driver-avalonmm.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. * Copyright 2014-2016 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <stdbool.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <unistd.h>
  15. #include <utlist.h>
  16. #include "deviceapi.h"
  17. #include "logging.h"
  18. #include "lowlevel.h"
  19. #include "lowl-vcom.h"
  20. #include "miner.h"
  21. #include "util.h"
  22. #include "work2d.h"
  23. #define AVALONMM_MAX_MODULES 4
  24. #define AVALONMM_MAX_COINBASE_SIZE (6 * 1024)
  25. #define AVALONMM_MAX_MERKLES 20
  26. #define AVALONMM_MAX_NONCE_DIFF 0x20
  27. // Must be a power of two
  28. #define AVALONMM_CACHED_JOBS 2
  29. #define AVALONMM_NONCE_OFFSET 0x180
  30. BFG_REGISTER_DRIVER(avalonmm_drv)
  31. static const struct bfg_set_device_definition avalonmm_set_device_funcs[];
  32. #define AVALONMM_PKT_DATA_SIZE 0x20
  33. #define AVALONMM_PKT_SIZE (AVALONMM_PKT_DATA_SIZE + 7)
  34. enum avalonmm_cmd {
  35. AMC_DETECT = 0x0a,
  36. AMC_NEW_JOB = 0x0b,
  37. AMC_JOB_ID = 0x0c,
  38. AMC_COINBASE = 0x0d,
  39. AMC_MERKLES = 0x0e,
  40. AMC_BLKHDR = 0x0f,
  41. AMC_POLL = 0x10,
  42. AMC_TARGET = 0x11,
  43. AMC_START = 0x13,
  44. };
  45. enum avalonmm_reply {
  46. AMR_NONCE = 0x17,
  47. AMR_STATUS = 0x18,
  48. AMR_DETECT_ACK = 0x19,
  49. };
  50. static
  51. bool avalonmm_write_cmd(const int fd, const enum avalonmm_cmd cmd, const void *data, size_t datasz)
  52. {
  53. uint8_t packets = ((datasz + AVALONMM_PKT_DATA_SIZE - 1) / AVALONMM_PKT_DATA_SIZE) ?: 1;
  54. uint8_t pkt[AVALONMM_PKT_SIZE] = {'A', 'V', cmd, 1, packets};
  55. uint16_t crc;
  56. ssize_t r;
  57. while (true)
  58. {
  59. size_t copysz = AVALONMM_PKT_DATA_SIZE;
  60. if (datasz < copysz)
  61. {
  62. copysz = datasz;
  63. memset(&pkt[5 + copysz], '\0', AVALONMM_PKT_DATA_SIZE - copysz);
  64. }
  65. if (copysz)
  66. memcpy(&pkt[5], data, copysz);
  67. crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  68. pk_u16be(pkt, 5 + AVALONMM_PKT_DATA_SIZE, crc);
  69. r = write(fd, pkt, sizeof(pkt));
  70. if (opt_dev_protocol)
  71. {
  72. char hex[(sizeof(pkt) * 2) + 1];
  73. bin2hex(hex, pkt, sizeof(pkt));
  74. applog(LOG_DEBUG, "DEVPROTO fd=%d SEND: %s => %d", fd, hex, (int)r);
  75. }
  76. if (sizeof(pkt) != r)
  77. return false;
  78. datasz -= copysz;
  79. if (!datasz)
  80. break;
  81. data += copysz;
  82. ++pkt[3];
  83. }
  84. return true;
  85. }
  86. static
  87. ssize_t avalonmm_read(const int fd, const int logprio, enum avalonmm_reply *out_reply, void * const bufp, size_t bufsz)
  88. {
  89. uint8_t *buf = bufp;
  90. uint8_t pkt[AVALONMM_PKT_SIZE];
  91. uint8_t packets = 0, got = 0;
  92. uint16_t good_crc, actual_crc;
  93. ssize_t r;
  94. while (true)
  95. {
  96. r = serial_read(fd, pkt, sizeof(pkt));
  97. if (opt_dev_protocol)
  98. {
  99. if (r >= 0)
  100. {
  101. char hex[(r * 2) + 1];
  102. bin2hex(hex, pkt, r);
  103. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV: %s", fd, hex);
  104. }
  105. else
  106. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV (%d)", fd, (int)r);
  107. }
  108. if (r != sizeof(pkt))
  109. return -1;
  110. if (memcmp(pkt, "AV", 2))
  111. applogr(-1, logprio, "%s: bad header", __func__);
  112. good_crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  113. actual_crc = upk_u16le(pkt, 5 + AVALONMM_PKT_DATA_SIZE);
  114. if (good_crc != actual_crc)
  115. applogr(-1, logprio, "%s: bad CRC (good=%04x actual=%04x)", __func__, good_crc, actual_crc);
  116. *out_reply = pkt[2];
  117. if (!got)
  118. {
  119. if (pkt[3] != 1)
  120. applogr(-1, logprio, "%s: first packet is not index 1", __func__);
  121. ++got;
  122. packets = pkt[4];
  123. }
  124. else
  125. {
  126. if (pkt[3] != ++got)
  127. applogr(-1, logprio, "%s: packet %d is not index %d", __func__, got, got);
  128. if (pkt[4] != packets)
  129. applogr(-1, logprio, "%s: packet %d total packet count is %d rather than original value of %d", __func__, got, pkt[4], packets);
  130. }
  131. if (bufsz)
  132. {
  133. if (likely(bufsz > AVALONMM_PKT_DATA_SIZE))
  134. {
  135. memcpy(buf, &pkt[5], AVALONMM_PKT_DATA_SIZE);
  136. bufsz -= AVALONMM_PKT_DATA_SIZE;
  137. buf += AVALONMM_PKT_DATA_SIZE;
  138. }
  139. else
  140. {
  141. memcpy(buf, &pkt[5], bufsz);
  142. bufsz = 0;
  143. }
  144. }
  145. if (got == packets)
  146. break;
  147. }
  148. return (((ssize_t)got) * AVALONMM_PKT_DATA_SIZE);
  149. }
  150. struct avalonmm_init_data {
  151. int module_id;
  152. uint32_t mmversion;
  153. };
  154. static
  155. bool avalonmm_detect_one(const char * const devpath)
  156. {
  157. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  158. enum avalonmm_reply reply;
  159. const int fd = serial_open(devpath, 115200, 1, true);
  160. struct cgpu_info *prev_cgpu = NULL;
  161. if (fd == -1)
  162. applogr(false, LOG_DEBUG, "%s: Failed to open %s", __func__, devpath);
  163. for (int i = 0; i < AVALONMM_MAX_MODULES; ++i)
  164. {
  165. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, i);
  166. avalonmm_write_cmd(fd, AMC_DETECT, buf, AVALONMM_PKT_DATA_SIZE);
  167. }
  168. while (avalonmm_read(fd, LOG_DEBUG, &reply, buf, AVALONMM_PKT_DATA_SIZE) > 0)
  169. {
  170. if (reply != AMR_DETECT_ACK)
  171. continue;
  172. int moduleno = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  173. uint32_t mmversion;
  174. {
  175. char mmver[5];
  176. memcpy(mmver, buf, 4);
  177. mmver[4] = '\0';
  178. mmversion = atol(mmver);
  179. }
  180. if (!prev_cgpu)
  181. {
  182. if (serial_claim_v(devpath, &avalonmm_drv))
  183. {
  184. serial_close(fd);
  185. return false;
  186. }
  187. }
  188. struct avalonmm_init_data * const initdata = malloc(sizeof(*initdata));
  189. *initdata = (struct avalonmm_init_data){
  190. .module_id = moduleno,
  191. .mmversion = mmversion,
  192. };
  193. struct cgpu_info * const cgpu = malloc(sizeof(*cgpu));
  194. *cgpu = (struct cgpu_info){
  195. .drv = &avalonmm_drv,
  196. .device_path = prev_cgpu ? prev_cgpu->device_path : strdup(devpath),
  197. .device_data = initdata,
  198. .set_device_funcs = avalonmm_set_device_funcs,
  199. .deven = DEV_ENABLED,
  200. .procs = 1,
  201. .threads = prev_cgpu ? 0 : 1,
  202. };
  203. add_cgpu_slave(cgpu, prev_cgpu);
  204. prev_cgpu = cgpu;
  205. }
  206. serial_close(fd);
  207. return prev_cgpu;
  208. }
  209. static
  210. bool avalonmm_lowl_probe(const struct lowlevel_device_info * const info)
  211. {
  212. return vcom_lowl_probe_wrapper(info, avalonmm_detect_one);
  213. }
  214. struct avalonmm_job {
  215. struct stratum_work swork;
  216. uint32_t jobid;
  217. struct timeval tv_prepared;
  218. double nonce_diff;
  219. };
  220. struct avalonmm_chain_state {
  221. uint32_t xnonce1;
  222. struct avalonmm_job *jobs[AVALONMM_CACHED_JOBS];
  223. uint32_t next_jobid;
  224. uint32_t fan_desired;
  225. uint32_t clock_desired;
  226. uint32_t voltcfg_desired;
  227. };
  228. struct avalonmm_module_state {
  229. uint32_t module_id;
  230. uint32_t mmversion;
  231. uint16_t temp[2];
  232. uint16_t fan[2];
  233. uint32_t clock_actual;
  234. uint32_t voltcfg_actual;
  235. };
  236. static
  237. uint16_t avalonmm_voltage_config_from_dmvolts(uint32_t dmvolts)
  238. {
  239. return ((uint16_t)bitflip8((0x78 - dmvolts / 125) << 1 | 1)) << 8;
  240. }
  241. // Potentially lossy!
  242. static
  243. uint32_t avalonmm_dmvolts_from_voltage_config(uint32_t voltcfg)
  244. {
  245. return (0x78 - (bitflip8(voltcfg >> 8) >> 1)) * 125;
  246. }
  247. static
  248. uint32_t avalonmm_fan_config_from_percent(uint8_t percent)
  249. {
  250. return (0x3ff - percent * 0x3ff / 100);
  251. }
  252. static
  253. uint8_t avalonmm_fan_percent_from_config(uint32_t cfg)
  254. {
  255. return (0x3ff - cfg) * 100 / 0x3ff;
  256. }
  257. static struct cgpu_info *avalonmm_dev_for_module_id(struct cgpu_info *, uint32_t);
  258. static bool avalonmm_poll_once(struct cgpu_info *, int64_t *);
  259. static
  260. bool avalonmm_init(struct thr_info * const master_thr)
  261. {
  262. struct cgpu_info * const master_dev = master_thr->cgpu, *dev = NULL;
  263. struct avalonmm_init_data * const master_initdata = master_dev->device_data;
  264. const char * const devpath = master_dev->device_path;
  265. const int fd = serial_open(devpath, 115200, 1, true);
  266. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  267. int64_t module_id;
  268. master_dev->device_fd = fd;
  269. if (unlikely(fd == -1))
  270. applogr(false, LOG_ERR, "%s: Failed to initialise", master_dev->dev_repr);
  271. struct avalonmm_chain_state * const chain = malloc(sizeof(*chain));
  272. *chain = (struct avalonmm_chain_state){
  273. .fan_desired = avalonmm_fan_config_from_percent(90),
  274. };
  275. switch (master_initdata->mmversion)
  276. {
  277. case 2014:
  278. chain->voltcfg_desired = avalonmm_voltage_config_from_dmvolts(10000);
  279. break;
  280. default:
  281. chain->voltcfg_desired = avalonmm_voltage_config_from_dmvolts(6625);
  282. }
  283. work2d_init();
  284. if (!reserve_work2d_(&chain->xnonce1))
  285. {
  286. applog(LOG_ERR, "%s: Failed to reserve 2D work", master_dev->dev_repr);
  287. free(chain);
  288. serial_close(fd);
  289. return false;
  290. }
  291. for_each_managed_proc(proc, master_dev)
  292. {
  293. if (dev == proc->device)
  294. continue;
  295. dev = proc->device;
  296. struct thr_info * const thr = proc->thr[0];
  297. struct avalonmm_init_data * const initdata = dev->device_data;
  298. struct avalonmm_module_state * const module = malloc(sizeof(*module));
  299. *module = (struct avalonmm_module_state){
  300. .module_id = initdata->module_id,
  301. .mmversion = initdata->mmversion,
  302. };
  303. free(initdata);
  304. proc->device_data = chain;
  305. thr->cgpu_data = module;
  306. }
  307. dev = NULL;
  308. for_each_managed_proc(proc, master_dev)
  309. {
  310. cgpu_set_defaults(proc);
  311. proc->status = LIFE_INIT2;
  312. }
  313. if (!chain->clock_desired)
  314. {
  315. // Get a reasonable default frequency
  316. dev = master_dev;
  317. struct thr_info * const thr = dev->thr[0];
  318. struct avalonmm_module_state * const module = thr->cgpu_data;
  319. resend:
  320. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, module->module_id);
  321. avalonmm_write_cmd(fd, AMC_POLL, buf, AVALONMM_PKT_DATA_SIZE);
  322. while (avalonmm_poll_once(master_dev, &module_id))
  323. {
  324. if (module_id != module->module_id)
  325. continue;
  326. if (module->clock_actual)
  327. {
  328. chain->clock_desired = module->clock_actual;
  329. break;
  330. }
  331. else
  332. goto resend;
  333. }
  334. if (!chain->clock_desired)
  335. {
  336. switch (module->mmversion)
  337. {
  338. case 2014:
  339. chain->clock_desired = 1500;
  340. break;
  341. case 3314:
  342. chain->clock_desired = 450;
  343. break;
  344. }
  345. }
  346. }
  347. if (likely(chain->clock_desired))
  348. applog(LOG_DEBUG, "%s: Frequency is initialised with %d MHz", master_dev->dev_repr, chain->clock_desired);
  349. else
  350. applogr(false, LOG_ERR, "%s: No frequency detected, please use --set %s@%s:clock=MHZ", master_dev->dev_repr, master_dev->drv->dname, devpath);
  351. return true;
  352. }
  353. static
  354. bool avalonmm_send_swork(const int fd, struct avalonmm_chain_state * const chain, const struct stratum_work * const swork, uint32_t jobid, double *out_nonce_diff)
  355. {
  356. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  357. bytes_t coinbase = BYTES_INIT;
  358. int coinbase_len = bytes_len(&swork->coinbase);
  359. if (coinbase_len > AVALONMM_MAX_COINBASE_SIZE)
  360. return false;
  361. if (swork->merkles > AVALONMM_MAX_MERKLES)
  362. return false;
  363. pk_u32be(buf, 0, coinbase_len);
  364. const size_t xnonce2_offset = swork->nonce2_offset + work2d_pad_xnonce_size(swork) + work2d_xnonce1sz;
  365. pk_u32be(buf, 4, xnonce2_offset);
  366. pk_u32be(buf, 8, 4); // extranonce2 size, but only 4 is supported - smaller sizes are handled by limiting the range
  367. pk_u32be(buf, 0x0c, 0x24); // merkle_offset, always 0x24 for Bitcoin
  368. pk_u32be(buf, 0x10, swork->merkles);
  369. pk_u32be(buf, 0x14, 1); // diff? poorly defined
  370. pk_u32be(buf, 0x18, 0); // pool number - none of its business
  371. if (!avalonmm_write_cmd(fd, AMC_NEW_JOB, buf, 0x1c))
  372. return false;
  373. double nonce_diff = target_diff(swork->target);
  374. if (nonce_diff >= AVALONMM_MAX_NONCE_DIFF)
  375. set_target_to_pdiff(buf, nonce_diff = AVALONMM_MAX_NONCE_DIFF);
  376. else
  377. memcpy(buf, swork->target, 0x20);
  378. *out_nonce_diff = nonce_diff;
  379. if (!avalonmm_write_cmd(fd, AMC_TARGET, buf, 0x20))
  380. return false;
  381. pk_u32be(buf, 0, jobid);
  382. if (!avalonmm_write_cmd(fd, AMC_JOB_ID, buf, 4))
  383. return false;
  384. // Need to add extranonce padding and extranonce2
  385. bytes_cpy(&coinbase, &swork->coinbase);
  386. uint8_t *cbp = bytes_buf(&coinbase);
  387. cbp += swork->nonce2_offset;
  388. work2d_pad_xnonce(cbp, swork, false);
  389. cbp += work2d_pad_xnonce_size(swork);
  390. memcpy(cbp, &chain->xnonce1, work2d_xnonce1sz);
  391. cbp += work2d_xnonce1sz;
  392. if (!avalonmm_write_cmd(fd, AMC_COINBASE, bytes_buf(&coinbase), bytes_len(&coinbase)))
  393. return false;
  394. if (!avalonmm_write_cmd(fd, AMC_MERKLES, bytes_buf(&swork->merkle_bin), bytes_len(&swork->merkle_bin)))
  395. return false;
  396. uint8_t header_bin[0x80];
  397. memcpy(&header_bin[ 0], swork->header1, 0x24);
  398. memset(&header_bin[0x24], '\0', 0x20); // merkle root
  399. pk_u32be(header_bin, 0x44, swork->ntime);
  400. memcpy(&header_bin[0x48], swork->diffbits, 4);
  401. memset(&header_bin[0x4c], '\0', 4); // nonce
  402. memcpy(&header_bin[0x50], bfg_workpadding_bin, 0x30);
  403. if (!avalonmm_write_cmd(fd, AMC_BLKHDR, header_bin, sizeof(header_bin)))
  404. return false;
  405. // Avalon MM cannot handle xnonce2_size other than 4, and works in big endian, so we use a range to ensure the following bytes match
  406. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  407. uint8_t mm_xnonce2_start[4];
  408. uint32_t xnonce2_range;
  409. memset(mm_xnonce2_start, '\0', 4);
  410. cbp += work2d_xnonce2sz;
  411. for (int i = 1; i <= fixed_mm_xnonce2_bytes; ++i)
  412. mm_xnonce2_start[fixed_mm_xnonce2_bytes - i] = cbp++[0];
  413. if (fixed_mm_xnonce2_bytes > 0)
  414. xnonce2_range = (1 << (8 * work2d_xnonce2sz)) - 1;
  415. else
  416. xnonce2_range = 0xffffffff;
  417. pk_u32be(buf, 0, chain->fan_desired);
  418. pk_u32be(buf, 4, chain->voltcfg_desired);
  419. pk_u32be(buf, 8, chain->clock_desired);
  420. memcpy(&buf[0xc], mm_xnonce2_start, 4);
  421. pk_u32be(buf, 0x10, xnonce2_range);
  422. if (!avalonmm_write_cmd(fd, AMC_START, buf, 0x14))
  423. return false;
  424. return true;
  425. }
  426. static
  427. void avalonmm_free_job(struct avalonmm_job * const mmjob)
  428. {
  429. stratum_work_clean(&mmjob->swork);
  430. free(mmjob);
  431. }
  432. static
  433. bool avalonmm_update_swork_from_pool(struct cgpu_info * const master_dev, struct pool * const pool)
  434. {
  435. struct avalonmm_chain_state * const chain = master_dev->device_data;
  436. const int fd = master_dev->device_fd;
  437. struct avalonmm_job *mmjob = malloc(sizeof(*mmjob));
  438. *mmjob = (struct avalonmm_job){
  439. .jobid = chain->next_jobid,
  440. };
  441. cg_rlock(&pool->data_lock);
  442. stratum_work_cpy(&mmjob->swork, &pool->swork);
  443. cg_runlock(&pool->data_lock);
  444. timer_set_now(&mmjob->tv_prepared);
  445. if (!avalonmm_send_swork(fd, chain, &mmjob->swork, mmjob->jobid, &mmjob->nonce_diff))
  446. {
  447. avalonmm_free_job(mmjob);
  448. return false;
  449. }
  450. applog(LOG_DEBUG, "%s: Upload of job id %08lx complete", master_dev->dev_repr, (unsigned long)mmjob->jobid);
  451. ++chain->next_jobid;
  452. struct avalonmm_job **jobentry = &chain->jobs[mmjob->jobid % AVALONMM_CACHED_JOBS];
  453. if (*jobentry)
  454. avalonmm_free_job(*jobentry);
  455. *jobentry = mmjob;
  456. return true;
  457. }
  458. static
  459. struct cgpu_info *avalonmm_dev_for_module_id(struct cgpu_info * const master_dev, const uint32_t module_id)
  460. {
  461. struct cgpu_info *dev = NULL;
  462. for_each_managed_proc(proc, master_dev)
  463. {
  464. if (dev == proc->device)
  465. continue;
  466. dev = proc->device;
  467. struct thr_info * const thr = dev->thr[0];
  468. struct avalonmm_module_state * const module = thr->cgpu_data;
  469. if (module->module_id == module_id)
  470. return dev;
  471. }
  472. return NULL;
  473. }
  474. static
  475. bool avalonmm_poll_once(struct cgpu_info * const master_dev, int64_t *out_module_id)
  476. {
  477. struct avalonmm_chain_state * const chain = master_dev->device_data;
  478. const int fd = master_dev->device_fd;
  479. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  480. enum avalonmm_reply reply;
  481. *out_module_id = -1;
  482. if (avalonmm_read(fd, LOG_ERR, &reply, buf, sizeof(buf)) < 0)
  483. return false;
  484. switch (reply)
  485. {
  486. case AMR_DETECT_ACK:
  487. break;
  488. case AMR_STATUS:
  489. {
  490. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  491. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  492. if (unlikely(!dev))
  493. {
  494. struct thr_info * const master_thr = master_dev->thr[0];
  495. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Status", (unsigned long)module_id);
  496. inc_hw_errors_only(master_thr);
  497. break;
  498. }
  499. *out_module_id = module_id;
  500. struct thr_info * const thr = dev->thr[0];
  501. struct avalonmm_module_state * const module = thr->cgpu_data;
  502. module->temp[0] = upk_u16be(buf, 0);
  503. module->temp[1] = upk_u16be(buf, 2);
  504. module->fan [0] = upk_u16be(buf, 4);
  505. module->fan [1] = upk_u16be(buf, 6);
  506. module->clock_actual = upk_u32be(buf, 8);
  507. module->voltcfg_actual = upk_u32be(buf, 0x0c);
  508. dev->temp = max(module->temp[0], module->temp[1]);
  509. break;
  510. }
  511. case AMR_NONCE:
  512. {
  513. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  514. const uint8_t * const backward_xnonce2 = &buf[8 + fixed_mm_xnonce2_bytes];
  515. const uint32_t nonce = upk_u32be(buf, 0x10) - AVALONMM_NONCE_OFFSET;
  516. const uint32_t jobid = upk_u32be(buf, 0x14);
  517. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  518. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  519. if (unlikely(!dev))
  520. {
  521. struct thr_info * const master_thr = master_dev->thr[0];
  522. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Nonce", (unsigned long)module_id);
  523. inc_hw_errors_only(master_thr);
  524. break;
  525. }
  526. *out_module_id = module_id;
  527. struct thr_info * const thr = dev->thr[0];
  528. bool invalid_jobid = false;
  529. if (unlikely((uint32_t)(chain->next_jobid - AVALONMM_CACHED_JOBS) > chain->next_jobid))
  530. // Jobs wrap around
  531. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS && jobid >= chain->next_jobid);
  532. else
  533. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS || jobid >= chain->next_jobid);
  534. struct avalonmm_job * const mmjob = chain->jobs[jobid % AVALONMM_CACHED_JOBS];
  535. if (unlikely(invalid_jobid || !mmjob))
  536. {
  537. applog(LOG_ERR, "%s: Bad job id %08lx", dev->dev_repr, (unsigned long)jobid);
  538. inc_hw_errors_only(thr);
  539. break;
  540. }
  541. uint8_t xnonce2[work2d_xnonce2sz];
  542. for (int i = 0; i < work2d_xnonce2sz; ++i)
  543. xnonce2[i] = backward_xnonce2[(work2d_xnonce2sz - 1) - i];
  544. work2d_submit_nonce(thr, &mmjob->swork, &mmjob->tv_prepared, xnonce2, chain->xnonce1, nonce, mmjob->swork.ntime, NULL, mmjob->nonce_diff);
  545. hashes_done2(thr, mmjob->nonce_diff * 0x100000000, NULL);
  546. break;
  547. }
  548. }
  549. return true;
  550. }
  551. static
  552. void avalonmm_poll(struct cgpu_info * const master_dev, int n)
  553. {
  554. int64_t dummy;
  555. while (n > 0)
  556. {
  557. if (avalonmm_poll_once(master_dev, &dummy))
  558. --n;
  559. }
  560. }
  561. static
  562. struct thr_info *avalonmm_should_disable(struct cgpu_info * const master_dev)
  563. {
  564. for_each_managed_proc(proc, master_dev)
  565. {
  566. struct thr_info * const thr = proc->thr[0];
  567. if (thr->pause || proc->deven != DEV_ENABLED)
  568. return thr;
  569. }
  570. return NULL;
  571. }
  572. static
  573. void avalonmm_minerloop(struct thr_info * const master_thr)
  574. {
  575. struct cgpu_info * const master_dev = master_thr->cgpu;
  576. const int fd = master_dev->device_fd;
  577. struct pool *nextpool = current_pool(), *pool = NULL;
  578. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  579. while (likely(!master_dev->shutdown))
  580. {
  581. if (avalonmm_should_disable(master_dev))
  582. {
  583. struct thr_info *thr;
  584. while ( (thr = avalonmm_should_disable(master_dev)) )
  585. {
  586. if (!thr->_mt_disable_called)
  587. if (avalonmm_write_cmd(fd, AMC_NEW_JOB, NULL, 0))
  588. {
  589. for_each_managed_proc(proc, master_dev)
  590. {
  591. struct thr_info * const thr = proc->thr[0];
  592. mt_disable_start(thr);
  593. }
  594. }
  595. notifier_read(thr->notifier);
  596. }
  597. for_each_managed_proc(proc, master_dev)
  598. {
  599. struct thr_info * const thr = proc->thr[0];
  600. mt_disable_finish(thr);
  601. }
  602. }
  603. master_thr->work_restart = false;
  604. if (!pool_has_usable_swork(nextpool))
  605. ; // FIXME
  606. else
  607. if (avalonmm_update_swork_from_pool(master_dev, nextpool))
  608. pool = nextpool;
  609. while (likely(!(master_thr->work_restart || ((nextpool = current_pool()) != pool && pool_has_usable_swork(nextpool)) || avalonmm_should_disable(master_dev))))
  610. {
  611. cgsleep_ms(10);
  612. struct cgpu_info *dev = NULL;
  613. for_each_managed_proc(proc, master_dev)
  614. {
  615. if (dev == proc->device)
  616. continue;
  617. dev = proc->device;
  618. struct thr_info * const thr = dev->thr[0];
  619. struct avalonmm_module_state * const module = thr->cgpu_data;
  620. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, module->module_id);
  621. avalonmm_write_cmd(fd, AMC_POLL, buf, AVALONMM_PKT_DATA_SIZE);
  622. avalonmm_poll(master_dev, 1);
  623. }
  624. }
  625. }
  626. }
  627. static
  628. const char *avalonmm_set_clock(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  629. {
  630. struct cgpu_info * const dev = proc->device;
  631. struct avalonmm_chain_state * const chain = dev->device_data;
  632. const int nv = atoi(newvalue);
  633. if (nv < 0)
  634. return "Invalid clock";
  635. chain->clock_desired = nv;
  636. return NULL;
  637. }
  638. static
  639. const char *avalonmm_set_fan(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  640. {
  641. struct cgpu_info * const dev = proc->device;
  642. struct avalonmm_chain_state * const chain = dev->device_data;
  643. const int nv = atoi(newvalue);
  644. if (nv < 0 || nv > 100)
  645. return "Invalid fan speed";
  646. chain->fan_desired = avalonmm_fan_config_from_percent(nv);
  647. return NULL;
  648. }
  649. static
  650. const char *avalonmm_set_voltage(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const success)
  651. {
  652. struct cgpu_info * const dev = proc->device;
  653. struct avalonmm_chain_state * const chain = dev->device_data;
  654. const long val = atof(newvalue) * 10000;
  655. if (val < 0 || val > 15000)
  656. return "Invalid voltage value";
  657. chain->voltcfg_desired = avalonmm_voltage_config_from_dmvolts(val);
  658. return NULL;
  659. }
  660. static const struct bfg_set_device_definition avalonmm_set_device_funcs[] = {
  661. {"clock", avalonmm_set_clock, "clock frequency"},
  662. {"fan", avalonmm_set_fan, "fan speed (0-100 percent)"},
  663. {"voltage", avalonmm_set_voltage, "voltage (0 to 1.5 volts)"},
  664. {NULL},
  665. };
  666. static
  667. struct api_data *avalonmm_api_extra_device_detail(struct cgpu_info * const proc)
  668. {
  669. struct cgpu_info * const dev = proc->device;
  670. struct avalonmm_chain_state * const chain = dev->device_data;
  671. struct thr_info * const thr = dev->thr[0];
  672. struct avalonmm_module_state * const module = thr->cgpu_data;
  673. struct api_data *root = NULL;
  674. root = api_add_uint32(root, "Module Id", &module->module_id, false);
  675. root = api_add_uint32(root, "ExtraNonce1", &chain->xnonce1, false);
  676. return root;
  677. }
  678. static
  679. struct api_data *avalonmm_api_extra_device_status(struct cgpu_info * const proc)
  680. {
  681. struct cgpu_info * const dev = proc->device;
  682. struct avalonmm_chain_state * const chain = dev->device_data;
  683. struct thr_info * const thr = dev->thr[0];
  684. struct avalonmm_module_state * const module = thr->cgpu_data;
  685. struct api_data *root = NULL;
  686. char buf[0x10];
  687. strcpy(buf, "Temperature");
  688. for (int i = 0; i < 2; ++i)
  689. {
  690. if (module->temp[i])
  691. {
  692. float temp = module->temp[i];
  693. buf[0xb] = '0' + i;
  694. root = api_add_temp(root, buf, &temp, true);
  695. }
  696. }
  697. {
  698. uint8_t fan_percent = avalonmm_fan_percent_from_config(chain->fan_desired);
  699. root = api_add_uint8(root, "Fan Percent", &fan_percent, true);
  700. }
  701. strcpy(buf, "Fan RPM ");
  702. for (int i = 0; i < 2; ++i)
  703. {
  704. if (module->fan[i])
  705. {
  706. buf[8] = '0' + i;
  707. root = api_add_uint16(root, buf, &module->fan[i], false);
  708. }
  709. }
  710. if (module->clock_actual)
  711. {
  712. double freq = module->clock_actual;
  713. root = api_add_freq(root, "Frequency", &freq, true);
  714. }
  715. if (module->voltcfg_actual)
  716. {
  717. float volts = avalonmm_dmvolts_from_voltage_config(module->voltcfg_actual);
  718. volts /= 10000;
  719. root = api_add_volts(root, "Voltage", &volts, true);
  720. }
  721. return root;
  722. }
  723. #ifdef HAVE_CURSES
  724. static
  725. void avalonmm_wlogprint_status(struct cgpu_info * const proc)
  726. {
  727. struct cgpu_info * const dev = proc->device;
  728. struct avalonmm_chain_state * const chain = dev->device_data;
  729. struct thr_info * const thr = dev->thr[0];
  730. struct avalonmm_module_state * const module = thr->cgpu_data;
  731. wlogprint("ExtraNonce1:%0*lx ModuleId:%lu\n", work2d_xnonce1sz * 2, (unsigned long)chain->xnonce1, (unsigned long)module->module_id);
  732. if (module->temp[0] && module->temp[1])
  733. {
  734. wlogprint("Temperatures: %uC %uC", (unsigned)module->temp[0], (unsigned)module->temp[1]);
  735. if (module->fan[0] || module->fan[1])
  736. wlogprint(" ");
  737. }
  738. unsigned fan_percent = avalonmm_fan_percent_from_config(chain->fan_desired);
  739. if (module->fan[0])
  740. {
  741. if (module->fan[1])
  742. wlogprint("Fans: %u RPM, %u RPM (%u%%)", (unsigned)module->fan[0], (unsigned)module->fan[1], fan_percent);
  743. else
  744. wlogprint("Fan: %u RPM (%u%%)", (unsigned)module->fan[0], fan_percent);
  745. }
  746. else
  747. if (module->fan[1])
  748. wlogprint("Fan: %u RPM (%u%%)", (unsigned)module->fan[1], fan_percent);
  749. else
  750. wlogprint("Fan: %u%%", fan_percent);
  751. wlogprint("\n");
  752. if (module->clock_actual)
  753. wlogprint("Clock speed: %lu\n", (unsigned long)module->clock_actual);
  754. if (module->voltcfg_actual)
  755. {
  756. const uint32_t dmvolts = avalonmm_dmvolts_from_voltage_config(module->voltcfg_actual);
  757. wlogprint("Voltage: %u.%04u V\n", (unsigned)(dmvolts / 10000), (unsigned)(dmvolts % 10000));
  758. }
  759. }
  760. static
  761. void avalonmm_tui_wlogprint_choices(struct cgpu_info * const proc)
  762. {
  763. wlogprint("[C]lock speed ");
  764. wlogprint("[F]an speed ");
  765. wlogprint("[V]oltage ");
  766. }
  767. #define avalonmm_tui_wrapper(proc, func, prompt) \
  768. proc_set_device_tui_wrapper(proc, NULL, func, prompt, NULL)
  769. static
  770. const char *avalonmm_tui_handle_choice(struct cgpu_info * const proc, const int input)
  771. {
  772. switch (input)
  773. {
  774. case 'c': case 'C':
  775. return avalonmm_tui_wrapper(proc, avalonmm_set_clock , "Set clock speed (Avalon2: 1500; Avalon3: 450)");
  776. case 'f': case 'F':
  777. return avalonmm_tui_wrapper(proc, avalonmm_set_fan , "Set fan speed (0-100 percent)");
  778. case 'v': case 'V':
  779. return avalonmm_tui_wrapper(proc, avalonmm_set_voltage, "Set voltage (Avalon2: 1.0; Avalon3: 0.6625)");
  780. }
  781. return NULL;
  782. }
  783. #endif
  784. struct device_drv avalonmm_drv = {
  785. .dname = "avalonmm",
  786. .name = "AVM",
  787. .lowl_probe = avalonmm_lowl_probe,
  788. .thread_init = avalonmm_init,
  789. .minerloop = avalonmm_minerloop,
  790. .get_api_extra_device_detail = avalonmm_api_extra_device_detail,
  791. .get_api_extra_device_status = avalonmm_api_extra_device_status,
  792. #ifdef HAVE_CURSES
  793. .proc_wlogprint_status = avalonmm_wlogprint_status,
  794. .proc_tui_wlogprint_choices = avalonmm_tui_wlogprint_choices,
  795. .proc_tui_handle_choice = avalonmm_tui_handle_choice,
  796. #endif
  797. };