driver-avalonmm.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. /*
  2. * Copyright 2014 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <stdbool.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <unistd.h>
  15. #include <utlist.h>
  16. #include "deviceapi.h"
  17. #include "logging.h"
  18. #include "lowlevel.h"
  19. #include "lowl-vcom.h"
  20. #include "miner.h"
  21. #include "util.h"
  22. #include "work2d.h"
  23. #define AVALONMM_MAX_MODULES 4
  24. #define AVALONMM_MAX_COINBASE_SIZE (6 * 1024)
  25. #define AVALONMM_MAX_MERKLES 20
  26. #define AVALONMM_MAX_NONCE_DIFF 0x20
  27. // Must be a power of two
  28. #define AVALONMM_CACHED_JOBS 2
  29. #define AVALONMM_NONCE_OFFSET 0x180
  30. BFG_REGISTER_DRIVER(avalonmm_drv)
  31. static const struct bfg_set_device_definition avalonmm_set_device_funcs[];
  32. #define AVALONMM_PKT_DATA_SIZE 0x20
  33. #define AVALONMM_PKT_SIZE (AVALONMM_PKT_DATA_SIZE + 7)
  34. enum avalonmm_cmd {
  35. AMC_DETECT = 0x0a,
  36. AMC_NEW_JOB = 0x0b,
  37. AMC_JOB_ID = 0x0c,
  38. AMC_COINBASE = 0x0d,
  39. AMC_MERKLES = 0x0e,
  40. AMC_BLKHDR = 0x0f,
  41. AMC_POLL = 0x10,
  42. AMC_TARGET = 0x11,
  43. AMC_START = 0x13,
  44. };
  45. enum avalonmm_reply {
  46. AMR_NONCE = 0x17,
  47. AMR_STATUS = 0x18,
  48. AMR_DETECT_ACK = 0x19,
  49. };
  50. static
  51. bool avalonmm_write_cmd(const int fd, const enum avalonmm_cmd cmd, const void *data, size_t datasz)
  52. {
  53. uint8_t packets = ((datasz + AVALONMM_PKT_DATA_SIZE - 1) / AVALONMM_PKT_DATA_SIZE) ?: 1;
  54. uint8_t pkt[AVALONMM_PKT_SIZE] = {'A', 'V', cmd, 1, packets};
  55. uint16_t crc;
  56. ssize_t r;
  57. while (true)
  58. {
  59. size_t copysz = AVALONMM_PKT_DATA_SIZE;
  60. if (datasz < copysz)
  61. {
  62. copysz = datasz;
  63. memset(&pkt[5 + copysz], '\0', AVALONMM_PKT_DATA_SIZE - copysz);
  64. }
  65. if (copysz)
  66. memcpy(&pkt[5], data, copysz);
  67. crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  68. pk_u16be(pkt, 5 + AVALONMM_PKT_DATA_SIZE, crc);
  69. r = write(fd, pkt, sizeof(pkt));
  70. if (opt_dev_protocol)
  71. {
  72. char hex[(sizeof(pkt) * 2) + 1];
  73. bin2hex(hex, pkt, sizeof(pkt));
  74. applog(LOG_DEBUG, "DEVPROTO fd=%d SEND: %s => %d", fd, hex, (int)r);
  75. }
  76. if (sizeof(pkt) != r)
  77. return false;
  78. datasz -= copysz;
  79. if (!datasz)
  80. break;
  81. data += copysz;
  82. ++pkt[3];
  83. }
  84. return true;
  85. }
  86. static
  87. ssize_t avalonmm_read(const int fd, const int logprio, enum avalonmm_reply *out_reply, void * const bufp, size_t bufsz)
  88. {
  89. uint8_t *buf = bufp;
  90. uint8_t pkt[AVALONMM_PKT_SIZE];
  91. uint8_t packets = 0, got = 0;
  92. uint16_t good_crc, actual_crc;
  93. ssize_t r;
  94. while (true)
  95. {
  96. r = serial_read(fd, pkt, sizeof(pkt));
  97. if (opt_dev_protocol)
  98. {
  99. if (r >= 0)
  100. {
  101. char hex[(r * 2) + 1];
  102. bin2hex(hex, pkt, r);
  103. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV: %s", fd, hex);
  104. }
  105. else
  106. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV (%d)", fd, (int)r);
  107. }
  108. if (r != sizeof(pkt))
  109. return -1;
  110. if (memcmp(pkt, "AV", 2))
  111. applogr(-1, logprio, "%s: bad header", __func__);
  112. good_crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  113. actual_crc = upk_u16le(pkt, 5 + AVALONMM_PKT_DATA_SIZE);
  114. if (good_crc != actual_crc)
  115. applogr(-1, logprio, "%s: bad CRC (good=%04x actual=%04x)", __func__, good_crc, actual_crc);
  116. *out_reply = pkt[2];
  117. if (!got)
  118. {
  119. if (pkt[3] != 1)
  120. applogr(-1, logprio, "%s: first packet is not index 1", __func__);
  121. ++got;
  122. packets = pkt[4];
  123. }
  124. else
  125. {
  126. if (pkt[3] != ++got)
  127. applogr(-1, logprio, "%s: packet %d is not index %d", __func__, got, got);
  128. if (pkt[4] != packets)
  129. applogr(-1, logprio, "%s: packet %d total packet count is %d rather than original value of %d", __func__, got, pkt[4], packets);
  130. }
  131. if (bufsz)
  132. {
  133. if (likely(bufsz > AVALONMM_PKT_DATA_SIZE))
  134. {
  135. memcpy(buf, &pkt[5], AVALONMM_PKT_DATA_SIZE);
  136. bufsz -= AVALONMM_PKT_DATA_SIZE;
  137. buf += AVALONMM_PKT_DATA_SIZE;
  138. }
  139. else
  140. {
  141. memcpy(buf, &pkt[5], bufsz);
  142. bufsz = 0;
  143. }
  144. }
  145. if (got == packets)
  146. break;
  147. }
  148. return (((ssize_t)got) * AVALONMM_PKT_DATA_SIZE);
  149. }
  150. struct avalonmm_init_data {
  151. int module_id;
  152. uint32_t mmversion;
  153. };
  154. static
  155. bool avalonmm_detect_one(const char * const devpath)
  156. {
  157. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  158. enum avalonmm_reply reply;
  159. const int fd = serial_open(devpath, 115200, 1, true);
  160. struct cgpu_info *prev_cgpu = NULL;
  161. if (fd == -1)
  162. applogr(false, LOG_DEBUG, "%s: Failed to open %s", __func__, devpath);
  163. for (int i = 0; i < AVALONMM_MAX_MODULES; ++i)
  164. {
  165. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, i);
  166. avalonmm_write_cmd(fd, AMC_DETECT, buf, AVALONMM_PKT_DATA_SIZE);
  167. }
  168. while (avalonmm_read(fd, LOG_DEBUG, &reply, buf, AVALONMM_PKT_DATA_SIZE) > 0)
  169. {
  170. if (reply != AMR_DETECT_ACK)
  171. continue;
  172. int moduleno = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  173. uint32_t mmversion;
  174. {
  175. char mmver[5];
  176. memcpy(mmver, buf, 4);
  177. mmver[4] = '\0';
  178. mmversion = atol(mmver);
  179. }
  180. struct avalonmm_init_data * const initdata = malloc(sizeof(*initdata));
  181. *initdata = (struct avalonmm_init_data){
  182. .module_id = moduleno,
  183. .mmversion = mmversion,
  184. };
  185. struct cgpu_info * const cgpu = malloc(sizeof(*cgpu));
  186. *cgpu = (struct cgpu_info){
  187. .drv = &avalonmm_drv,
  188. .device_path = prev_cgpu ? prev_cgpu->device_path : strdup(devpath),
  189. .device_data = initdata,
  190. .set_device_funcs = avalonmm_set_device_funcs,
  191. .deven = DEV_ENABLED,
  192. .procs = 1,
  193. .threads = prev_cgpu ? 0 : 1,
  194. };
  195. add_cgpu_slave(cgpu, prev_cgpu);
  196. prev_cgpu = cgpu;
  197. }
  198. serial_close(fd);
  199. return prev_cgpu;
  200. }
  201. static
  202. bool avalonmm_lowl_probe(const struct lowlevel_device_info * const info)
  203. {
  204. return vcom_lowl_probe_wrapper(info, avalonmm_detect_one);
  205. }
  206. struct avalonmm_job {
  207. struct stratum_work swork;
  208. uint32_t jobid;
  209. struct timeval tv_prepared;
  210. double nonce_diff;
  211. };
  212. struct avalonmm_chain_state {
  213. uint32_t xnonce1;
  214. struct avalonmm_job *jobs[AVALONMM_CACHED_JOBS];
  215. uint32_t next_jobid;
  216. uint32_t fan_desired;
  217. uint32_t clock_desired;
  218. uint32_t voltcfg_desired;
  219. };
  220. struct avalonmm_module_state {
  221. uint32_t module_id;
  222. uint32_t mmversion;
  223. uint16_t temp[2];
  224. uint16_t fan[2];
  225. uint32_t clock_actual;
  226. uint32_t voltcfg_actual;
  227. };
  228. static
  229. uint16_t avalonmm_voltage_config_from_dmvolts(uint32_t dmvolts)
  230. {
  231. return ((uint16_t)bitflip8((0x78 - dmvolts / 125) << 1 | 1)) << 8;
  232. }
  233. // Potentially lossy!
  234. static
  235. uint32_t avalonmm_dmvolts_from_voltage_config(uint32_t voltcfg)
  236. {
  237. return (0x78 - (bitflip8(voltcfg >> 8) >> 1)) * 125;
  238. }
  239. static
  240. uint32_t avalonmm_fan_config_from_percent(uint8_t percent)
  241. {
  242. return (0x3ff - percent * 0x3ff / 100);
  243. }
  244. static
  245. uint8_t avalonmm_fan_percent_from_config(uint32_t cfg)
  246. {
  247. return (0x3ff - cfg) * 100 / 0x3ff;
  248. }
  249. static struct cgpu_info *avalonmm_dev_for_module_id(struct cgpu_info *, uint32_t);
  250. static bool avalonmm_poll_once(struct cgpu_info *, int64_t *);
  251. static
  252. bool avalonmm_init(struct thr_info * const master_thr)
  253. {
  254. struct cgpu_info * const master_dev = master_thr->cgpu, *dev = NULL;
  255. struct avalonmm_init_data * const master_initdata = master_dev->device_data;
  256. const char * const devpath = master_dev->device_path;
  257. const int fd = serial_open(devpath, 115200, 1, true);
  258. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  259. int64_t module_id;
  260. master_dev->device_fd = fd;
  261. if (unlikely(fd == -1))
  262. applogr(false, LOG_ERR, "%s: Failed to initialise", master_dev->dev_repr);
  263. struct avalonmm_chain_state * const chain = malloc(sizeof(*chain));
  264. *chain = (struct avalonmm_chain_state){
  265. .fan_desired = avalonmm_fan_config_from_percent(90),
  266. };
  267. switch (master_initdata->mmversion)
  268. {
  269. case 2014:
  270. chain->voltcfg_desired = avalonmm_voltage_config_from_dmvolts(10000);
  271. break;
  272. default:
  273. chain->voltcfg_desired = avalonmm_voltage_config_from_dmvolts(6625);
  274. }
  275. work2d_init();
  276. if (!reserve_work2d_(&chain->xnonce1))
  277. {
  278. applog(LOG_ERR, "%s: Failed to reserve 2D work", master_dev->dev_repr);
  279. free(chain);
  280. serial_close(fd);
  281. return false;
  282. }
  283. for_each_managed_proc(proc, master_dev)
  284. {
  285. if (dev == proc->device)
  286. continue;
  287. dev = proc->device;
  288. struct thr_info * const thr = proc->thr[0];
  289. struct avalonmm_init_data * const initdata = dev->device_data;
  290. struct avalonmm_module_state * const module = malloc(sizeof(*module));
  291. *module = (struct avalonmm_module_state){
  292. .module_id = initdata->module_id,
  293. .mmversion = initdata->mmversion,
  294. };
  295. free(initdata);
  296. proc->device_data = chain;
  297. thr->cgpu_data = module;
  298. }
  299. dev = NULL;
  300. for_each_managed_proc(proc, master_dev)
  301. {
  302. cgpu_set_defaults(proc);
  303. proc->status = LIFE_INIT2;
  304. }
  305. if (!chain->clock_desired)
  306. {
  307. // Get a reasonable default frequency
  308. dev = master_dev;
  309. struct thr_info * const thr = dev->thr[0];
  310. struct avalonmm_module_state * const module = thr->cgpu_data;
  311. resend:
  312. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, module->module_id);
  313. avalonmm_write_cmd(fd, AMC_POLL, buf, AVALONMM_PKT_DATA_SIZE);
  314. while (avalonmm_poll_once(master_dev, &module_id))
  315. {
  316. if (module_id != module->module_id)
  317. continue;
  318. if (module->clock_actual)
  319. {
  320. chain->clock_desired = module->clock_actual;
  321. break;
  322. }
  323. else
  324. goto resend;
  325. }
  326. if (!chain->clock_desired)
  327. {
  328. switch (module->mmversion)
  329. {
  330. case 2014:
  331. chain->clock_desired = 1500;
  332. break;
  333. case 3314:
  334. chain->clock_desired = 450;
  335. break;
  336. }
  337. }
  338. }
  339. if (likely(chain->clock_desired))
  340. applog(LOG_DEBUG, "%s: Frequency is initialised with %d MHz", master_dev->dev_repr, chain->clock_desired);
  341. else
  342. applogr(false, LOG_ERR, "%s: No frequency detected, please use --set %s@%s:clock=MHZ", master_dev->dev_repr, master_dev->drv->dname, devpath);
  343. return true;
  344. }
  345. static
  346. bool avalonmm_send_swork(const int fd, struct avalonmm_chain_state * const chain, const struct stratum_work * const swork, uint32_t jobid, double *out_nonce_diff)
  347. {
  348. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  349. bytes_t coinbase = BYTES_INIT;
  350. int coinbase_len = bytes_len(&swork->coinbase);
  351. if (coinbase_len > AVALONMM_MAX_COINBASE_SIZE)
  352. return false;
  353. if (swork->merkles > AVALONMM_MAX_MERKLES)
  354. return false;
  355. pk_u32be(buf, 0, coinbase_len);
  356. const size_t xnonce2_offset = swork->nonce2_offset + work2d_pad_xnonce_size(swork) + work2d_xnonce1sz;
  357. pk_u32be(buf, 4, xnonce2_offset);
  358. pk_u32be(buf, 8, 4); // extranonce2 size, but only 4 is supported - smaller sizes are handled by limiting the range
  359. pk_u32be(buf, 0x0c, 0x24); // merkle_offset, always 0x24 for Bitcoin
  360. pk_u32be(buf, 0x10, swork->merkles);
  361. pk_u32be(buf, 0x14, 1); // diff? poorly defined
  362. pk_u32be(buf, 0x18, 0); // pool number - none of its business
  363. if (!avalonmm_write_cmd(fd, AMC_NEW_JOB, buf, 0x1c))
  364. return false;
  365. double nonce_diff = target_diff(swork->target);
  366. if (nonce_diff >= AVALONMM_MAX_NONCE_DIFF)
  367. set_target_to_pdiff(buf, nonce_diff = AVALONMM_MAX_NONCE_DIFF);
  368. else
  369. memcpy(buf, swork->target, 0x20);
  370. *out_nonce_diff = nonce_diff;
  371. if (!avalonmm_write_cmd(fd, AMC_TARGET, buf, 0x20))
  372. return false;
  373. pk_u32be(buf, 0, jobid);
  374. if (!avalonmm_write_cmd(fd, AMC_JOB_ID, buf, 4))
  375. return false;
  376. // Need to add extranonce padding and extranonce2
  377. bytes_cpy(&coinbase, &swork->coinbase);
  378. uint8_t *cbp = bytes_buf(&coinbase);
  379. cbp += swork->nonce2_offset;
  380. work2d_pad_xnonce(cbp, swork, false);
  381. cbp += work2d_pad_xnonce_size(swork);
  382. memcpy(cbp, &chain->xnonce1, work2d_xnonce1sz);
  383. cbp += work2d_xnonce1sz;
  384. if (!avalonmm_write_cmd(fd, AMC_COINBASE, bytes_buf(&coinbase), bytes_len(&coinbase)))
  385. return false;
  386. if (!avalonmm_write_cmd(fd, AMC_MERKLES, bytes_buf(&swork->merkle_bin), bytes_len(&swork->merkle_bin)))
  387. return false;
  388. uint8_t header_bin[0x80];
  389. memcpy(&header_bin[ 0], swork->header1, 0x24);
  390. memset(&header_bin[0x24], '\0', 0x20); // merkle root
  391. pk_u32be(header_bin, 0x44, swork->ntime);
  392. memcpy(&header_bin[0x48], swork->diffbits, 4);
  393. memset(&header_bin[0x4c], '\0', 4); // nonce
  394. memcpy(&header_bin[0x50], bfg_workpadding_bin, 0x30);
  395. if (!avalonmm_write_cmd(fd, AMC_BLKHDR, header_bin, sizeof(header_bin)))
  396. return false;
  397. // Avalon MM cannot handle xnonce2_size other than 4, and works in big endian, so we use a range to ensure the following bytes match
  398. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  399. uint8_t mm_xnonce2_start[4];
  400. uint32_t xnonce2_range;
  401. memset(mm_xnonce2_start, '\0', 4);
  402. cbp += work2d_xnonce2sz;
  403. for (int i = 1; i <= fixed_mm_xnonce2_bytes; ++i)
  404. mm_xnonce2_start[fixed_mm_xnonce2_bytes - i] = cbp++[0];
  405. if (fixed_mm_xnonce2_bytes > 0)
  406. xnonce2_range = (1 << (8 * work2d_xnonce2sz)) - 1;
  407. else
  408. xnonce2_range = 0xffffffff;
  409. pk_u32be(buf, 0, chain->fan_desired);
  410. pk_u32be(buf, 4, chain->voltcfg_desired);
  411. pk_u32be(buf, 8, chain->clock_desired);
  412. memcpy(&buf[0xc], mm_xnonce2_start, 4);
  413. pk_u32be(buf, 0x10, xnonce2_range);
  414. if (!avalonmm_write_cmd(fd, AMC_START, buf, 0x14))
  415. return false;
  416. return true;
  417. }
  418. static
  419. void avalonmm_free_job(struct avalonmm_job * const mmjob)
  420. {
  421. stratum_work_clean(&mmjob->swork);
  422. free(mmjob);
  423. }
  424. static
  425. bool avalonmm_update_swork_from_pool(struct cgpu_info * const master_dev, struct pool * const pool)
  426. {
  427. struct avalonmm_chain_state * const chain = master_dev->device_data;
  428. const int fd = master_dev->device_fd;
  429. struct avalonmm_job *mmjob = malloc(sizeof(*mmjob));
  430. *mmjob = (struct avalonmm_job){
  431. .jobid = chain->next_jobid,
  432. };
  433. cg_rlock(&pool->data_lock);
  434. stratum_work_cpy(&mmjob->swork, &pool->swork);
  435. cg_runlock(&pool->data_lock);
  436. timer_set_now(&mmjob->tv_prepared);
  437. mmjob->swork.data_lock_p = NULL;
  438. if (!avalonmm_send_swork(fd, chain, &mmjob->swork, mmjob->jobid, &mmjob->nonce_diff))
  439. {
  440. avalonmm_free_job(mmjob);
  441. return false;
  442. }
  443. applog(LOG_DEBUG, "%s: Upload of job id %08lx complete", master_dev->dev_repr, (unsigned long)mmjob->jobid);
  444. ++chain->next_jobid;
  445. struct avalonmm_job **jobentry = &chain->jobs[mmjob->jobid % AVALONMM_CACHED_JOBS];
  446. if (*jobentry)
  447. avalonmm_free_job(*jobentry);
  448. *jobentry = mmjob;
  449. return true;
  450. }
  451. static
  452. struct cgpu_info *avalonmm_dev_for_module_id(struct cgpu_info * const master_dev, const uint32_t module_id)
  453. {
  454. struct cgpu_info *dev = NULL;
  455. for_each_managed_proc(proc, master_dev)
  456. {
  457. if (dev == proc->device)
  458. continue;
  459. dev = proc->device;
  460. struct thr_info * const thr = dev->thr[0];
  461. struct avalonmm_module_state * const module = thr->cgpu_data;
  462. if (module->module_id == module_id)
  463. return dev;
  464. }
  465. return NULL;
  466. }
  467. static
  468. bool avalonmm_poll_once(struct cgpu_info * const master_dev, int64_t *out_module_id)
  469. {
  470. struct avalonmm_chain_state * const chain = master_dev->device_data;
  471. const int fd = master_dev->device_fd;
  472. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  473. enum avalonmm_reply reply;
  474. *out_module_id = -1;
  475. if (avalonmm_read(fd, LOG_ERR, &reply, buf, sizeof(buf)) < 0)
  476. return false;
  477. switch (reply)
  478. {
  479. case AMR_DETECT_ACK:
  480. break;
  481. case AMR_STATUS:
  482. {
  483. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  484. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  485. if (unlikely(!dev))
  486. {
  487. struct thr_info * const master_thr = master_dev->thr[0];
  488. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Status", (unsigned long)module_id);
  489. inc_hw_errors_only(master_thr);
  490. break;
  491. }
  492. *out_module_id = module_id;
  493. struct thr_info * const thr = dev->thr[0];
  494. struct avalonmm_module_state * const module = thr->cgpu_data;
  495. module->temp[0] = upk_u16be(buf, 0);
  496. module->temp[1] = upk_u16be(buf, 2);
  497. module->fan [0] = upk_u16be(buf, 4);
  498. module->fan [1] = upk_u16be(buf, 6);
  499. module->clock_actual = upk_u32be(buf, 8);
  500. module->voltcfg_actual = upk_u32be(buf, 0x0c);
  501. dev->temp = max(module->temp[0], module->temp[1]);
  502. break;
  503. }
  504. case AMR_NONCE:
  505. {
  506. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  507. const uint8_t * const backward_xnonce2 = &buf[8 + fixed_mm_xnonce2_bytes];
  508. const uint32_t nonce = upk_u32be(buf, 0x10) - AVALONMM_NONCE_OFFSET;
  509. const uint32_t jobid = upk_u32be(buf, 0x14);
  510. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  511. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  512. if (unlikely(!dev))
  513. {
  514. struct thr_info * const master_thr = master_dev->thr[0];
  515. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Nonce", (unsigned long)module_id);
  516. inc_hw_errors_only(master_thr);
  517. break;
  518. }
  519. *out_module_id = module_id;
  520. struct thr_info * const thr = dev->thr[0];
  521. bool invalid_jobid = false;
  522. if (unlikely((uint32_t)(chain->next_jobid - AVALONMM_CACHED_JOBS) > chain->next_jobid))
  523. // Jobs wrap around
  524. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS && jobid >= chain->next_jobid);
  525. else
  526. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS || jobid >= chain->next_jobid);
  527. struct avalonmm_job * const mmjob = chain->jobs[jobid % AVALONMM_CACHED_JOBS];
  528. if (unlikely(invalid_jobid || !mmjob))
  529. {
  530. applog(LOG_ERR, "%s: Bad job id %08lx", dev->dev_repr, (unsigned long)jobid);
  531. inc_hw_errors_only(thr);
  532. break;
  533. }
  534. uint8_t xnonce2[work2d_xnonce2sz];
  535. for (int i = 0; i < work2d_xnonce2sz; ++i)
  536. xnonce2[i] = backward_xnonce2[(work2d_xnonce2sz - 1) - i];
  537. work2d_submit_nonce(thr, &mmjob->swork, &mmjob->tv_prepared, xnonce2, chain->xnonce1, nonce, mmjob->swork.ntime, NULL, mmjob->nonce_diff);
  538. hashes_done2(thr, mmjob->nonce_diff * 0x100000000, NULL);
  539. break;
  540. }
  541. }
  542. return true;
  543. }
  544. static
  545. void avalonmm_poll(struct cgpu_info * const master_dev, int n)
  546. {
  547. int64_t dummy;
  548. while (n > 0)
  549. {
  550. if (avalonmm_poll_once(master_dev, &dummy))
  551. --n;
  552. }
  553. }
  554. static
  555. struct thr_info *avalonmm_should_disable(struct cgpu_info * const master_dev)
  556. {
  557. for_each_managed_proc(proc, master_dev)
  558. {
  559. struct thr_info * const thr = proc->thr[0];
  560. if (thr->pause || proc->deven != DEV_ENABLED)
  561. return thr;
  562. }
  563. return NULL;
  564. }
  565. static
  566. void avalonmm_minerloop(struct thr_info * const master_thr)
  567. {
  568. struct cgpu_info * const master_dev = master_thr->cgpu;
  569. const int fd = master_dev->device_fd;
  570. struct pool *nextpool = current_pool(), *pool = NULL;
  571. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  572. while (likely(!master_dev->shutdown))
  573. {
  574. if (avalonmm_should_disable(master_dev))
  575. {
  576. struct thr_info *thr;
  577. while ( (thr = avalonmm_should_disable(master_dev)) )
  578. {
  579. if (!thr->_mt_disable_called)
  580. if (avalonmm_write_cmd(fd, AMC_NEW_JOB, NULL, 0))
  581. {
  582. for_each_managed_proc(proc, master_dev)
  583. {
  584. struct thr_info * const thr = proc->thr[0];
  585. mt_disable_start(thr);
  586. }
  587. }
  588. notifier_read(thr->notifier);
  589. }
  590. for_each_managed_proc(proc, master_dev)
  591. {
  592. struct thr_info * const thr = proc->thr[0];
  593. mt_disable_finish(thr);
  594. }
  595. }
  596. master_thr->work_restart = false;
  597. if (!pool_has_usable_swork(nextpool))
  598. ; // FIXME
  599. else
  600. if (avalonmm_update_swork_from_pool(master_dev, nextpool))
  601. pool = nextpool;
  602. while (likely(!(master_thr->work_restart || ((nextpool = current_pool()) != pool && pool_has_usable_swork(nextpool)) || avalonmm_should_disable(master_dev))))
  603. {
  604. cgsleep_ms(10);
  605. struct cgpu_info *dev = NULL;
  606. for_each_managed_proc(proc, master_dev)
  607. {
  608. if (dev == proc->device)
  609. continue;
  610. dev = proc->device;
  611. struct thr_info * const thr = dev->thr[0];
  612. struct avalonmm_module_state * const module = thr->cgpu_data;
  613. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, module->module_id);
  614. avalonmm_write_cmd(fd, AMC_POLL, buf, AVALONMM_PKT_DATA_SIZE);
  615. avalonmm_poll(master_dev, 1);
  616. }
  617. }
  618. }
  619. }
  620. static
  621. const char *avalonmm_set_clock(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  622. {
  623. struct cgpu_info * const dev = proc->device;
  624. struct avalonmm_chain_state * const chain = dev->device_data;
  625. const int nv = atoi(newvalue);
  626. if (nv < 0)
  627. return "Invalid clock";
  628. chain->clock_desired = nv;
  629. return NULL;
  630. }
  631. static
  632. const char *avalonmm_set_fan(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const out_success)
  633. {
  634. struct cgpu_info * const dev = proc->device;
  635. struct avalonmm_chain_state * const chain = dev->device_data;
  636. const int nv = atoi(newvalue);
  637. if (nv < 0 || nv > 100)
  638. return "Invalid fan speed";
  639. chain->fan_desired = avalonmm_fan_config_from_percent(nv);
  640. return NULL;
  641. }
  642. static
  643. const char *avalonmm_set_voltage(struct cgpu_info * const proc, const char * const optname, const char * const newvalue, char * const replybuf, enum bfg_set_device_replytype * const success)
  644. {
  645. struct cgpu_info * const dev = proc->device;
  646. struct avalonmm_chain_state * const chain = dev->device_data;
  647. const long val = atof(newvalue) * 10000;
  648. if (val < 0 || val > 15000)
  649. return "Invalid voltage value";
  650. chain->voltcfg_desired = avalonmm_voltage_config_from_dmvolts(val);
  651. return NULL;
  652. }
  653. static const struct bfg_set_device_definition avalonmm_set_device_funcs[] = {
  654. {"clock", avalonmm_set_clock, "clock frequency"},
  655. {"fan", avalonmm_set_fan, "fan speed (0-100 percent)"},
  656. {"voltage", avalonmm_set_voltage, "voltage (0 to 1.5 volts)"},
  657. {NULL},
  658. };
  659. static
  660. struct api_data *avalonmm_api_extra_device_detail(struct cgpu_info * const proc)
  661. {
  662. struct cgpu_info * const dev = proc->device;
  663. struct avalonmm_chain_state * const chain = dev->device_data;
  664. struct thr_info * const thr = dev->thr[0];
  665. struct avalonmm_module_state * const module = thr->cgpu_data;
  666. struct api_data *root = NULL;
  667. root = api_add_uint32(root, "Module Id", &module->module_id, false);
  668. root = api_add_uint32(root, "ExtraNonce1", &chain->xnonce1, false);
  669. return root;
  670. }
  671. static
  672. struct api_data *avalonmm_api_extra_device_status(struct cgpu_info * const proc)
  673. {
  674. struct cgpu_info * const dev = proc->device;
  675. struct avalonmm_chain_state * const chain = dev->device_data;
  676. struct thr_info * const thr = dev->thr[0];
  677. struct avalonmm_module_state * const module = thr->cgpu_data;
  678. struct api_data *root = NULL;
  679. char buf[0x10];
  680. strcpy(buf, "Temperature");
  681. for (int i = 0; i < 2; ++i)
  682. {
  683. if (module->temp[i])
  684. {
  685. float temp = module->temp[i];
  686. buf[0xb] = '0' + i;
  687. root = api_add_temp(root, buf, &temp, true);
  688. }
  689. }
  690. {
  691. uint8_t fan_percent = avalonmm_fan_percent_from_config(chain->fan_desired);
  692. root = api_add_uint8(root, "Fan Percent", &fan_percent, true);
  693. }
  694. strcpy(buf, "Fan RPM ");
  695. for (int i = 0; i < 2; ++i)
  696. {
  697. if (module->fan[i])
  698. {
  699. buf[8] = '0' + i;
  700. root = api_add_uint16(root, buf, &module->fan[i], false);
  701. }
  702. }
  703. if (module->clock_actual)
  704. {
  705. double freq = module->clock_actual;
  706. root = api_add_freq(root, "Frequency", &freq, true);
  707. }
  708. if (module->voltcfg_actual)
  709. {
  710. float volts = avalonmm_dmvolts_from_voltage_config(module->voltcfg_actual);
  711. volts /= 10000;
  712. root = api_add_volts(root, "Voltage", &volts, true);
  713. }
  714. return root;
  715. }
  716. #ifdef HAVE_CURSES
  717. static
  718. void avalonmm_wlogprint_status(struct cgpu_info * const proc)
  719. {
  720. struct cgpu_info * const dev = proc->device;
  721. struct avalonmm_chain_state * const chain = dev->device_data;
  722. struct thr_info * const thr = dev->thr[0];
  723. struct avalonmm_module_state * const module = thr->cgpu_data;
  724. wlogprint("ExtraNonce1:%0*lx ModuleId:%lu\n", work2d_xnonce1sz * 2, (unsigned long)chain->xnonce1, (unsigned long)module->module_id);
  725. if (module->temp[0] && module->temp[1])
  726. {
  727. wlogprint("Temperatures: %uC %uC", (unsigned)module->temp[0], (unsigned)module->temp[1]);
  728. if (module->fan[0] || module->fan[1])
  729. wlogprint(" ");
  730. }
  731. unsigned fan_percent = avalonmm_fan_percent_from_config(chain->fan_desired);
  732. if (module->fan[0])
  733. {
  734. if (module->fan[1])
  735. wlogprint("Fans: %u RPM, %u RPM (%u%%)", (unsigned)module->fan[0], (unsigned)module->fan[1], fan_percent);
  736. else
  737. wlogprint("Fan: %u RPM (%u%%)", (unsigned)module->fan[0], fan_percent);
  738. }
  739. else
  740. if (module->fan[1])
  741. wlogprint("Fan: %u RPM (%u%%)", (unsigned)module->fan[1], fan_percent);
  742. else
  743. wlogprint("Fan: %u%%", fan_percent);
  744. wlogprint("\n");
  745. if (module->clock_actual)
  746. wlogprint("Clock speed: %lu\n", (unsigned long)module->clock_actual);
  747. if (module->voltcfg_actual)
  748. {
  749. const uint32_t dmvolts = avalonmm_dmvolts_from_voltage_config(module->voltcfg_actual);
  750. wlogprint("Voltage: %u.%04u V\n", (unsigned)(dmvolts / 10000), (unsigned)(dmvolts % 10000));
  751. }
  752. }
  753. static
  754. void avalonmm_tui_wlogprint_choices(struct cgpu_info * const proc)
  755. {
  756. wlogprint("[C]lock speed ");
  757. wlogprint("[F]an speed ");
  758. wlogprint("[V]oltage ");
  759. }
  760. static
  761. const char *avalonmm_tui_wrapper(struct cgpu_info * const proc, bfg_set_device_func_t func, const char * const prompt)
  762. {
  763. static char replybuf[0x20];
  764. char * const cvar = curses_input(prompt);
  765. if (!cvar)
  766. return "Cancelled\n";
  767. const char *reply = func(proc, NULL, cvar, NULL, NULL);
  768. free(cvar);
  769. if (reply)
  770. {
  771. snprintf(replybuf, sizeof(replybuf), "%s\n", reply);
  772. return replybuf;
  773. }
  774. return "Successful\n";
  775. }
  776. static
  777. const char *avalonmm_tui_handle_choice(struct cgpu_info * const proc, const int input)
  778. {
  779. switch (input)
  780. {
  781. case 'c': case 'C':
  782. return avalonmm_tui_wrapper(proc, avalonmm_set_clock , "Set clock speed (Avalon2: 1500; Avalon3: 450)");
  783. case 'f': case 'F':
  784. return avalonmm_tui_wrapper(proc, avalonmm_set_fan , "Set fan speed (0-100 percent)");
  785. case 'v': case 'V':
  786. return avalonmm_tui_wrapper(proc, avalonmm_set_voltage, "Set voltage (Avalon2: 1.0; Avalon3: 0.6625)");
  787. }
  788. return NULL;
  789. }
  790. #endif
  791. struct device_drv avalonmm_drv = {
  792. .dname = "avalonmm",
  793. .name = "AVM",
  794. .lowl_probe = avalonmm_lowl_probe,
  795. .thread_init = avalonmm_init,
  796. .minerloop = avalonmm_minerloop,
  797. .get_api_extra_device_detail = avalonmm_api_extra_device_detail,
  798. .get_api_extra_device_status = avalonmm_api_extra_device_status,
  799. #ifdef HAVE_CURSES
  800. .proc_wlogprint_status = avalonmm_wlogprint_status,
  801. .proc_tui_wlogprint_choices = avalonmm_tui_wlogprint_choices,
  802. .proc_tui_handle_choice = avalonmm_tui_handle_choice,
  803. #endif
  804. };