driver-x6500.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. * Copyright 2012 Andrew Smith
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the Free
  7. * Software Foundation; either version 3 of the License, or (at your option)
  8. * any later version. See COPYING for more details.
  9. */
  10. #include "config.h"
  11. #include <limits.h>
  12. #include <math.h>
  13. #include <stdbool.h>
  14. #include <stdint.h>
  15. #include <sys/time.h>
  16. #include <libusb.h>
  17. #include "binloader.h"
  18. #include "compat.h"
  19. #include "deviceapi.h"
  20. #include "dynclock.h"
  21. #include "jtag.h"
  22. #include "logging.h"
  23. #include "miner.h"
  24. #include "ft232r.h"
  25. #include "lowlevel.h"
  26. #include "lowl-usb.h"
  27. #define X6500_USB_PRODUCT "X6500 FPGA Miner"
  28. #define X6500_BITSTREAM_FILENAME "fpgaminer_x6500-overclocker-0402.bit"
  29. // NOTE: X6500_BITSTREAM_USERID is bitflipped
  30. #define X6500_BITSTREAM_USERID "\x40\x20\x24\x42"
  31. #define X6500_MINIMUM_CLOCK 2
  32. #define X6500_DEFAULT_CLOCK 190
  33. #define X6500_MAXIMUM_CLOCK 250
  34. BFG_REGISTER_DRIVER(x6500_api)
  35. #define fromlebytes(ca, j) (ca[j] | (((uint16_t)ca[j+1])<<8) | (((uint32_t)ca[j+2])<<16) | (((uint32_t)ca[j+3])<<24))
  36. static
  37. void int2bits(uint32_t n, uint8_t *b, uint8_t bits)
  38. {
  39. uint8_t i;
  40. for (i = (bits + 7) / 8; i > 0; )
  41. b[--i] = 0;
  42. for (i = 0; i < bits; ++i) {
  43. if (n & 1)
  44. b[i/8] |= 0x80 >> (i % 8);
  45. n >>= 1;
  46. }
  47. }
  48. static
  49. uint32_t bits2int(uint8_t *b, uint8_t bits)
  50. {
  51. uint32_t n, i;
  52. n = 0;
  53. for (i = 0; i < bits; ++i)
  54. if (b[i/8] & (0x80 >> (i % 8)))
  55. n |= 1<<i;
  56. return n;
  57. }
  58. static
  59. void checksum(uint8_t *b, uint8_t bits)
  60. {
  61. uint8_t i;
  62. uint8_t checksum = 1;
  63. for(i = 0; i < bits; ++i)
  64. checksum ^= (b[i/8] & (0x80 >> (i % 8))) ? 1 : 0;
  65. if (checksum)
  66. b[i/8] |= 0x80 >> (i % 8);
  67. }
  68. static
  69. void x6500_jtag_set(struct jtag_port *jp, uint8_t pinoffset)
  70. {
  71. jp->tck = pinoffset << 3;
  72. jp->tms = pinoffset << 2;
  73. jp->tdi = pinoffset << 1;
  74. jp->tdo = pinoffset << 0;
  75. jp->ignored = ~(jp->tdo | jp->tdi | jp->tms | jp->tck);
  76. }
  77. static uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr);
  78. static
  79. void x6500_set_register(struct jtag_port *jp, uint8_t addr, uint32_t nv)
  80. {
  81. uint8_t buf[38];
  82. retry:
  83. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  84. int2bits(nv, &buf[0], 32);
  85. int2bits(addr, &buf[4], 4);
  86. buf[4] |= 8;
  87. checksum(buf, 37);
  88. jtag_write(jp, JTAG_REG_DR, buf, 38);
  89. jtag_run(jp);
  90. #ifdef DEBUG_X6500_SET_REGISTER
  91. if (x6500_get_register(jp, addr) != nv)
  92. #else
  93. if (0)
  94. #endif
  95. {
  96. applog(LOG_WARNING, "x6500_set_register failed %x=%08x", addr, nv);
  97. goto retry;
  98. }
  99. }
  100. static
  101. uint32_t x6500_get_register(struct jtag_port *jp, uint8_t addr)
  102. {
  103. uint8_t buf[4] = {0};
  104. jtag_write(jp, JTAG_REG_IR, "\x40", 6);
  105. int2bits(addr, &buf[0], 4);
  106. checksum(buf, 5);
  107. jtag_write(jp, JTAG_REG_DR, buf, 6);
  108. jtag_read (jp, JTAG_REG_DR, buf, 32);
  109. jtag_reset(jp);
  110. return bits2int(buf, 32);
  111. }
  112. static
  113. bool x6500_lowl_match(const struct lowlevel_device_info * const info)
  114. {
  115. return lowlevel_match_lowlproduct(info, &lowl_ft232r, X6500_USB_PRODUCT);
  116. }
  117. static
  118. bool x6500_lowl_probe(const struct lowlevel_device_info * const info)
  119. {
  120. const char * const product = info->product;
  121. const char * const serial = info->serial;
  122. if (info->lowl != &lowl_ft232r)
  123. {
  124. if (info->lowl != &lowl_usb)
  125. applog(LOG_WARNING, "%s: Matched \"%s\" serial \"%s\", but lowlevel driver is not ft232r!",
  126. __func__, product, serial);
  127. return false;
  128. }
  129. libusb_device * const dev = info->lowl_data;
  130. if (bfg_claim_libusb(&x6500_api, true, dev))
  131. return false;
  132. struct cgpu_info *x6500;
  133. x6500 = calloc(1, sizeof(*x6500));
  134. x6500->drv = &x6500_api;
  135. mutex_init(&x6500->device_mutex);
  136. x6500->device_path = strdup(serial);
  137. x6500->deven = DEV_ENABLED;
  138. x6500->threads = 1;
  139. x6500->procs = 2;
  140. x6500->name = strdup(product);
  141. x6500->cutofftemp = 85;
  142. x6500->device_data = lowlevel_ref(info);
  143. cgpu_copy_libusb_strings(x6500, dev);
  144. return add_cgpu(x6500);
  145. }
  146. static bool x6500_prepare(struct thr_info *thr)
  147. {
  148. struct cgpu_info *x6500 = thr->cgpu;
  149. if (x6500->proc_id)
  150. return true;
  151. struct ft232r_device_handle *ftdi = ft232r_open(x6500->device_data);
  152. lowlevel_devinfo_free(x6500->device_data);
  153. x6500->device_ft232r = NULL;
  154. if (!ftdi)
  155. return false;
  156. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  157. return false;
  158. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  159. return false;
  160. x6500->device_ft232r = ftdi;
  161. struct jtag_port_a *jtag_a;
  162. unsigned char *pdone = calloc(1, sizeof(*jtag_a) + 1);
  163. *pdone = 101;
  164. jtag_a = (void*)(pdone + 1);
  165. jtag_a->ftdi = ftdi;
  166. x6500->device_data = jtag_a;
  167. for (struct cgpu_info *slave = x6500->next_proc; slave; slave = slave->next_proc)
  168. {
  169. slave->device_ft232r = x6500->device_ft232r;
  170. slave->device_data = x6500->device_data;
  171. }
  172. return true;
  173. }
  174. struct x6500_fpga_data {
  175. struct jtag_port jtag;
  176. struct timeval tv_hashstart;
  177. int64_t hashes_left;
  178. struct dclk_data dclk;
  179. uint8_t freqMaxMaxM;
  180. // Time the clock was last reduced due to temperature
  181. struct timeval tv_last_cutoff_reduced;
  182. uint32_t prepwork_last_register;
  183. };
  184. #define bailout2(...) do { \
  185. applog(__VA_ARGS__); \
  186. return false; \
  187. } while(0)
  188. static bool
  189. x6500_fpga_upload_bitstream(struct cgpu_info *x6500, struct jtag_port *jp1)
  190. {
  191. char buf[0x100];
  192. unsigned long len, flen;
  193. unsigned char *pdone = (unsigned char*)x6500->device_data - 1;
  194. struct ft232r_device_handle *ftdi = jp1->a->ftdi;
  195. FILE *f = open_xilinx_bitstream(x6500->drv->dname, x6500->dev_repr, X6500_BITSTREAM_FILENAME, &len);
  196. if (!f)
  197. return false;
  198. flen = len;
  199. applog(LOG_WARNING, "%s: Programming %s...",
  200. x6500->dev_repr, x6500->device_path);
  201. x6500->status = LIFE_INIT2;
  202. // "Magic" jtag_port configured to access both FPGAs concurrently
  203. struct jtag_port jpt = {
  204. .a = jp1->a,
  205. };
  206. struct jtag_port *jp = &jpt;
  207. uint8_t i, j;
  208. x6500_jtag_set(jp, 0x11);
  209. // Need to reset here despite previous FPGA state, since we are programming all at once
  210. jtag_reset(jp);
  211. jtag_write(jp, JTAG_REG_IR, "\xd0", 6); // JPROGRAM
  212. // Poll each FPGA status individually since they might not be ready at the same time
  213. for (j = 0; j < 2; ++j) {
  214. x6500_jtag_set(jp, j ? 0x10 : 1);
  215. do {
  216. i = 0xd0; // Re-set JPROGRAM while reading status
  217. jtag_read(jp, JTAG_REG_IR, &i, 6);
  218. } while (i & 8);
  219. applog(LOG_DEBUG, "%s%c: JPROGRAM ready",
  220. x6500->dev_repr, 'a' + j);
  221. }
  222. x6500_jtag_set(jp, 0x11);
  223. jtag_write(jp, JTAG_REG_IR, "\xa0", 6); // CFG_IN
  224. cgsleep_ms(1000);
  225. if (fread(buf, 32, 1, f) != 1)
  226. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  227. jtag_swrite(jp, JTAG_REG_DR, buf, 256);
  228. len -= 32;
  229. // Put ft232r chip in asynchronous bitbang mode so we don't need to read back tdo
  230. // This takes upload time down from about an hour to about 3 minutes
  231. if (!ft232r_set_bitmode(ftdi, 0xee, 1))
  232. return false;
  233. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  234. return false;
  235. jp->a->bufread = 0;
  236. jp->a->async = true;
  237. ssize_t buflen;
  238. char nextstatus = 25;
  239. while (len) {
  240. buflen = len < 32 ? len : 32;
  241. if (fread(buf, buflen, 1, f) != 1)
  242. bailout2(LOG_ERR, "%s: File underrun programming %s (%lu bytes left)", x6500->dev_repr, x6500->device_path, len);
  243. jtag_swrite_more(jp, buf, buflen * 8, len == (unsigned long)buflen);
  244. *pdone = 100 - ((len * 100) / flen);
  245. if (*pdone >= nextstatus)
  246. {
  247. nextstatus += 25;
  248. applog(LOG_WARNING, "%s: Programming %s... %d%% complete...", x6500->dev_repr, x6500->device_path, *pdone);
  249. }
  250. len -= buflen;
  251. }
  252. // Switch back to synchronous bitbang mode
  253. if (!ft232r_set_bitmode(ftdi, 0xee, 4))
  254. return false;
  255. if (!ft232r_purge_buffers(ftdi, FTDI_PURGE_BOTH))
  256. return false;
  257. jp->a->bufread = 0;
  258. jp->a->async = false;
  259. jp->a->bufread = 0;
  260. jtag_write(jp, JTAG_REG_IR, "\x30", 6); // JSTART
  261. for (i=0; i<16; ++i)
  262. jtag_run(jp);
  263. i = 0xff; // BYPASS
  264. jtag_read(jp, JTAG_REG_IR, &i, 6);
  265. if (!(i & 4))
  266. return false;
  267. applog(LOG_WARNING, "%s: Done programming %s", x6500->dev_repr, x6500->device_path);
  268. *pdone = 101;
  269. return true;
  270. }
  271. static bool x6500_change_clock(struct thr_info *thr, int multiplier)
  272. {
  273. struct x6500_fpga_data *fpga = thr->cgpu_data;
  274. struct jtag_port *jp = &fpga->jtag;
  275. x6500_set_register(jp, 0xD, multiplier * 2);
  276. ft232r_flush(jp->a->ftdi);
  277. fpga->dclk.freqM = multiplier;
  278. return true;
  279. }
  280. static bool x6500_dclk_change_clock(struct thr_info *thr, int multiplier)
  281. {
  282. struct cgpu_info *x6500 = thr->cgpu;
  283. struct x6500_fpga_data *fpga = thr->cgpu_data;
  284. uint8_t oldFreq = fpga->dclk.freqM;
  285. if (!x6500_change_clock(thr, multiplier)) {
  286. return false;
  287. }
  288. dclk_msg_freqchange(x6500->proc_repr, oldFreq * 2, fpga->dclk.freqM * 2, NULL);
  289. return true;
  290. }
  291. static bool x6500_thread_init(struct thr_info *thr)
  292. {
  293. struct cgpu_info *x6500 = thr->cgpu;
  294. struct ft232r_device_handle *ftdi = x6500->device_ft232r;
  295. // Setup mutex request based on notifier and pthread cond
  296. notifier_init(thr->mutex_request);
  297. pthread_cond_init(&x6500->device_cond, NULL);
  298. // This works because x6500_thread_init is only called for the first processor now that they're all using the same thread
  299. for ( ; x6500; x6500 = x6500->next_proc)
  300. {
  301. thr = x6500->thr[0];
  302. struct x6500_fpga_data *fpga;
  303. struct jtag_port *jp;
  304. int fpgaid = x6500->proc_id;
  305. uint8_t pinoffset = fpgaid ? 0x10 : 1;
  306. unsigned char buf[4] = {0};
  307. int i;
  308. if (!ftdi)
  309. return false;
  310. fpga = calloc(1, sizeof(*fpga));
  311. jp = &fpga->jtag;
  312. jp->a = x6500->device_data;
  313. x6500_jtag_set(jp, pinoffset);
  314. thr->cgpu_data = fpga;
  315. x6500->status = LIFE_INIT2;
  316. if (!jtag_reset(jp)) {
  317. applog(LOG_ERR, "%s: JTAG reset failed",
  318. x6500->dev_repr);
  319. return false;
  320. }
  321. i = jtag_detect(jp);
  322. if (i != 1) {
  323. applog(LOG_ERR, "%s: JTAG detect returned %d",
  324. x6500->dev_repr, i);
  325. return false;
  326. }
  327. if (!(1
  328. && jtag_write(jp, JTAG_REG_IR, "\x10", 6)
  329. && jtag_read (jp, JTAG_REG_DR, buf, 32)
  330. && jtag_reset(jp)
  331. )) {
  332. applog(LOG_ERR, "%s: JTAG error reading user code",
  333. x6500->dev_repr);
  334. return false;
  335. }
  336. if (memcmp(buf, X6500_BITSTREAM_USERID, 4)) {
  337. applog(LOG_ERR, "%"PRIprepr": FPGA not programmed",
  338. x6500->proc_repr);
  339. if (!x6500_fpga_upload_bitstream(x6500, jp))
  340. return false;
  341. } else if (opt_force_dev_init && x6500 == x6500->device) {
  342. applog(LOG_DEBUG, "%"PRIprepr": FPGA is already programmed, but --force-dev-init is set",
  343. x6500->proc_repr);
  344. if (!x6500_fpga_upload_bitstream(x6500, jp))
  345. return false;
  346. } else
  347. applog(LOG_DEBUG, "%s"PRIprepr": FPGA is already programmed :)",
  348. x6500->proc_repr);
  349. dclk_prepare(&fpga->dclk);
  350. fpga->dclk.freqMinM = X6500_MINIMUM_CLOCK / 2;
  351. x6500_change_clock(thr, X6500_DEFAULT_CLOCK / 2);
  352. for (i = 0; 0xffffffff != x6500_get_register(jp, 0xE); ++i)
  353. {}
  354. if (i)
  355. applog(LOG_WARNING, "%"PRIprepr": Flushed %d nonces from buffer at init",
  356. x6500->proc_repr, i);
  357. fpga->dclk.minGoodSamples = 3;
  358. fpga->freqMaxMaxM =
  359. fpga->dclk.freqMaxM = X6500_MAXIMUM_CLOCK / 2;
  360. fpga->dclk.freqMDefault = fpga->dclk.freqM;
  361. applog(LOG_WARNING, "%"PRIprepr": Frequency set to %u MHz (range: %u-%u)",
  362. x6500->proc_repr,
  363. fpga->dclk.freqM * 2,
  364. X6500_MINIMUM_CLOCK,
  365. fpga->dclk.freqMaxM * 2);
  366. }
  367. return true;
  368. }
  369. static
  370. void x6500_get_temperature(struct cgpu_info *x6500)
  371. {
  372. struct x6500_fpga_data *fpga = x6500->thr[0]->cgpu_data;
  373. struct jtag_port *jp = &fpga->jtag;
  374. struct ft232r_device_handle *ftdi = jp->a->ftdi;
  375. int i, code[2];
  376. bool sio[2];
  377. code[0] = 0;
  378. code[1] = 0;
  379. ft232r_flush(ftdi);
  380. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  381. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  382. if (!(ft232r_set_cbus_bits(ftdi, false, true))) return;
  383. if (!(ft232r_set_cbus_bits(ftdi, true, true))) return;
  384. if (!(ft232r_set_cbus_bits(ftdi, false, false))) return;
  385. for (i = 16; i--; ) {
  386. if (ft232r_set_cbus_bits(ftdi, true, false)) {
  387. if (!(ft232r_get_cbus_bits(ftdi, &sio[0], &sio[1]))) {
  388. return;
  389. }
  390. } else {
  391. return;
  392. }
  393. code[0] |= sio[0] << i;
  394. code[1] |= sio[1] << i;
  395. if (!ft232r_set_cbus_bits(ftdi, false, false)) {
  396. return;
  397. }
  398. }
  399. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  400. return;
  401. }
  402. if (!(ft232r_set_cbus_bits(ftdi, true, true))) {
  403. return;
  404. }
  405. if (!(ft232r_set_cbus_bits(ftdi, false, true))) {
  406. return;
  407. }
  408. if (!ft232r_set_bitmode(ftdi, 0xee, 4)) {
  409. return;
  410. }
  411. ft232r_purge_buffers(jp->a->ftdi, FTDI_PURGE_BOTH);
  412. jp->a->bufread = 0;
  413. x6500 = x6500->device;
  414. for (i = 0; i < 2; ++i, x6500 = x6500->next_proc) {
  415. struct thr_info *thr = x6500->thr[0];
  416. fpga = thr->cgpu_data;
  417. if (!fpga) continue;
  418. if (code[i] == 0xffff || !code[i]) {
  419. x6500->temp = 0;
  420. continue;
  421. }
  422. if ((code[i] >> 15) & 1)
  423. code[i] -= 0x10000;
  424. x6500->temp = (float)(code[i] >> 2) * 0.03125f;
  425. applog(LOG_DEBUG,"x6500_get_temperature: fpga[%d]->temp=%.1fC",
  426. i, x6500->temp);
  427. int temperature = round(x6500->temp);
  428. if (temperature > x6500->targettemp + opt_hysteresis) {
  429. struct timeval now;
  430. cgtime(&now);
  431. if (timer_elapsed(&fpga->tv_last_cutoff_reduced, &now)) {
  432. fpga->tv_last_cutoff_reduced = now;
  433. int oldFreq = fpga->dclk.freqM;
  434. if (x6500_change_clock(thr, oldFreq - 1))
  435. applog(LOG_NOTICE, "%"PRIprepr": Frequency dropped from %u to %u MHz (temp: %.1fC)",
  436. x6500->proc_repr,
  437. oldFreq * 2, fpga->dclk.freqM * 2,
  438. x6500->temp
  439. );
  440. fpga->dclk.freqMaxM = fpga->dclk.freqM;
  441. }
  442. }
  443. else
  444. if (fpga->dclk.freqMaxM < fpga->freqMaxMaxM && temperature < x6500->targettemp) {
  445. if (temperature < x6500->targettemp - opt_hysteresis) {
  446. fpga->dclk.freqMaxM = fpga->freqMaxMaxM;
  447. } else if (fpga->dclk.freqM == fpga->dclk.freqMaxM) {
  448. ++fpga->dclk.freqMaxM;
  449. }
  450. }
  451. }
  452. }
  453. static
  454. bool x6500_all_idle(struct cgpu_info *any_proc)
  455. {
  456. for (struct cgpu_info *proc = any_proc->device; proc; proc = proc->next_proc)
  457. if (proc->thr[0]->tv_poll.tv_sec != -1 || proc->deven == DEV_ENABLED)
  458. return false;
  459. return true;
  460. }
  461. static bool x6500_get_stats(struct cgpu_info *x6500)
  462. {
  463. if (x6500_all_idle(x6500)) {
  464. struct cgpu_info *cgpu = x6500->device;
  465. // Getting temperature more efficiently while running
  466. pthread_mutex_t *mutexp = &cgpu->device_mutex;
  467. mutex_lock(mutexp);
  468. notifier_wake(cgpu->thr[0]->mutex_request);
  469. pthread_cond_wait(&cgpu->device_cond, mutexp);
  470. x6500_get_temperature(x6500);
  471. pthread_cond_signal(&cgpu->device_cond);
  472. mutex_unlock(mutexp);
  473. }
  474. return true;
  475. }
  476. static
  477. bool get_x6500_upload_percent(char *buf, size_t bufsz, struct cgpu_info *x6500, __maybe_unused bool per_processor)
  478. {
  479. unsigned char pdone = *((unsigned char*)x6500->device_data - 1);
  480. if (pdone != 101) {
  481. tailsprintf(buf, bufsz, "%3d%% ", pdone);
  482. return true;
  483. }
  484. return false;
  485. }
  486. static struct api_data*
  487. get_x6500_api_extra_device_status(struct cgpu_info *x6500)
  488. {
  489. struct api_data *root = NULL;
  490. struct thr_info *thr = x6500->thr[0];
  491. struct x6500_fpga_data *fpga = thr->cgpu_data;
  492. double d;
  493. d = (double)fpga->dclk.freqM * 2;
  494. root = api_add_freq(root, "Frequency", &d, true);
  495. d = (double)fpga->dclk.freqMaxM * 2;
  496. root = api_add_freq(root, "Cool Max Frequency", &d, true);
  497. d = (double)fpga->freqMaxMaxM * 2;
  498. root = api_add_freq(root, "Max Frequency", &d, true);
  499. return root;
  500. }
  501. static
  502. bool x6500_job_prepare(struct thr_info *thr, struct work *work, __maybe_unused uint64_t max_nonce)
  503. {
  504. struct cgpu_info *x6500 = thr->cgpu;
  505. struct x6500_fpga_data *fpga = thr->cgpu_data;
  506. struct jtag_port *jp = &fpga->jtag;
  507. for (int i = 1, j = 0; i < 9; ++i, j += 4)
  508. x6500_set_register(jp, i, fromlebytes(work->midstate, j));
  509. for (int i = 9, j = 64; i < 11; ++i, j += 4)
  510. x6500_set_register(jp, i, fromlebytes(work->data, j));
  511. x6500_get_temperature(x6500);
  512. ft232r_flush(jp->a->ftdi);
  513. fpga->prepwork_last_register = fromlebytes(work->data, 72);
  514. work->blk.nonce = 0xffffffff;
  515. return true;
  516. }
  517. static int64_t calc_hashes(struct thr_info *, struct timeval *);
  518. static
  519. void x6500_job_start(struct thr_info *thr)
  520. {
  521. struct cgpu_info *x6500 = thr->cgpu;
  522. struct x6500_fpga_data *fpga = thr->cgpu_data;
  523. struct jtag_port *jp = &fpga->jtag;
  524. struct timeval tv_now;
  525. if (thr->prev_work)
  526. {
  527. dclk_preUpdate(&fpga->dclk);
  528. dclk_updateFreq(&fpga->dclk, x6500_dclk_change_clock, thr);
  529. }
  530. x6500_set_register(jp, 11, fpga->prepwork_last_register);
  531. ft232r_flush(jp->a->ftdi);
  532. timer_set_now(&tv_now);
  533. if (!thr->prev_work)
  534. fpga->tv_hashstart = tv_now;
  535. else
  536. if (thr->prev_work != thr->work)
  537. calc_hashes(thr, &tv_now);
  538. fpga->hashes_left = 0x100000000;
  539. mt_job_transition(thr);
  540. if (opt_debug) {
  541. char xdata[161];
  542. bin2hex(xdata, thr->work->data, 80);
  543. applog(LOG_DEBUG, "%"PRIprepr": Started work: %s",
  544. x6500->proc_repr, xdata);
  545. }
  546. uint32_t usecs = 0x80000000 / fpga->dclk.freqM;
  547. usecs -= 1000000;
  548. timer_set_delay(&thr->tv_morework, &tv_now, usecs);
  549. timer_set_delay(&thr->tv_poll, &tv_now, 10000);
  550. job_start_complete(thr);
  551. }
  552. static
  553. int64_t calc_hashes(struct thr_info *thr, struct timeval *tv_now)
  554. {
  555. struct x6500_fpga_data *fpga = thr->cgpu_data;
  556. struct timeval tv_delta;
  557. int64_t hashes, hashes_left;
  558. timersub(tv_now, &fpga->tv_hashstart, &tv_delta);
  559. hashes = (((int64_t)tv_delta.tv_sec * 1000000) + tv_delta.tv_usec) * fpga->dclk.freqM * 2;
  560. hashes_left = fpga->hashes_left;
  561. if (unlikely(hashes > hashes_left))
  562. hashes = hashes_left;
  563. fpga->hashes_left -= hashes;
  564. hashes_done(thr, hashes, &tv_delta, NULL);
  565. fpga->tv_hashstart = *tv_now;
  566. return hashes;
  567. }
  568. static
  569. int64_t x6500_process_results(struct thr_info *thr, struct work *work)
  570. {
  571. struct cgpu_info *x6500 = thr->cgpu;
  572. struct x6500_fpga_data *fpga = thr->cgpu_data;
  573. struct jtag_port *jtag = &fpga->jtag;
  574. struct timeval tv_now;
  575. int64_t hashes;
  576. uint32_t nonce;
  577. bool bad;
  578. while (1) {
  579. timer_set_now(&tv_now);
  580. nonce = x6500_get_register(jtag, 0xE);
  581. if (nonce != 0xffffffff) {
  582. bad = !(work && test_nonce(work, nonce, false));
  583. if (!bad) {
  584. submit_nonce(thr, work, nonce);
  585. applog(LOG_DEBUG, "%"PRIprepr": Nonce for current work: %08lx",
  586. x6500->proc_repr,
  587. (unsigned long)nonce);
  588. dclk_gotNonces(&fpga->dclk);
  589. } else if (likely(thr->prev_work) && test_nonce(thr->prev_work, nonce, false)) {
  590. submit_nonce(thr, thr->prev_work, nonce);
  591. applog(LOG_DEBUG, "%"PRIprepr": Nonce for PREVIOUS work: %08lx",
  592. x6500->proc_repr,
  593. (unsigned long)nonce);
  594. } else {
  595. inc_hw_errors(thr, work, nonce);
  596. dclk_gotNonces(&fpga->dclk);
  597. dclk_errorCount(&fpga->dclk, 1.);
  598. }
  599. // Keep reading nonce buffer until it's empty
  600. // This is necessary to avoid getting hw errors from Freq B after we've moved on to Freq A
  601. continue;
  602. }
  603. hashes = calc_hashes(thr, &tv_now);
  604. break;
  605. }
  606. return hashes;
  607. }
  608. static
  609. void x6500_fpga_poll(struct thr_info *thr)
  610. {
  611. struct x6500_fpga_data *fpga = thr->cgpu_data;
  612. x6500_process_results(thr, thr->work);
  613. if (unlikely(!fpga->hashes_left))
  614. {
  615. mt_disable_start(thr);
  616. thr->tv_poll.tv_sec = -1;
  617. }
  618. else
  619. timer_set_delay_from_now(&thr->tv_poll, 10000);
  620. }
  621. static
  622. void x6500_user_set_clock(struct cgpu_info *cgpu, const int val)
  623. {
  624. struct thr_info * const thr = cgpu->thr[0];
  625. struct x6500_fpga_data *fpga = thr->cgpu_data;
  626. const int multiplier = val / 2;
  627. fpga->dclk.freqMDefault = multiplier;
  628. }
  629. static
  630. char *x6500_set_device(struct cgpu_info *cgpu, char *option, char *setting, char *replybuf)
  631. {
  632. int val;
  633. if (strcasecmp(option, "help") == 0) {
  634. sprintf(replybuf, "clock: range %d-%d and a multiple of 2",
  635. X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  636. return replybuf;
  637. }
  638. if (strcasecmp(option, "clock") == 0) {
  639. if (!setting || !*setting) {
  640. sprintf(replybuf, "missing clock setting");
  641. return replybuf;
  642. }
  643. val = atoi(setting);
  644. if (val < X6500_MINIMUM_CLOCK || val > X6500_MAXIMUM_CLOCK || (val & 1) != 0) {
  645. sprintf(replybuf, "invalid clock: '%s' valid range %d-%d and a multiple of 2",
  646. setting, X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  647. return replybuf;
  648. }
  649. x6500_user_set_clock(cgpu, val);
  650. return NULL;
  651. }
  652. sprintf(replybuf, "Unknown option: %s", option);
  653. return replybuf;
  654. }
  655. #ifdef HAVE_CURSES
  656. static
  657. void x6500_tui_wlogprint_choices(struct cgpu_info *cgpu)
  658. {
  659. wlogprint("[C]lock speed ");
  660. }
  661. static
  662. const char *x6500_tui_handle_choice(struct cgpu_info *cgpu, int input)
  663. {
  664. static char buf[0x100]; // Static for replies
  665. switch (input)
  666. {
  667. case 'c': case 'C':
  668. {
  669. int val;
  670. char *intvar;
  671. sprintf(buf, "Set clock speed (range %d-%d, multiple of 2)", X6500_MINIMUM_CLOCK, X6500_MAXIMUM_CLOCK);
  672. intvar = curses_input(buf);
  673. if (!intvar)
  674. return "Invalid clock speed\n";
  675. val = atoi(intvar);
  676. free(intvar);
  677. if (val < X6500_MINIMUM_CLOCK || val > X6500_MAXIMUM_CLOCK || (val & 1) != 0)
  678. return "Invalid clock speed\n";
  679. x6500_user_set_clock(cgpu, val);
  680. return "Clock speed changed\n";
  681. }
  682. }
  683. return NULL;
  684. }
  685. static
  686. void x6500_wlogprint_status(struct cgpu_info *cgpu)
  687. {
  688. struct x6500_fpga_data *fpga = cgpu->thr[0]->cgpu_data;
  689. wlogprint("Clock speed: %d\n", (int)(fpga->dclk.freqM * 2));
  690. }
  691. #endif
  692. struct device_drv x6500_api = {
  693. .dname = "x6500",
  694. .name = "XBS",
  695. .lowl_match = x6500_lowl_match,
  696. .lowl_probe = x6500_lowl_probe,
  697. .thread_prepare = x6500_prepare,
  698. .thread_init = x6500_thread_init,
  699. .get_stats = x6500_get_stats,
  700. .override_statline_temp2 = get_x6500_upload_percent,
  701. .get_api_extra_device_status = get_x6500_api_extra_device_status,
  702. .set_device = x6500_set_device,
  703. #ifdef HAVE_CURSES
  704. .proc_wlogprint_status = x6500_wlogprint_status,
  705. .proc_tui_wlogprint_choices = x6500_tui_wlogprint_choices,
  706. .proc_tui_handle_choice = x6500_tui_handle_choice,
  707. #endif
  708. .poll = x6500_fpga_poll,
  709. .minerloop = minerloop_async,
  710. .job_prepare = x6500_job_prepare,
  711. .job_start = x6500_job_start,
  712. // .thread_shutdown = x6500_fpga_shutdown,
  713. };