_counter);
  294. applog(LOG_WARNING, "%s", line);
  295. for(i = 0; i < 32; i++)
  296. if(strlen(stat_lines[i])) {
  297. len = strlen(stat_lines[i]);
  298. ghsum = 0;
  299. gh1h = 0;
  300. gh2h = 0;
  301. for(k = 0; k < 4; k++) {
  302. gh1h += gh[i][k];
  303. gh2h += gh[i][k+4];
  304. ghsum += gh[i][k] + gh[i][k+4];
  305. }
  306. snprintf(stat_lines[i] + len, LINE_LEN - len, "- %2.1f + %2.1f = %2.1f slot %i ", gh1h, gh2h, ghsum, i);
  307. applog(LOG_WARNING, "%s", stat_lines[i]);
  308. }
  309. sds->short_out_t = now.tv_sec;
  310. }
  311. if (now.tv_sec - sds->long_out_t > long_stat) {
  312. int shares_first = 0, shares_last = 0, shares_total = 0;
  313. char stat_lines[32][LINE_LEN] = {{0}};
  314. int len, k;
  315. double gh[32][8] = {{0}};
  316. double ghsum = 0, gh1h = 0, gh2h = 0;
  317. for (proc = cgpu; proc; proc = proc->next_proc)
  318. {
  319. const int chip = proc->proc_id;
  320. bitfury = proc->device_data;
  321. int shares_found = calc_stat(bitfury->stat_ts, long_stat, now);
  322. double ghash;
  323. len = strlen(stat_lines[bitfury->slot]);
  324. ghash = shares_to_ghashes(shares_found, long_stat);
  325. gh[bitfury->slot][chip & 0x07] = ghash;
  326. snprintf(stat_lines[bitfury->slot] + len, LINE_LEN - len, "%.1f-%3.0f ", ghash, bitfury->mhz);
  327. shares_total += shares_found;
  328. shares_first += chip < 4 ? shares_found : 0;
  329. shares_last += chip > 3 ? shares_found : 0;
  330. }
  331. sprintf(line, "!!!_________ LONG stat %ds: ___________!!!", long_stat);
  332. applog(LOG_WARNING, "%s", line);
  333. for(i = 0; i < 32; i++)
  334. if(strlen(stat_lines[i])) {
  335. len = strlen(stat_lines[i]);
  336. ghsum = 0;
  337. gh1h = 0;
  338. gh2h = 0;
  339. for(k = 0; k < 4; k++) {
  340. gh1h += gh[i][k];
  341. gh2h += gh[i][k+4];
  342. ghsum += gh[i][k] + gh[i][k+4];
  343. }
  344. snprintf(stat_lines[i] + len, LINE_LEN - len, "- %2.1f + %2.1f = %2.1f slot %i ", gh1h, gh2h, ghsum, i);
  345. applog(LOG_WARNING, "%s", stat_lines[i]);
  346. }
  347. sds->long_out_t = now.tv_sec;
  348. }
  349. return 0;
  350. }
  351. double shares_to_ghashes(int shares, int seconds) {
  352. return (double)shares / (double)seconds * 4.84387; //orig: 4.77628
  353. }
  354. int calc_stat(time_t * stat_ts, time_t stat, struct timeval now) {
  355. int j;
  356. int shares_found = 0;
  357. for(j = 0; j < BITFURY_STAT_N; j++) {
  358. if (now.tv_sec - stat_ts[j] < stat) {
  359. shares_found++;
  360. }
  361. }
  362. return shares_found;
  363. }
  364. bool bitfury_prepare(struct thr_info *thr)
  365. {
  366. struct cgpu_info *cgpu = thr->cgpu;
  367. get_now_datestamp(cgpu->init, sizeof(cgpu->init));
  368. applog(LOG_INFO, "INFO bitfury_prepare");
  369. return true;
  370. }
  371. void bitfury_shutdown(struct thr_info *thr) {
  372. struct cgpu_info *cgpu = thr->cgpu, *proc;
  373. struct bitfury_device *bitfury;
  374. applog(LOG_INFO, "INFO bitfury_shutdown");
  375. for (proc = cgpu; proc; proc = proc->next_proc)
  376. {
  377. bitfury = proc->device_data;
  378. send_shutdown(bitfury->spi, bitfury->slot, bitfury->fasync);
  379. }
  380. }
  381. bool bitfury_job_prepare(struct thr_info *thr, struct work *work, __maybe_unused uint64_t max_nonce)
  382. {
  383. struct cgpu_info * const proc = thr->cgpu;
  384. struct bitfury_device * const bitfury = proc->device_data;
  385. if (opt_debug)
  386. {
  387. char hex[153];
  388. bin2hex(hex, &work->data[0], 76);
  389. applog(LOG_DEBUG, "%"PRIpreprv": Preparing work %s",
  390. proc->proc_repr, hex);
  391. }
  392. work_to_payload(&bitfury->payload, work);
  393. payload_to_atrvec(bitfury->atrvec, &bitfury->payload);
  394. work->blk.nonce = 0xffffffff;
  395. return true;
  396. }
  397. static
  398. bool fudge_nonce(struct work * const work, uint32_t *nonce_p) {
  399. static const uint32_t offsets[] = {0, 0xffc00000, 0xff800000, 0x02800000, 0x02C00000, 0x00400000};
  400. uint32_t nonce;
  401. int i;
  402. if (unlikely(!work))
  403. return false;
  404. for (i = 0; i < 6; ++i)
  405. {
  406. nonce = *nonce_p + offsets[i];
  407. if (test_nonce(work, nonce, false))
  408. {
  409. *nonce_p = nonce;
  410. return true;
  411. }
  412. }
  413. return false;
  414. }
  415. void bitfury_noop_job_start(struct thr_info __maybe_unused * const thr)
  416. {
  417. }
  418. // freq_stat->{mh,s} are allocated such that [osc6_min] is the first valid index and [0] falls outside the allocation
  419. void bitfury_init_freq_stat(struct freq_stat * const c, const int osc6_min, const int osc6_max)
  420. {
  421. const int osc6_values = (osc6_max + 1 - osc6_min);
  422. void * const p = calloc(osc6_values, (sizeof(*c->mh) + sizeof(*c->s)));
  423. c->mh = p - (sizeof(*c->mh) * osc6_min);
  424. c->s = p + (sizeof(*c->mh) * osc6_values) - (sizeof(*c->s) * osc6_min);
  425. c->osc6_min = osc6_min;
  426. c->osc6_max = osc6_max;
  427. }
  428. void bitfury_clean_freq_stat(struct freq_stat * const c)
  429. {
  430. free(&c->mh[c->osc6_min]);
  431. }
  432. #define HOP_DONE 600
  433. typedef uint32_t bitfury_inp_t[0x11];
  434. int select_freq(struct bitfury_device *bitfury, struct cgpu_info *proc) {
  435. int freq;
  436. int random;
  437. int i;
  438. bool all_done;
  439. struct freq_stat *c;
  440. c = &bitfury->chip_stat;
  441. if (c->best_done) {
  442. freq = c->best_osc;
  443. } else {
  444. random = (int)(bitfury->mhz * 1000.0) & 1;
  445. freq = (bitfury->osc6_bits == c->osc6_max) ? c->osc6_min : bitfury->osc6_bits + random;
  446. all_done = true;
  447. for (i = c->osc6_min; i <= c->osc6_max; ++i)
  448. if (c->s[i] <= HOP_DONE)
  449. {
  450. all_done = false;
  451. break;
  452. }
  453. if (all_done)
  454. {
  455. double mh_max = 0.0;
  456. for (i = c->osc6_min; i <= c->osc6_max; ++i)
  457. {
  458. const double mh_actual = c->mh[i] / c->s[i];
  459. if (mh_max >= mh_actual)
  460. continue;
  461. mh_max = mh_actual;
  462. freq = i;
  463. }
  464. c->best_done = 1;
  465. c->best_osc = freq;
  466. applog(LOG_DEBUG, "%"PRIpreprv": best_osc = %d",
  467. proc->proc_repr, freq);
  468. }
  469. }
  470. bitfury->osc6_bits = freq;
  471. send_freq(bitfury->spi, bitfury->slot, bitfury->fasync, bitfury->osc6_bits);
  472. return 0;
  473. }
  474. void bitfury_do_io(struct thr_info * const master_thr)
  475. {
  476. struct cgpu_info *proc;
  477. struct thr_info *thr;
  478. struct bitfury_device *bitfury;
  479. struct freq_stat *c;
  480. const uint32_t *inp;
  481. int n, i, j;
  482. bool newjob;
  483. uint32_t nonce;
  484. int n_chips = 0, lastchip = 0;
  485. struct spi_port *spi = NULL;
  486. bool should_be_running;
  487. struct timeval tv_now;
  488. uint32_t counter;
  489. struct timeval tv_stat;
  490. struct timeval tv_diff;
  491. struct timeval tv_period;
  492. tv_period.tv_sec = 60;
  493. tv_period.tv_usec = 0;
  494. for (proc = master_thr->cgpu; proc; proc = proc->next_proc)
  495. ++n_chips;
  496. struct cgpu_info *procs[n_chips];
  497. void *rxbuf[n_chips];
  498. bitfury_inp_t rxbuf_copy[n_chips];
  499. // NOTE: This code assumes:
  500. // 1) that chips on the same SPI bus are grouped together
  501. // 2) that chips are in sequential fasync order
  502. n_chips = 0;
  503. for (proc = master_thr->cgpu; proc; proc = proc->next_proc)
  504. {
  505. thr = proc->thr[0];
  506. bitfury = proc->device_data;
  507. tv_stat = bitfury->tv_stat;
  508. should_be_running = (proc->deven == DEV_ENABLED && !thr->pause);
  509. if (should_be_running)
  510. {
  511. if (spi != bitfury->spi)
  512. {
  513. if (spi)
  514. spi_txrx(spi);
  515. spi = bitfury->spi;
  516. spi_clear_buf(spi);
  517. spi_emit_break(spi);
  518. lastchip = 0;
  519. }
  520. procs[n_chips] = proc;
  521. spi_emit_fasync(spi, bitfury->fasync - lastchip);
  522. lastchip = bitfury->fasync;
  523. rxbuf[n_chips] = spi_emit_data(spi, 0x3000, &bitfury->atrvec[0], 19 * 4);
  524. ++n_chips;
  525. }
  526. else
  527. if (thr->work /* is currently running */ && thr->busy_state != TBS_STARTING_JOB)
  528. ;//FIXME: shutdown chip
  529. }
  530. timer_set_now(&tv_now);
  531. spi_txrx(spi);
  532. for (j = 0; j < n_chips; ++j)
  533. {
  534. memcpy(rxbuf_copy[j], rxbuf[j], 0x11 * 4);
  535. rxbuf[j] = rxbuf_copy[j];
  536. }
  537. for (j = 0; j < n_chips; ++j)
  538. {
  539. proc = procs[j];
  540. thr = proc->thr[0];
  541. bitfury = proc->device_data;
  542. c = &bitfury->chip_stat;
  543. uint32_t * const newbuf = &bitfury->newbuf[0];
  544. uint32_t * const oldbuf = &bitfury->oldbuf[0];
  545. inp = rxbuf[j];
  546. if (unlikely(bitfury->desync_counter == 99))
  547. {
  548. bitfury_init_oldbuf(proc, inp);
  549. goto out;
  550. }
  551. if (opt_debug)
  552. bitfury_debug_nonce_array(proc, "Read", inp);
  553. // To avoid dealing with wrap-around entirely, we rotate array so previous active uint32_t is at index 0
  554. memcpy(&newbuf[0], &inp[bitfury->active], 4 * (0x10 - bitfury->active));
  555. memcpy(&newbuf[0x10 - bitfury->active], &inp[0], 4 * bitfury->active);
  556. newjob = inp[0x10];
  557. if (newbuf[0xf] != oldbuf[0xf])
  558. {
  559. inc_hw_errors2(thr, NULL, NULL);
  560. if (unlikely(++bitfury->desync_counter >= 4))
  561. {
  562. applog(LOG_WARNING, "%"PRIpreprv": Previous nonce mismatch (4th try), recalibrating",
  563. proc->proc_repr);
  564. bitfury_init_oldbuf(proc, inp);
  565. continue;
  566. }
  567. applog(LOG_DEBUG, "%"PRIpreprv": Previous nonce mismatch, ignoring response",
  568. proc->proc_repr);
  569. goto out;
  570. }
  571. else
  572. bitfury->desync_counter = 0;
  573. if (bitfury->oldjob != newjob && thr->next_work)
  574. {
  575. mt_job_transition(thr);
  576. // TODO: Delay morework until right before it's needed
  577. timer_set_now(&thr->tv_morework);
  578. job_start_complete(thr);
  579. }
  580. for (n = 0; newbuf[n] == oldbuf[n]; ++n)
  581. {
  582. if (unlikely(n >= 0xf))
  583. {
  584. inc_hw_errors2(thr, NULL, NULL);
  585. applog(LOG_DEBUG, "%"PRIpreprv": Full result match, reinitialising",
  586. proc->proc_repr);
  587. send_reinit(bitfury->spi, bitfury->slot, bitfury->fasync, bitfury->osc6_bits);
  588. bitfury->desync_counter = 99;
  589. goto out;
  590. }
  591. }
  592. counter = bitfury_decnonce(newbuf[n]);
  593. if ((counter & 0xFFC00000) == 0xdf800000)
  594. {
  595. counter &= 0x003fffff;
  596. int32_t cycles = counter - bitfury->counter1;
  597. if (cycles < 0)
  598. cycles += 0x00400000;
  599. if (cycles & 0x00200000)
  600. {
  601. long long unsigned int period;
  602. double ns;
  603. struct timeval d_time;
  604. timersub(&(tv_now), &(bitfury->timer1), &d_time);
  605. period = timeval_to_us(&d_time) * 1000ULL;
  606. ns = (double)period / (double)(cycles);
  607. bitfury->mhz = 1.0 / ns * 65.0 * 1000.0;
  608. bitfury->counter1 = counter;
  609. copy_time(&(bitfury->timer1), &tv_now);
  610. }
  611. }
  612. if (tv_stat.tv_sec == 0 && tv_stat.tv_usec == 0) {
  613. copy_time(&tv_stat, &tv_now);
  614. }
  615. if (c->osc6_max)
  616. {
  617. timersub(&tv_now, &tv_stat, &tv_diff);
  618. if (time_less(&tv_period, &tv_diff)) {
  619. double mh_diff, s_diff;
  620. const int osc = bitfury->osc6_bits;
  621. applog(LOG_DEBUG, "%"PRIpreprv": total_secs: %f, omh: %f, os: %f",
  622. proc->proc_repr, total_secs, c->omh, c->os);
  623. // Copy current statistics
  624. mh_diff = bitfury->counter2 - c->omh;
  625. s_diff = total_secs - c->os;
  626. if (osc >= c->osc6_min && osc <= c->osc6_max)
  627. {
  628. c->mh[osc] += mh_diff;
  629. c->s[osc] += s_diff;
  630. }
  631. c->omh = bitfury->counter2;
  632. c->os = total_secs;
  633. if (opt_debug && !c->best_done)
  634. {
  635. char logbuf[0x100];
  636. logbuf[0] = '\0';
  637. for (i = c->osc6_min; i <= c->osc6_max; ++i)
  638. tailsprintf(logbuf, sizeof(logbuf), " %d=%.3f/%3.0fs",
  639. i, c->mh[i] / c->s[i], c->s[i]);
  640. applog(LOG_DEBUG, "%"PRIpreprv":%s",
  641. proc->proc_repr, logbuf);
  642. }
  643. // Change freq;
  644. if (!c->best_done) {
  645. select_freq(bitfury, proc);
  646. } else {
  647. applog(LOG_DEBUG, "%"PRIpreprv": Stable freq, osc6_bits: %d",
  648. proc->proc_repr, bitfury->osc6_bits);
  649. }
  650. }
  651. }
  652. if (n)
  653. {
  654. if(proc->device_id == 0 && proc->proc_id == 6) {
  655. applog(LOG_DEBUG, "AAA proc->total_mhashes: %f, total_secs: %f", proc->total_mhashes, total_secs);
  656. }
  657. for (i = 0; i < n; ++i)
  658. {
  659. nonce = bitfury_decnonce(newbuf[i]);
  660. if (fudge_nonce(thr->work, &nonce))
  661. {
  662. applog(LOG_DEBUG, "%"PRIpreprv": nonce %x = %08lx (work=%p)",
  663. proc->proc_repr, i, (unsigned long)nonce, thr->work);
  664. submit_nonce(thr, thr->work, nonce);
  665. bitfury->counter2 += 1;
  666. }
  667. else
  668. if (fudge_nonce(thr->prev_work, &nonce))
  669. {
  670. applog(LOG_DEBUG, "%"PRIpreprv": nonce %x = %08lx (prev work=%p)",
  671. proc->proc_repr, i, (unsigned long)nonce, thr->prev_work);
  672. submit_nonce(thr, thr->prev_work, nonce);
  673. bitfury->counter2 += 1;
  674. }
  675. else
  676. {
  677. inc_hw_errors(thr, thr->work, nonce);
  678. ++bitfury->sample_hwe;
  679. bitfury->strange_counter += 1;
  680. }
  681. if (++bitfury->sample_tot >= 0x40 || bitfury->sample_hwe >= 8)
  682. {
  683. if (bitfury->sample_hwe >= 8)
  684. {
  685. applog(LOG_WARNING, "%"PRIpreprv": %d of the last %d results were bad, reinitialising",
  686. proc->proc_repr, bitfury->sample_hwe, bitfury->sample_tot);
  687. send_reinit(bitfury->spi, bitfury->slot, bitfury->fasync, bitfury->osc6_bits);
  688. bitfury->desync_counter = 99;
  689. }
  690. bitfury->sample_tot = bitfury->sample_hwe = 0;
  691. }
  692. }
  693. bitfury->active = (bitfury->active + n) % 0x10;
  694. }
  695. memcpy(&oldbuf[0], &newbuf[n], 4 * (0x10 - n));
  696. memcpy(&oldbuf[0x10 - n], &newbuf[0], 4 * n);
  697. bitfury->oldjob = newjob;
  698. out:
  699. if (unlikely(bitfury->force_reinit))
  700. {
  701. applog(LOG_DEBUG, "%"PRIpreprv": Forcing reinitialisation",
  702. proc->proc_repr);
  703. send_reinit(bitfury->spi, bitfury->slot, bitfury->fasync, bitfury->osc6_bits);
  704. bitfury->desync_counter = 99;
  705. bitfury->force_reinit = false;
  706. }
  707. }
  708. if (time_less(&tv_period, &tv_diff)) {
  709. copy_time(&tv_stat, &tv_now);
  710. }
  711. timer_set_delay_from_now(&master_thr->tv_poll, 10000);
  712. }
  713. int64_t bitfury_job_process_results(struct thr_info *thr, struct work *work, bool stopping)
  714. {
  715. // Bitfury chips process only 768/1024 of the nonce range
  716. return 0xbd000000;
  717. }
  718. struct api_data *bitfury_api_device_detail(struct cgpu_info * const cgpu)
  719. {
  720. struct bitfury_device * const bitfury = cgpu->device_data;
  721. struct api_data *root = NULL;
  722. root = api_add_uint(root, "fasync", &bitfury->fasync, false);
  723. return root;
  724. }
  725. struct api_data *bitfury_api_device_status(struct cgpu_info * const cgpu)
  726. {
  727. struct bitfury_device * const bitfury = cgpu->device_data;
  728. struct api_data *root = NULL;
  729. int clock_bits = bitfury->osc6_bits;
  730. root = api_add_int(root, "Clock Bits", &clock_bits, true);
  731. root = api_add_freq(root, "Frequency", &bitfury->mhz, false);
  732. return root;
  733. }
  734. static
  735. bool _bitfury_set_device_parse_setting(uint32_t * const rv, char * const setting, char * const replybuf, const int maxval)
  736. {
  737. char *p;
  738. long int nv;
  739. if (!setting || !*setting)
  740. {
  741. sprintf(replybuf, "missing setting");
  742. return false;
  743. }
  744. nv = strtol(setting, &p, 0);
  745. if (nv > maxval || nv < 1)
  746. {
  747. sprintf(replybuf, "invalid setting");
  748. return false;
  749. }
  750. *rv = nv;
  751. return true;
  752. }
  753. char *bitfury_set_device(struct cgpu_info * const proc, char * const option, char * const setting, char * const replybuf)
  754. {
  755. struct bitfury_device * const bitfury = proc->device_data;
  756. uint32_t newval;
  757. if (!strcasecmp(option, "help"))
  758. {
  759. sprintf(replybuf, "baud: SPI baud rate\nosc6_bits: range 1-%d (slow to fast)", BITFURY_MAX_OSC6_BITS);
  760. return replybuf;
  761. }
  762. if (!strcasecmp(option, "baud"))
  763. {
  764. if (!_bitfury_set_device_parse_setting(&bitfury->spi->speed, setting, replybuf, INT_MAX))
  765. return replybuf;
  766. return NULL;
  767. }
  768. if (!strcasecmp(option, "osc6_bits"))
  769. {
  770. newval = bitfury->osc6_bits;
  771. if (!_bitfury_set_device_parse_setting(&newval, setting, replybuf, BITFURY_MAX_OSC6_BITS))
  772. return replybuf;
  773. bitfury->osc6_bits = newval;
  774. bitfury->force_reinit = true;
  775. return NULL;
  776. }
  777. sprintf(replybuf, "Unknown option: %s", option);
  778. return replybuf;
  779. }
  780. #ifdef HAVE_CURSES
  781. void bitfury_tui_wlogprint_choices(struct cgpu_info *cgpu)
  782. {
  783. wlogprint("[O]scillator bits ");
  784. }
  785. const char *bitfury_tui_handle_choice(struct cgpu_info *cgpu, int input)
  786. {
  787. struct bitfury_device * const bitfury = cgpu->device_data;
  788. char buf[0x100];
  789. switch (input)
  790. {
  791. case 'o': case 'O':
  792. {
  793. int val;
  794. char *intvar;
  795. sprintf(buf, "Set oscillator bits (range 1-%d; slow to fast)", BITFURY_MAX_OSC6_BITS);
  796. intvar = curses_input(buf);
  797. if (!intvar)
  798. return "Invalid oscillator bits\n";
  799. val = atoi(intvar);
  800. free(intvar);
  801. if (val < 1 || val > BITFURY_MAX_OSC6_BITS)
  802. return "Invalid oscillator bits\n";
  803. bitfury->osc6_bits = val;
  804. bitfury->force_reinit = true;
  805. return "Oscillator bits changing\n";
  806. }
  807. }
  808. return NULL;
  809. }
  810. void bitfury_wlogprint_status(struct cgpu_info *cgpu)
  811. {
  812. struct bitfury_device * const bitfury = cgpu->device_data;
  813. wlogprint("Oscillator bits: %d\n", bitfury->osc6_bits);
  814. }
  815. #endif
  816. struct device_drv bitfury_drv = {
  817. .dname = "bitfury_gpio",
  818. .name = "BFY",
  819. .drv_detect = bitfury_detect,
  820. .thread_prepare = bitfury_prepare,
  821. .thread_init = bitfury_init,
  822. .queue_full = bitfury_queue_full,
  823. .scanwork = bitfury_scanHash,
  824. .thread_shutdown = bitfury_shutdown,
  825. .minerloop = hash_queued_work,
  826. };