ft232r.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348
  1. /*
  2. * Copyright 2012-2013 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #ifdef WIN32
  11. #include <winsock2.h>
  12. #endif
  13. #include <errno.h>
  14. #include <stdbool.h>
  15. #include <stdint.h>
  16. #include <string.h>
  17. #include <libusb.h>
  18. #include "compat.h"
  19. #include "ft232r.h"
  20. #include "logging.h"
  21. #include "lowlevel.h"
  22. #include "miner.h"
  23. #define FT232R_IDVENDOR 0x0403
  24. #define FT232R_IDPRODUCT 0x6001
  25. static
  26. void ft232r_devinfo_free(struct lowlevel_device_info * const info)
  27. {
  28. libusb_device * const dev = info->lowl_data;
  29. if (dev)
  30. libusb_unref_device(dev);
  31. }
  32. static
  33. bool _ft232r_devinfo_scan_cb(struct lowlevel_device_info * const usbinfo, void * const userp)
  34. {
  35. struct lowlevel_device_info **devinfo_list_p = userp, *info;
  36. info = malloc(sizeof(*info));
  37. *info = (struct lowlevel_device_info){
  38. .lowl = &lowl_ft232r,
  39. .lowl_data = libusb_ref_device(usbinfo->lowl_data),
  40. };
  41. lowlevel_devinfo_semicpy(info, usbinfo);
  42. LL_PREPEND(*devinfo_list_p, info);
  43. // Never *consume* the lowl_usb entry - especially since this is during the scan!
  44. return false;
  45. }
  46. static
  47. struct lowlevel_device_info *ft232r_devinfo_scan()
  48. {
  49. struct lowlevel_device_info *devinfo_list = NULL;
  50. lowlevel_detect_id(_ft232r_devinfo_scan_cb, &devinfo_list, &lowl_usb, FT232R_IDVENDOR, FT232R_IDPRODUCT);
  51. return devinfo_list;
  52. }
  53. #define FTDI_REQTYPE (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
  54. #define FTDI_REQTYPE_IN (FTDI_REQTYPE | LIBUSB_ENDPOINT_IN)
  55. #define FTDI_REQTYPE_OUT (FTDI_REQTYPE | LIBUSB_ENDPOINT_OUT)
  56. #define FTDI_REQUEST_RESET 0
  57. #define FTDI_REQUEST_SET_BAUDRATE 3
  58. #define FTDI_REQUEST_SET_BITMODE 0x0b
  59. #define FTDI_REQUEST_GET_PINS 0x0c
  60. #define FTDI_REQUEST_GET_BITMODE 0x0c
  61. #define FTDI_BAUDRATE_3M 0,0
  62. #define FTDI_INDEX 1
  63. #define FTDI_TIMEOUT 1000
  64. struct ft232r_device_handle {
  65. libusb_device_handle *h;
  66. uint8_t i;
  67. uint8_t o;
  68. unsigned char ibuf[256];
  69. int ibufLen;
  70. uint16_t osz;
  71. unsigned char *obuf;
  72. uint16_t obufsz;
  73. };
  74. struct ft232r_device_handle *ft232r_open(struct lowlevel_device_info *info)
  75. {
  76. libusb_device * const dev = info->lowl_data;
  77. info->lowl_data = NULL;
  78. if (!dev)
  79. return NULL;
  80. // FIXME: Cleanup on errors
  81. libusb_device_handle *devh;
  82. struct ft232r_device_handle *ftdi;
  83. if (libusb_open(dev, &devh)) {
  84. applog(LOG_ERR, "ft232r_open: Error opening device");
  85. return NULL;
  86. }
  87. libusb_reset_device(devh);
  88. libusb_detach_kernel_driver(devh, 0);
  89. if (libusb_set_configuration(devh, 1)) {
  90. applog(LOG_ERR, "ft232r_open: Error setting configuration");
  91. return NULL;
  92. }
  93. if (libusb_claim_interface(devh, 0)) {
  94. applog(LOG_ERR, "ft232r_open: Error claiming interface");
  95. return NULL;
  96. }
  97. if (libusb_control_transfer(devh, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BAUDRATE, FTDI_BAUDRATE_3M, NULL, 0, FTDI_TIMEOUT) < 0) {
  98. applog(LOG_ERR, "ft232r_open: Error performing control transfer");
  99. return NULL;
  100. }
  101. struct libusb_config_descriptor *cfg;
  102. if (libusb_get_config_descriptor(dev, 0, &cfg)) {
  103. applog(LOG_ERR, "ft232r_open: Error getting config descriptor");
  104. return NULL;
  105. }
  106. const struct libusb_interface_descriptor *altcfg = &cfg->interface[0].altsetting[0];
  107. if (altcfg->bNumEndpoints < 2) {
  108. applog(LOG_ERR, "ft232r_open: Too few endpoints");
  109. return NULL;
  110. }
  111. ftdi = calloc(1, sizeof(*ftdi));
  112. ftdi->h = devh;
  113. ftdi->i = altcfg->endpoint[0].bEndpointAddress;
  114. ftdi->o = altcfg->endpoint[1].bEndpointAddress;
  115. ftdi->osz = 0x1000;
  116. ftdi->obuf = malloc(ftdi->osz);
  117. libusb_free_config_descriptor(cfg);
  118. return ftdi;
  119. }
  120. void ft232r_close(struct ft232r_device_handle *dev)
  121. {
  122. libusb_release_interface(dev->h, 0);
  123. libusb_reset_device(dev->h);
  124. libusb_close(dev->h);
  125. }
  126. bool ft232r_purge_buffers(struct ft232r_device_handle *dev, enum ft232r_reset_purge purge)
  127. {
  128. if (ft232r_flush(dev) < 0)
  129. return false;
  130. if (purge & FTDI_PURGE_RX) {
  131. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_RX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  132. return false;
  133. dev->ibufLen = 0;
  134. }
  135. if (purge & FTDI_PURGE_TX)
  136. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_RESET, FTDI_PURGE_TX, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  137. return false;
  138. return true;
  139. }
  140. bool ft232r_set_bitmode(struct ft232r_device_handle *dev, uint8_t mask, uint8_t mode)
  141. {
  142. if (ft232r_flush(dev) < 0)
  143. return false;
  144. if (libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT))
  145. return false;
  146. return !libusb_control_transfer(dev->h, FTDI_REQTYPE_OUT, FTDI_REQUEST_SET_BITMODE, (mode << 8) | mask, FTDI_INDEX, NULL, 0, FTDI_TIMEOUT);
  147. }
  148. static ssize_t ft232r_readwrite(struct ft232r_device_handle *dev, unsigned char endpoint, void *data, size_t count)
  149. {
  150. int transferred;
  151. switch (libusb_bulk_transfer(dev->h, endpoint, data, count, &transferred, FTDI_TIMEOUT)) {
  152. case LIBUSB_ERROR_TIMEOUT:
  153. if (!transferred) {
  154. errno = ETIMEDOUT;
  155. return -1;
  156. }
  157. case 0:
  158. return transferred;
  159. default:
  160. errno = EIO;
  161. return -1;
  162. }
  163. }
  164. ssize_t ft232r_flush(struct ft232r_device_handle *dev)
  165. {
  166. if (!dev->obufsz)
  167. return 0;
  168. ssize_t r = ft232r_readwrite(dev, dev->o, dev->obuf, dev->obufsz);
  169. if (r == dev->obufsz) {
  170. dev->obufsz = 0;
  171. } else if (r > 0) {
  172. dev->obufsz -= r;
  173. memmove(dev->obuf, &dev->obuf[r], dev->obufsz);
  174. }
  175. return r;
  176. }
  177. ssize_t ft232r_write(struct ft232r_device_handle *dev, void *data, size_t count)
  178. {
  179. uint16_t bufleft;
  180. ssize_t r;
  181. bufleft = dev->osz - dev->obufsz;
  182. if (count < bufleft) {
  183. // Just add to output buffer
  184. memcpy(&dev->obuf[dev->obufsz], data, count);
  185. dev->obufsz += count;
  186. return count;
  187. }
  188. // Fill up buffer and flush
  189. memcpy(&dev->obuf[dev->obufsz], data, bufleft);
  190. dev->obufsz += bufleft;
  191. r = ft232r_flush(dev);
  192. if (unlikely(r <= 0)) {
  193. // In this case, no bytes were written supposedly, so remove this data from buffer
  194. dev->obufsz -= bufleft;
  195. return r;
  196. }
  197. // Even if not all <bufleft> bytes from this write got out, the remaining are still buffered
  198. return bufleft;
  199. }
  200. typedef ssize_t (*ft232r_rwfunc_t)(struct ft232r_device_handle *, void*, size_t);
  201. static ssize_t ft232r_rw_all(ft232r_rwfunc_t rwfunc, struct ft232r_device_handle *dev, void *data, size_t count)
  202. {
  203. char *p = data;
  204. ssize_t writ = 0, total = 0;
  205. while (count && (writ = rwfunc(dev, p, count)) > 0) {
  206. p += writ;
  207. count -= writ;
  208. total += writ;
  209. }
  210. return total ?: writ;
  211. }
  212. ssize_t ft232r_write_all(struct ft232r_device_handle *dev, void *data, size_t count)
  213. {
  214. return ft232r_rw_all(ft232r_write, dev, data, count);
  215. }
  216. ssize_t ft232r_read(struct ft232r_device_handle *dev, void *data, size_t count)
  217. {
  218. ssize_t r;
  219. int adj;
  220. // Flush any pending output before reading
  221. r = ft232r_flush(dev);
  222. if (r < 0)
  223. return r;
  224. // First 2 bytes of every 0x40 are FTDI status or something
  225. while (dev->ibufLen <= 2) {
  226. // TODO: Implement a timeout for status byte repeating
  227. int transferred = ft232r_readwrite(dev, dev->i, dev->ibuf, sizeof(dev->ibuf));
  228. if (transferred <= 0)
  229. return transferred;
  230. dev->ibufLen = transferred;
  231. for (adj = 0x40; dev->ibufLen > adj; adj += 0x40 - 2) {
  232. dev->ibufLen -= 2;
  233. memmove(&dev->ibuf[adj], &dev->ibuf[adj+2], dev->ibufLen - adj);
  234. }
  235. }
  236. unsigned char *ibufs = &dev->ibuf[2];
  237. size_t ibufsLen = dev->ibufLen - 2;
  238. if (count > ibufsLen)
  239. count = ibufsLen;
  240. memcpy(data, ibufs, count);
  241. dev->ibufLen -= count;
  242. ibufsLen -= count;
  243. if (ibufsLen) {
  244. memmove(ibufs, &ibufs[count], ibufsLen);
  245. applog(LOG_DEBUG, "ft232r_read: %"PRIu64" bytes extra", (uint64_t)ibufsLen);
  246. }
  247. return count;
  248. }
  249. ssize_t ft232r_read_all(struct ft232r_device_handle *dev, void *data, size_t count)
  250. {
  251. return ft232r_rw_all(ft232r_read, dev, data, count);
  252. }
  253. bool ft232r_get_pins(struct ft232r_device_handle *dev, uint8_t *pins)
  254. {
  255. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_PINS, 0, FTDI_INDEX, pins, 1, FTDI_TIMEOUT) == 1;
  256. }
  257. bool ft232r_get_bitmode(struct ft232r_device_handle *dev, uint8_t *out_mode)
  258. {
  259. return libusb_control_transfer(dev->h, FTDI_REQTYPE_IN, FTDI_REQUEST_GET_BITMODE, 0, FTDI_INDEX, out_mode, 1, FTDI_TIMEOUT) == 1;
  260. }
  261. bool ft232r_set_cbus_bits(struct ft232r_device_handle *dev, bool sc, bool cs)
  262. {
  263. uint8_t pin_state = (cs ? (1<<2) : 0)
  264. | (sc ? (1<<3) : 0);
  265. return ft232r_set_bitmode(dev, 0xc0 | pin_state, 0x20);
  266. }
  267. bool ft232r_get_cbus_bits(struct ft232r_device_handle *dev, bool *out_sio0, bool *out_sio1)
  268. {
  269. uint8_t data;
  270. if (!ft232r_get_bitmode(dev, &data))
  271. return false;
  272. *out_sio0 = data & 1;
  273. *out_sio1 = data & 2;
  274. return true;
  275. }
  276. struct lowlevel_driver lowl_ft232r = {
  277. .dname = "ft232r",
  278. .devinfo_scan = ft232r_devinfo_scan,
  279. .devinfo_free = ft232r_devinfo_free,
  280. };
  281. #if 0
  282. int main() {
  283. libusb_init(NULL);
  284. ft232r_scan();
  285. ft232r_scan_free();
  286. libusb_exit(NULL);
  287. }
  288. void applog(int prio, const char *fmt, ...)
  289. {
  290. va_list ap;
  291. va_start(ap, fmt);
  292. vprintf(fmt, ap);
  293. puts("");
  294. va_end(ap);
  295. }
  296. #endif