ft232r.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <errno.h>
  11. #include <stdbool.h>
  12. #include <stdint.h>
  13. #include <string.h>
  14. #include <libusb.h>
  15. #include "compat.h"
  16. #include "ft232r.h"
  17. #include "logging.h"
  18. #include "lowlevel.h"
  19. #include "miner.h"
  20. #define FT232R_IDVENDOR 0x0403
  21. #define FT232R_IDPRODUCT 0x6001
  22. static
  23. void ft232r_devinfo_free(struct lowlevel_device_info * const info)
  24. {
  25. libusb_device * const dev = info->lowl_data;
  26. if (dev)
  27. libusb_unref_device(dev);
  28. }
  29. static
  30. bool _ft232r_devinfo_scan_cb(struct lowlevel_device_info * const usbinfo, void * const userp)
  31. {
  32. struct lowlevel_device_info **devinfo_list_p = userp, *info;
  33. info = malloc(sizeof(*info));
  34. *info = (struct lowlevel_device_info){
  35. .lowl = &lowl_ft232r,
  36. .lowl_data = libusb_ref_device(usbinfo->lowl_data),
  37. };
  38. lowlevel_devinfo_semicpy(info, usbinfo);
  39. LL_PREPEND(*devinfo_list_p, info);
  40. // Never *consume* the lowl_usb entry - especially since this is during the scan!
  41. return false;
  42. }
  43. static
  44. struct lowlevel_device_info *ft232r_devinfo_scan()
  45. {
  46. struct lowlevel_device_info *devinfo_list = NULL;
  47. lowlevel_detect_id(_ft232r_devinfo_scan_cb, &devinfo_list, &lowl_usb, FT232R_IDVENDOR, FT232R_IDPRODUCT);
  48. return devinfo_list;
  49. }
  50. #define FTDI_REQTYPE (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
  51. #define FTDI_REQTYPE_IN (FTDI_REQTYPE | LIBUSB_ENDPOINT_IN)
  52. #define FTDI_REQTYPE_OUT (FTDI_REQTYPE | LIBUSB_ENDPOINT_OUT)
  53. #define FTDI_REQUEST_RESET 0
  54. #define FTDI_REQUEST_SET_BAUDRATE 3
  55. #define FTDI_REQUEST_SET_BITMODE 0x0b
  56. #define FTDI_REQUEST_GET_PINS 0x0c
  57. #define FTDI_REQUEST_GET_BITMODE 0x0c
  58. #define FTDI_BAUDRATE_3M 0,0
  59. #define FTDI_INDEX 1
  60. #define FTDI_TIMEOUT 1000
  61. struct ft232r_device_handle {
  62. libusb_device_handle *h;
  63. uint8_t i;
  64. uint8_t o;
  65. int iPktSz;
  66. unsigned char ibuf[0x400];
  67. int ibufLen;
  68. uint16_t osz;
  69. unsigned char *obuf;
  70. uint16_t obufsz;
  71. };
  72. struct ft232r_device_handle *ft232r_open(const struct lowlevel_device_info * const info)
  73. {
  74. libusb_device * const dev = info->lowl_data;
  75. // FIXME: Cleanup on errors
  76. libusb_device_handle *devh;
  77. struct ft232r_device_handle *ftdi;
  78. if (libusb_open(dev, &devh)) {
  79. applog(LOG_ERR, "ft232r_open: Error opening device");
  80. return NULL;
  81. }
  82. libusb_reset_device(devh);
  83. libusb_detach_kernel_driver(devh, 0);
  84. if (libusb_set_configuration(devh, 1)) {
  85. applog(LOG_ERR, "ft232r_open: Error setting configuration");
  86. return NULL;
  87. }
  88. if (libusb_claim_interface(devh, 0)) {
  89. applog(LOG_ERR, "ft232r_open: Error claiming interface");
  90. return NULL;
  91. }
  92. if (libusb_control_transfer(devh, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BAUDRATE, FTDI_BAUDRATE_3M, NULL, 0, FTDI_TIMEOUT) < 0) {
  93. applog(LOG_ERR, "ft232r_open: Error performing control transfer");
  94. return NULL;
  95. }
  96. struct libusb_config_descriptor *cfg;
  97. if (libusb_get_config_descriptor(dev, 0, &cfg)) {
  98. applog(LOG_ERR, "ft232r_open: Error getting config descriptor");
  99. return NULL;
  100. }
  101. const struct libusb_interface_descriptor *altcfg = &cfg->interface[0].altsetting[0];
  102. if (altcfg->bNumEndpoints < 2) {
  103. applog(LOG_ERR, "ft232r_open: Too few endpoints");
  104. return NULL;
  105. }
  106. ftdi = calloc(1, sizeof(*ftdi));
  107. ftdi->h = devh;
  108. ftdi->i = altcfg->endpoint[0].bEndpointAddress;
  109. ftdi->iPktSz = altcfg->endpoint[0].wMaxPacketSize;
  110. ftdi->o = altcfg->endpoint[1].bEndpointAddress;
  111. ftdi->osz = 0x1000;
  112. ftdi->obuf = malloc(ftdi->osz);
  113. libusb_free_config_descriptor(cfg);
  114. return ftdi;
  115. }
  116. void ft232r_close(struct ft232r_device_handle *dev)
  117. {
  118. libusb_release_interface(dev->h, 0);
  119. libusb_reset_device(dev->h);
  120. libusb_close(dev->h);
  121. }
  122. bool ft232r_purge_buffers(struct ft232r_device_handle *dev, enum ft232r_reset_purge purge)
  123. {
  124. if (ft232r_flush(dev) < 0)
  125. return false;
  126. if (purge & FTDI_PURGE_RX) {
  127. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_RX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  128. return false;
  129. dev->ibufLen = 0;
  130. }
  131. if (purge & FTDI_PURGE_TX)
  132. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_TX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  133. return false;
  134. return true;
  135. }
  136. bool ft232r_set_bitmode(struct ft232r_device_handle *dev, uint8_t mask, uint8_t mode)
  137. {
  138. if (ft232r_flush(dev) < 0)
  139. return false;
  140. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  141. return false;
  142. return !libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, (mode << 8) | mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT);
  143. }
  144. static ssize_t ft232r_readwrite(struct ft232r_device_handle *dev, unsigned char endpoint, void *data, size_t count)
  145. {
  146. int transferred;
  147. switch (libusb_bulk_transfer(dev->h, endpoint, data, count, &transferred, FTDI_TIMEOUT)) {
  148. case LIBUSB_ERROR_TIMEOUT:
  149. if (!transferred) {
  150. errno = ETIMEDOUT;
  151. return -1;
  152. }
  153. case 0:
  154. return transferred;
  155. default:
  156. errno = EIO;
  157. return -1;
  158. }
  159. }
  160. ssize_t ft232r_flush(struct ft232r_device_handle *dev)
  161. {
  162. if (!dev->obufsz)
  163. return 0;
  164. ssize_t r = ft232r_readwrite(dev, dev->o, dev->obuf, dev->obufsz);
  165. if (r == dev->obufsz) {
  166. dev->obufsz = 0;
  167. } else if (r > 0) {
  168. dev->obufsz -= r;
  169. memmove(dev->obuf, &dev->obuf[r], dev->obufsz);
  170. }
  171. return r;
  172. }
  173. ssize_t ft232r_write(struct ft232r_device_handle * const dev, const void * const data, const size_t count)
  174. {
  175. uint16_t bufleft;
  176. ssize_t r;
  177. bufleft = dev->osz - dev->obufsz;
  178. if (count < bufleft) {
  179. // Just add to output buffer
  180. memcpy(&dev->obuf[dev->obufsz], data, count);
  181. dev->obufsz += count;
  182. return count;
  183. }
  184. // Fill up buffer and flush
  185. memcpy(&dev->obuf[dev->obufsz], data, bufleft);
  186. dev->obufsz += bufleft;
  187. r = ft232r_flush(dev);
  188. if (unlikely(r <= 0)) {
  189. // In this case, no bytes were written supposedly, so remove this data from buffer
  190. dev->obufsz -= bufleft;
  191. return r;
  192. }
  193. // Even if not all <bufleft> bytes from this write got out, the remaining are still buffered
  194. return bufleft;
  195. }
  196. typedef ssize_t (*ft232r_rwfunc_t)(struct ft232r_device_handle *, void*, size_t);
  197. static
  198. ssize_t ft232r_rw_all(const void * const rwfunc_p, struct ft232r_device_handle * const dev, void * const data, size_t count)
  199. {
  200. ft232r_rwfunc_t rwfunc = rwfunc_p;
  201. char *p = data;
  202. ssize_t writ = 0, total = 0;
  203. while (count && (writ = rwfunc(dev, p, count)) > 0) {
  204. p += writ;
  205. count -= writ;
  206. total += writ;
  207. }
  208. return total ?: writ;
  209. }
  210. ssize_t ft232r_write_all(struct ft232r_device_handle * const dev, const void * const data, size_t count)
  211. {
  212. return ft232r_rw_all(ft232r_write, dev, (void*)data, count);
  213. }
  214. ssize_t ft232r_read(struct ft232r_device_handle *dev, void *data, size_t count)
  215. {
  216. ssize_t r;
  217. int adj;
  218. // Flush any pending output before reading
  219. r = ft232r_flush(dev);
  220. if (r < 0)
  221. return r;
  222. // First 2 bytes of every packet are FTDI status or something
  223. while (dev->ibufLen <= 2) {
  224. // TODO: Implement a timeout for status byte repeating
  225. int transferred = ft232r_readwrite(dev, dev->i, dev->ibuf, sizeof(dev->ibuf));
  226. if (transferred <= 0)
  227. return transferred;
  228. dev->ibufLen = transferred;
  229. for (adj = dev->iPktSz; dev->ibufLen > adj; adj += dev->iPktSz - 2) {
  230. dev->ibufLen -= 2;
  231. memmove(&dev->ibuf[adj], &dev->ibuf[adj+2], dev->ibufLen - adj);
  232. }
  233. }
  234. unsigned char *ibufs = &dev->ibuf[2];
  235. size_t ibufsLen = dev->ibufLen - 2;
  236. if (count > ibufsLen)
  237. count = ibufsLen;
  238. memcpy(data, ibufs, count);
  239. dev->ibufLen -= count;
  240. ibufsLen -= count;
  241. if (ibufsLen) {
  242. memmove(ibufs, &ibufs[count], ibufsLen);
  243. applog(LOG_DEBUG, "ft232r_read: %"PRIu64" bytes extra", (uint64_t)ibufsLen);
  244. }
  245. return count;
  246. }
  247. ssize_t ft232r_read_all(struct ft232r_device_handle *dev, void *data, size_t count)
  248. {
  249. return ft232r_rw_all(ft232r_read, dev, data, count);
  250. }
  251. bool ft232r_get_pins(struct ft232r_device_handle *dev, uint8_t *pins)
  252. {
  253. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_PINS, 0, FTDI_INDEX, pins, 1, FTDI_TIMEOUT) == 1;
  254. }
  255. bool ft232r_get_bitmode(struct ft232r_device_handle *dev, uint8_t *out_mode)
  256. {
  257. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_BITMODE, 0, FTDI_INDEX, out_mode, 1, FTDI_TIMEOUT) == 1;
  258. }
  259. bool ft232r_set_cbus_bits(struct ft232r_device_handle *dev, bool sc, bool cs)
  260. {
  261. uint8_t pin_state = (cs ? (1<<2) : 0)
  262. | (sc ? (1<<3) : 0);
  263. return ft232r_set_bitmode(dev, 0xc0 | pin_state, 0x20);
  264. }
  265. bool ft232r_get_cbus_bits(struct ft232r_device_handle *dev, bool *out_sio0, bool *out_sio1)
  266. {
  267. uint8_t data;
  268. if (!ft232r_get_bitmode(dev, &data))
  269. return false;
  270. *out_sio0 = data & 1;
  271. *out_sio1 = data & 2;
  272. return true;
  273. }
  274. struct lowlevel_driver lowl_ft232r = {
  275. .dname = "ft232r",
  276. .devinfo_scan = ft232r_devinfo_scan,
  277. .devinfo_free = ft232r_devinfo_free,
  278. };
  279. #if 0
  280. int main() {
  281. libusb_init(NULL);
  282. ft232r_scan();
  283. ft232r_scan_free();
  284. libusb_exit(NULL);
  285. }
  286. void applog(int prio, const char *fmt, ...)
  287. {
  288. va_list ap;
  289. va_start(ap, fmt);
  290. vprintf(fmt, ap);
  291. puts("");
  292. va_end(ap);
  293. }
  294. #endif