| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353 |
- // -ck modified kernel taken from Phoenix taken from poclbm, with aspects of
- // phatk and others.
- // Modified version copyright 2011-2012 Con Kolivas
- // This file is taken and modified from the public-domain poclbm project, and
- // we have therefore decided to keep it public-domain in Phoenix.
- #ifdef VECTORS4
- typedef uint4 u;
- #elif defined VECTORS2
- typedef uint2 u;
- #else
- typedef uint u;
- #endif
- __constant uint K[64] = {
- 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
- 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
- 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
- 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
- 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
- 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
- 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
- 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
- };
- // This part is not from the stock poclbm kernel. It's part of an optimization
- // added in the Phoenix Miner.
- // Some AMD devices have a BFI_INT opcode, which behaves exactly like the
- // SHA-256 ch function, but provides it in exactly one instruction. If
- // detected, use it for ch. Otherwise, construct ch out of simpler logical
- // primitives.
- #ifdef BITALIGN
- #pragma OPENCL EXTENSION cl_amd_media_ops : enable
- #define rotr(x, y) amd_bitalign((u)x, (u)x, (u)y)
- #else
- #define rotr(x, y) rotate((u)x, (u)(32 - y))
- #endif
- #ifdef BFI_INT
- // Well, slight problem... It turns out BFI_INT isn't actually exposed to
- // OpenCL (or CAL IL for that matter) in any way. However, there is
- // a similar instruction, BYTE_ALIGN_INT, which is exposed to OpenCL via
- // amd_bytealign, takes the same inputs, and provides the same output.
- // We can use that as a placeholder for BFI_INT and have the application
- // patch it after compilation.
-
- // This is the BFI_INT function
- #define ch(x, y, z) amd_bytealign(x, y, z)
-
- // Ma can also be implemented in terms of BFI_INT...
- #define Ma(x, y, z) amd_bytealign( (z^x), (y), (x) )
- // AMD's KernelAnalyzer throws errors compiling the kernel if we use
- // amd_bytealign on constants with vectors enabled, so we use this to avoid
- // problems. (this is used 4 times, and likely optimized out by the compiler.)
- #define Ma2(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
- #else // BFI_INT
- //GCN actually fails if manually patched with BFI_INT
- #define ch(x, y, z) bitselect((u)z, (u)y, (u)x)
- #define Ma(x, y, z) bitselect((u)x, (u)y, (u)z ^ (u)x)
- #define Ma2(x, y, z) Ma(x, y, z)
- #endif
- __kernel
- __attribute__((vec_type_hint(u)))
- __attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
- void search(const uint state0, const uint state1, const uint state2, const uint state3,
- const uint state4, const uint state5, const uint state6, const uint state7,
- const uint b1, const uint c1,
- const uint f1, const uint g1, const uint h1,
- #ifndef GOFFSET
- const u base,
- #endif
- const uint fw0, const uint fw1, const uint fw2, const uint fw3, const uint fw15, const uint fw01r,
- const uint D1A, const uint C1addK5, const uint B1addK6,
- const uint W16addK16, const uint W17addK17,
- const uint PreVal4addT1, const uint Preval0,
- __global uint * output)
- {
- u Vals[24];
- u *W = &Vals[8];
- #ifdef GOFFSET
- const u nonce = (uint)(get_global_id(0));
- #else
- const u nonce = base + (uint)(get_global_id(0));
- #endif
- Vals[5]=Preval0;
- Vals[5]+=nonce;
- Vals[0]=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],b1,c1);
- Vals[0]+=D1A;
- Vals[2]=Vals[0];
- Vals[2]+=h1;
- Vals[1]=PreVal4addT1;
- Vals[1]+=nonce;
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[6]=C1addK5;
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],b1);
- Vals[3]=Vals[6];
- Vals[3]+=g1;
- Vals[0]+=Ma2(g1,Vals[1],f1);
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma2(f1,Vals[0],Vals[1]);
- Vals[7]=B1addK6;
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[4]=Vals[7];
- Vals[4]+=f1;
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[7];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[8];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[9];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[10];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[11];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[12];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[13];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[14];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=0xC19BF3F4U;
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=W16addK16;
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=W17addK17;
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
- W[2]+=fw2;
- Vals[4]+=W[2];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[18];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[3]=nonce;
- W[3]+=fw3;
- Vals[1]+=W[3];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[19];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- W[4]+=0x80000000U;
- Vals[0]+=W[4];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[20];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[6]+=W[5];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[21];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- W[6]+=0x00000280U;
- Vals[7]+=W[6];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[22];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- W[7]+=fw0;
- Vals[5]+=W[7];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[23];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- W[8]+=fw1;
- Vals[2]+=W[8];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[24];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[9]=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[3]+=W[9];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[25];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[10]=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[4]+=W[10];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[26];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[11]=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[1]+=W[11];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[27];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[12]=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[0]+=W[12];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[28];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[13]=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[6]+=W[13];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[29];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[14]=0x00a00055U;
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[7]+=W[14];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[30];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[15]=fw15;
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[5]+=W[15];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[31];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[0]=fw01r;
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[2]+=W[0];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[32];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[1]=fw1;
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[3]+=W[1];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[33];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[4]+=W[2];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[34];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[1]+=W[3];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[35];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[0]+=W[4];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[36];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[6]+=W[5];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[37];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[7]+=W[6];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[38];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[5]+=W[7];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[39];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[2]+=W[8];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[40];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[3]+=W[9];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[41];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[4]+=W[10];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[42];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[1]+=W[11];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[43];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[0]+=W[12];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[44];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[6]+=W[13];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[45];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[7]+=W[14];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[46];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[5]+=W[15];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[47];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[2]+=W[0];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[48];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[3]+=W[1];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[49];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[4]+=W[2];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[50];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[1]+=W[3];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[51];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[0]+=W[4];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[52];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[6]+=W[5];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[53];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[7]+=W[6];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[54];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[5]+=W[7];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[55];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[2]+=W[8];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[56];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[3]+=W[9];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[57];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[4]+=W[10];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[58];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[1]+=W[11];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[59];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[0]+=W[12];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[60];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[6]+=W[13];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[61];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- Vals[7]+=W[14];
- Vals[7]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- Vals[7]+=W[7];
- Vals[7]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[62];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- Vals[5]+=W[15];
- Vals[5]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- Vals[5]+=W[8];
- Vals[5]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[63];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- Vals[5]+=state0;
- W[7]=state7;
- W[7]+=Vals[2];
- Vals[2]=0xF377ED68U;
- Vals[2]+=Vals[5];
- W[3]=state3;
- W[3]+=Vals[0];
- Vals[0]=0xa54ff53aU;
- Vals[0]+=Vals[2];
- Vals[2]+=0x08909ae5U;
- W[6]=state6;
- W[6]+=Vals[3];
- Vals[3]=0x90BB1E3CU;
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=(0x9b05688cU^(Vals[0]&0xca0b3af3U));
- Vals[7]+=state1;
- Vals[3]+=Vals[7];
- W[2]=state2;
- W[2]+=Vals[6];
- Vals[6]=0x3c6ef372U;
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma2(0xbb67ae85U,Vals[2],0x6a09e667U);
- W[5]=state5;
- W[5]+=Vals[4];
- Vals[4]=0x50C6645BU;
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],0x510e527fU);
- Vals[4]+=W[2];
- W[1]=Vals[7];
- Vals[7]=0xbb67ae85U;
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma2(0x6a09e667U,Vals[3],Vals[2]);
- W[4]=state4;
- W[4]+=Vals[1];
- Vals[1]=0x3AC42E24U;
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=W[3];
- W[0]=Vals[5];
- Vals[5]=Vals[1];
- Vals[5]+=0x6a09e667U;
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[4];
- Vals[0]+=W[4];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[5];
- Vals[6]+=W[5];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[6];
- Vals[7]+=W[6];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[7];
- Vals[5]+=W[7];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=0x5807AA98U;
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[9];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[10];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[11];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[12];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[13];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[14];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=0xC19BF274U;
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- Vals[2]+=W[0];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[16];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=0x00a00000U;
- Vals[3]+=W[1];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[17];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[4]+=W[2];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[18];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[1]+=W[3];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[19];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[0]+=W[4];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[20];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[6]+=W[5];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[21];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=0x00000100U;
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[7]+=W[6];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[22];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[7]+=0x11002000U;
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[5]+=W[7];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[23];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[8]=0x80000000U;
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[2]+=W[8];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[24];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[9]=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[3]+=W[9];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[25];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[10]=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[4]+=W[10];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[26];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[11]=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[1]+=W[11];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[27];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[12]=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[0]+=W[12];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[28];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[13]=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[6]+=W[13];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[29];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[14]=0x00400022U;
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[7]+=W[14];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[30];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[15]=0x00000100U;
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[5]+=W[15];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[31];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[2]+=W[0];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[32];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[3]+=W[1];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[33];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[4]+=W[2];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[34];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[1]+=W[3];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[35];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[0]+=W[4];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[36];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[6]+=W[5];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[37];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[7]+=W[6];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[38];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[5]+=W[7];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[39];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[2]+=W[8];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[40];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[3]+=W[9];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[41];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[4]+=W[10];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[42];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- W[11]+=W[4];
- W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[1]+=W[11];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[43];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- W[12]+=W[5];
- W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[0]+=W[12];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[44];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
- W[13]+=W[6];
- W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
- Vals[6]+=W[13];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[45];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
- W[14]+=W[7];
- W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
- Vals[7]+=W[14];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[46];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
- W[15]+=W[8];
- W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
- Vals[5]+=W[15];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[47];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
- W[0]+=W[9];
- W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
- Vals[2]+=W[0];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[48];
- Vals[0]+=Vals[2];
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
- W[1]+=W[10];
- W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
- Vals[3]+=W[1];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[49];
- Vals[6]+=Vals[3];
- Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
- Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
- W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
- W[2]+=W[11];
- W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
- Vals[4]+=W[2];
- Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
- Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
- Vals[4]+=K[50];
- Vals[7]+=Vals[4];
- Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
- Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
- W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
- W[3]+=W[12];
- W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
- Vals[1]+=W[3];
- Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
- Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
- Vals[1]+=K[51];
- Vals[5]+=Vals[1];
- Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
- Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
- W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
- W[4]+=W[13];
- W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
- Vals[0]+=W[4];
- Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
- Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
- Vals[0]+=K[52];
- Vals[2]+=Vals[0];
- Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
- Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
- W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
- W[5]+=W[14];
- W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
- Vals[6]+=W[5];
- Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
- Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
- Vals[6]+=K[53];
- Vals[3]+=Vals[6];
- Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
- Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
- W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
- W[6]+=W[15];
- W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
- Vals[7]+=W[6];
- Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
- Vals[7]+=K[54];
- Vals[4]+=Vals[7];
- Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
- Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
- W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
- W[7]+=W[0];
- W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
- Vals[5]+=W[7];
- Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
- Vals[5]+=K[55];
- Vals[1]+=Vals[5];
- Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
- Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
- W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
- W[8]+=W[1];
- W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
- Vals[2]+=W[8];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- Vals[2]+=K[56];
- Vals[0]+=Vals[2];
- W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
- W[9]+=W[2];
- W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
- Vals[3]+=W[9];
- Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
- Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
- Vals[3]+=K[57];
- Vals[3]+=Vals[6];
- W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
- W[10]+=W[3];
- W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
- Vals[4]+=W[10];
- Vals[4]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
- Vals[4]+=ch(Vals[3],Vals[0],Vals[1]);
- Vals[4]+=K[58];
- Vals[4]+=Vals[7];
- Vals[1]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
- Vals[1]+=ch(Vals[4],Vals[3],Vals[0]);
- Vals[1]+=W[11];
- Vals[1]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
- Vals[1]+=W[4];
- Vals[1]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
- Vals[1]+=K[59];
- Vals[1]+=Vals[5];
- #define FOUND (0x800)
- #define NFLAG (0x7FF)
- #if defined(VECTORS2) || defined(VECTORS4)
- Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
- Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
- Vals[2]+=W[12];
- Vals[2]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
- Vals[2]+=W[5];
- Vals[2]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
- Vals[2]+=Vals[0];
- Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
- Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
- if (any(Vals[2] == 0x136032edU)) {
- if (Vals[2].x == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
- if (Vals[2].y == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
- #if defined(VECTORS4)
- if (Vals[2].z == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
- if (Vals[2].w == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
- #endif
- }
- #else
- if ((Vals[2]+
- Ma(Vals[6],Vals[5],Vals[7])+
- (rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22))+
- W[12]+
- (rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+
- W[5]+
- (rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+
- Vals[0]+
- (rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25))+
- ch(Vals[1],Vals[4],Vals[3])) == 0x136032edU)
- output[FOUND] = output[NFLAG & nonce] = nonce;
- #endif
- }
|