driver-avalonmm.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. /*
  2. * Copyright 2014 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <stdbool.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <unistd.h>
  15. #include <utlist.h>
  16. #include "deviceapi.h"
  17. #include "logging.h"
  18. #include "lowlevel.h"
  19. #include "lowl-vcom.h"
  20. #include "miner.h"
  21. #include "util.h"
  22. #include "work2d.h"
  23. #define AVALONMM_MAX_MODULES 4
  24. #define AVALONMM_MAX_COINBASE_SIZE (6 * 1024)
  25. #define AVALONMM_MAX_MERKLES 20
  26. // Must be a power of two
  27. #define AVALONMM_CACHED_JOBS 2
  28. #define AVALONMM_NONCE_OFFSET 0x180
  29. BFG_REGISTER_DRIVER(avalonmm_drv)
  30. #define AVALONMM_PKT_DATA_SIZE 0x20
  31. #define AVALONMM_PKT_SIZE (AVALONMM_PKT_DATA_SIZE + 7)
  32. enum avalonmm_cmd {
  33. AMC_DETECT = 0x0a,
  34. AMC_NEW_JOB = 0x0b,
  35. AMC_JOB_ID = 0x0c,
  36. AMC_COINBASE = 0x0d,
  37. AMC_MERKLES = 0x0e,
  38. AMC_BLKHDR = 0x0f,
  39. AMC_POLL = 0x10,
  40. AMC_TARGET = 0x11,
  41. AMC_START = 0x13,
  42. };
  43. enum avalonmm_reply {
  44. AMR_NONCE = 0x17,
  45. AMR_STATUS = 0x18,
  46. AMR_DETECT_ACK = 0x19,
  47. };
  48. static
  49. bool avalonmm_write_cmd(const int fd, const enum avalonmm_cmd cmd, const void *data, size_t datasz)
  50. {
  51. uint8_t packets = ((datasz + AVALONMM_PKT_DATA_SIZE - 1) / AVALONMM_PKT_DATA_SIZE) ?: 1;
  52. uint8_t pkt[AVALONMM_PKT_SIZE] = {'A', 'V', cmd, 1, packets};
  53. uint16_t crc;
  54. ssize_t r;
  55. while (true)
  56. {
  57. size_t copysz = AVALONMM_PKT_DATA_SIZE;
  58. if (datasz < copysz)
  59. {
  60. copysz = datasz;
  61. memset(&pkt[5 + copysz], '\0', AVALONMM_PKT_DATA_SIZE - copysz);
  62. }
  63. if (copysz)
  64. memcpy(&pkt[5], data, copysz);
  65. crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  66. pk_u16be(pkt, 5 + AVALONMM_PKT_DATA_SIZE, crc);
  67. r = write(fd, pkt, sizeof(pkt));
  68. if (opt_dev_protocol)
  69. {
  70. char hex[(sizeof(pkt) * 2) + 1];
  71. bin2hex(hex, pkt, sizeof(pkt));
  72. applog(LOG_DEBUG, "DEVPROTO fd=%d SEND: %s => %d", fd, hex, (int)r);
  73. }
  74. if (sizeof(pkt) != r)
  75. return false;
  76. datasz -= copysz;
  77. if (!datasz)
  78. break;
  79. data += copysz;
  80. ++pkt[3];
  81. }
  82. return true;
  83. }
  84. static
  85. ssize_t avalonmm_read(const int fd, const int logprio, enum avalonmm_reply *out_reply, void * const bufp, size_t bufsz)
  86. {
  87. uint8_t *buf = bufp;
  88. uint8_t pkt[AVALONMM_PKT_SIZE];
  89. uint8_t packets = 0, got = 0;
  90. uint16_t good_crc, actual_crc;
  91. ssize_t r;
  92. while (true)
  93. {
  94. r = serial_read(fd, pkt, sizeof(pkt));
  95. if (opt_dev_protocol)
  96. {
  97. if (r >= 0)
  98. {
  99. char hex[(r * 2) + 1];
  100. bin2hex(hex, pkt, r);
  101. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV: %s", fd, hex);
  102. }
  103. else
  104. applog(LOG_DEBUG, "DEVPROTO fd=%d RECV (%d)", fd, (int)r);
  105. }
  106. if (r != sizeof(pkt))
  107. return -1;
  108. if (memcmp(pkt, "AV", 2))
  109. applogr(-1, logprio, "%s: bad header", __func__);
  110. good_crc = crc16xmodem(&pkt[5], AVALONMM_PKT_DATA_SIZE);
  111. actual_crc = upk_u16le(pkt, 5 + AVALONMM_PKT_DATA_SIZE);
  112. if (good_crc != actual_crc)
  113. applogr(-1, logprio, "%s: bad CRC (good=%04x actual=%04x)", __func__, good_crc, actual_crc);
  114. *out_reply = pkt[2];
  115. if (!got)
  116. {
  117. if (pkt[3] != 1)
  118. applogr(-1, logprio, "%s: first packet is not index 1", __func__);
  119. ++got;
  120. packets = pkt[4];
  121. }
  122. else
  123. {
  124. if (pkt[3] != ++got)
  125. applogr(-1, logprio, "%s: packet %d is not index %d", __func__, got, got);
  126. if (pkt[4] != packets)
  127. applogr(-1, logprio, "%s: packet %d total packet count is %d rather than original value of %d", __func__, got, pkt[4], packets);
  128. }
  129. if (bufsz)
  130. {
  131. if (likely(bufsz > AVALONMM_PKT_DATA_SIZE))
  132. {
  133. memcpy(buf, &pkt[5], AVALONMM_PKT_DATA_SIZE);
  134. bufsz -= AVALONMM_PKT_DATA_SIZE;
  135. buf += AVALONMM_PKT_DATA_SIZE;
  136. }
  137. else
  138. {
  139. memcpy(buf, &pkt[5], bufsz);
  140. bufsz = 0;
  141. }
  142. }
  143. if (got == packets)
  144. break;
  145. }
  146. return (((ssize_t)got) * AVALONMM_PKT_DATA_SIZE);
  147. }
  148. static
  149. bool avalonmm_detect_one(const char * const devpath)
  150. {
  151. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  152. enum avalonmm_reply reply;
  153. const int fd = serial_open(devpath, 0, 1, true);
  154. struct cgpu_info *prev_cgpu = NULL;
  155. if (fd == -1)
  156. applogr(false, LOG_DEBUG, "%s: Failed to open %s", __func__, devpath);
  157. for (int i = 0; i < AVALONMM_MAX_MODULES; ++i)
  158. {
  159. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, i);
  160. avalonmm_write_cmd(fd, AMC_DETECT, buf, AVALONMM_PKT_DATA_SIZE);
  161. }
  162. while (avalonmm_read(fd, LOG_DEBUG, &reply, NULL, 0) > 0)
  163. {
  164. if (reply != AMR_DETECT_ACK)
  165. continue;
  166. int moduleno = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  167. struct cgpu_info * const cgpu = malloc(sizeof(*cgpu));
  168. *cgpu = (struct cgpu_info){
  169. .drv = &avalonmm_drv,
  170. .device_path = prev_cgpu ? prev_cgpu->device_path : strdup(devpath),
  171. .device_data = (void*)(intptr_t)moduleno,
  172. .deven = DEV_ENABLED,
  173. .procs = 1,
  174. .threads = prev_cgpu ? 0 : 1,
  175. };
  176. add_cgpu_slave(cgpu, prev_cgpu);
  177. prev_cgpu = cgpu;
  178. }
  179. serial_close(fd);
  180. return prev_cgpu;
  181. }
  182. static
  183. bool avalonmm_lowl_probe(const struct lowlevel_device_info * const info)
  184. {
  185. return vcom_lowl_probe_wrapper(info, avalonmm_detect_one);
  186. }
  187. struct avalonmm_job {
  188. struct stratum_work swork;
  189. uint32_t jobid;
  190. struct timeval tv_prepared;
  191. };
  192. struct avalonmm_chain_state {
  193. uint32_t xnonce1;
  194. struct avalonmm_job *jobs[AVALONMM_CACHED_JOBS];
  195. uint32_t next_jobid;
  196. };
  197. struct avalonmm_module_state {
  198. unsigned module_id;
  199. uint16_t temp[2];
  200. };
  201. static
  202. bool avalonmm_init(struct thr_info * const master_thr)
  203. {
  204. struct cgpu_info * const master_dev = master_thr->cgpu, *dev = NULL;
  205. const char * const devpath = master_dev->device_path;
  206. const int fd = serial_open(devpath, 0, 1, true);
  207. master_dev->device_fd = fd;
  208. if (unlikely(fd == -1))
  209. applogr(false, LOG_ERR, "%s: Failed to initialise", master_dev->dev_repr);
  210. struct avalonmm_chain_state * const chain = malloc(sizeof(*chain));
  211. *chain = (struct avalonmm_chain_state){
  212. .xnonce1 = 0,
  213. };
  214. work2d_init();
  215. if (!reserve_work2d_(&chain->xnonce1))
  216. {
  217. applog(LOG_ERR, "%s: Failed to reserve 2D work", master_dev->dev_repr);
  218. free(chain);
  219. serial_close(fd);
  220. return false;
  221. }
  222. for_each_managed_proc(proc, master_dev)
  223. {
  224. if (dev == proc->device)
  225. continue;
  226. dev = proc->device;
  227. struct thr_info * const thr = proc->thr[0];
  228. struct avalonmm_module_state * const module = malloc(sizeof(*module));
  229. *module = (struct avalonmm_module_state){
  230. .module_id = (intptr_t)dev->device_data,
  231. };
  232. proc->device_data = chain;
  233. thr->cgpu_data = module;
  234. }
  235. for_each_managed_proc(proc, master_dev)
  236. {
  237. proc->status = LIFE_INIT2;
  238. }
  239. return true;
  240. }
  241. static
  242. bool avalonmm_send_swork(const int fd, struct avalonmm_chain_state * const chain, const struct stratum_work * const swork, uint32_t jobid)
  243. {
  244. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  245. bytes_t coinbase = BYTES_INIT;
  246. int coinbase_len = bytes_len(&swork->coinbase);
  247. if (coinbase_len > AVALONMM_MAX_COINBASE_SIZE)
  248. return false;
  249. if (swork->merkles > AVALONMM_MAX_MERKLES)
  250. return false;
  251. pk_u32be(buf, 0, coinbase_len);
  252. // Avalon MM cannot handle xnonce2_size other than 4, and works in big endian, so we use a range to ensure the preceding bytes match
  253. const size_t real_xnonce2_offset = swork->nonce2_offset + work2d_pad_xnonce_size(swork) + work2d_xnonce1sz;
  254. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  255. const size_t mm_xnonce2_offset = real_xnonce2_offset - fixed_mm_xnonce2_bytes;
  256. pk_u32be(buf, 4, mm_xnonce2_offset);
  257. pk_u32be(buf, 8, 4); // extranonce2 size, but only 4 is supported - smaller sizes are handled by limiting the range
  258. pk_u32be(buf, 0x0c, 36); // merkle_offset, always 36 for Bitcoin
  259. pk_u32be(buf, 0x10, swork->merkles);
  260. pk_u32be(buf, 0x14, 1); // diff? poorly defined
  261. pk_u32be(buf, 0x18, 0); // pool number - none of its business
  262. if (!avalonmm_write_cmd(fd, AMC_NEW_JOB, buf, 0x1c))
  263. return false;
  264. memset(buf, '\xff', 0x1c);
  265. memset(&buf[0x1c], '\0', 4);
  266. if (!avalonmm_write_cmd(fd, AMC_TARGET, buf, 0x20))
  267. return false;
  268. pk_u32be(buf, 0, jobid);
  269. if (!avalonmm_write_cmd(fd, AMC_JOB_ID, buf, 4))
  270. return false;
  271. // Need to add extranonce padding and extranonce2
  272. bytes_cpy(&coinbase, &swork->coinbase);
  273. uint8_t *cbp = bytes_buf(&coinbase);
  274. cbp += swork->nonce2_offset;
  275. work2d_pad_xnonce(cbp, swork, false);
  276. cbp += work2d_pad_xnonce_size(swork);
  277. memcpy(cbp, &chain->xnonce1, work2d_xnonce1sz);
  278. cbp += work2d_xnonce1sz;
  279. if (!avalonmm_write_cmd(fd, AMC_COINBASE, bytes_buf(&coinbase), bytes_len(&coinbase)))
  280. return false;
  281. if (!avalonmm_write_cmd(fd, AMC_MERKLES, bytes_buf(&swork->merkle_bin), bytes_len(&swork->merkle_bin)))
  282. return false;
  283. uint8_t header_bin[0x80];
  284. memcpy(&header_bin[ 0], swork->header1, 0x24);
  285. memset(&header_bin[0x24], '\0', 0x20); // merkle root
  286. pk_u32be(header_bin, 0x44, swork->ntime);
  287. memcpy(&header_bin[0x48], swork->diffbits, 4);
  288. memset(&header_bin[0x4c], '\0', 4); // nonce
  289. memcpy(&header_bin[0x50], bfg_workpadding_bin, 0x30);
  290. if (!avalonmm_write_cmd(fd, AMC_BLKHDR, header_bin, sizeof(header_bin)))
  291. return false;
  292. uint8_t mm_xnonce2_start[4];
  293. uint32_t xnonce2_range;
  294. if (fixed_mm_xnonce2_bytes > 0)
  295. {
  296. memcpy(mm_xnonce2_start, &cbp[-fixed_mm_xnonce2_bytes], fixed_mm_xnonce2_bytes);
  297. memset(&mm_xnonce2_start[fixed_mm_xnonce2_bytes], '\0', work2d_xnonce2sz);
  298. xnonce2_range = (1 << (8 * work2d_xnonce2sz)) - 1;
  299. }
  300. else
  301. {
  302. memset(mm_xnonce2_start, '\0', 4);
  303. xnonce2_range = 0xffffffff;
  304. }
  305. pk_u32be(buf, 0, 80); // fan speed %
  306. uint16_t voltcfg = ((uint16_t)bitflip8((0x78 - /*deci-milli-volts*/6625 / 125) << 1 | 1)) << 8;
  307. pk_u32be(buf, 4, voltcfg);
  308. pk_u32be(buf, 8, 450/*freq*/);
  309. memcpy(&buf[0xc], mm_xnonce2_start, 4);
  310. pk_u32be(buf, 0x10, xnonce2_range);
  311. if (!avalonmm_write_cmd(fd, AMC_START, buf, 0x14))
  312. return false;
  313. return true;
  314. }
  315. static
  316. void avalonmm_free_job(struct avalonmm_job * const mmjob)
  317. {
  318. stratum_work_clean(&mmjob->swork);
  319. free(mmjob);
  320. }
  321. static
  322. bool avalonmm_update_swork_from_pool(struct cgpu_info * const master_dev, struct pool * const pool)
  323. {
  324. struct avalonmm_chain_state * const chain = master_dev->device_data;
  325. const int fd = master_dev->device_fd;
  326. struct avalonmm_job *mmjob = malloc(sizeof(*mmjob));
  327. *mmjob = (struct avalonmm_job){
  328. .jobid = chain->next_jobid,
  329. };
  330. cg_rlock(&pool->data_lock);
  331. stratum_work_cpy(&mmjob->swork, &pool->swork);
  332. cg_runlock(&pool->data_lock);
  333. timer_set_now(&mmjob->tv_prepared);
  334. mmjob->swork.data_lock_p = NULL;
  335. if (!avalonmm_send_swork(fd, chain, &mmjob->swork, mmjob->jobid))
  336. {
  337. avalonmm_free_job(mmjob);
  338. return false;
  339. }
  340. applog(LOG_DEBUG, "%s: Upload of job id %08lx complete", master_dev->dev_repr, (unsigned long)mmjob->jobid);
  341. ++chain->next_jobid;
  342. struct avalonmm_job **jobentry = &chain->jobs[mmjob->jobid % AVALONMM_CACHED_JOBS];
  343. if (*jobentry)
  344. avalonmm_free_job(*jobentry);
  345. *jobentry = mmjob;
  346. return true;
  347. }
  348. static
  349. bool avalonmm_update_swork(struct cgpu_info * const master_dev)
  350. {
  351. struct pool *pool = current_pool();
  352. if (!pool_has_usable_swork(pool))
  353. return false;
  354. return avalonmm_update_swork_from_pool(master_dev, pool);
  355. }
  356. static
  357. struct cgpu_info *avalonmm_dev_for_module_id(struct cgpu_info * const master_dev, const uint32_t module_id)
  358. {
  359. struct cgpu_info *dev = NULL;
  360. for_each_managed_proc(proc, master_dev)
  361. {
  362. if (dev == proc->device)
  363. continue;
  364. dev = proc->device;
  365. struct thr_info * const thr = dev->thr[0];
  366. struct avalonmm_module_state * const module = thr->cgpu_data;
  367. if (module->module_id == module_id)
  368. return dev;
  369. }
  370. return NULL;
  371. }
  372. static
  373. bool avalonmm_poll_once(struct cgpu_info * const master_dev)
  374. {
  375. struct avalonmm_chain_state * const chain = master_dev->device_data;
  376. const int fd = master_dev->device_fd;
  377. uint8_t buf[AVALONMM_PKT_DATA_SIZE];
  378. enum avalonmm_reply reply;
  379. if (avalonmm_read(fd, LOG_ERR, &reply, buf, sizeof(buf)) < 0)
  380. return false;
  381. switch (reply)
  382. {
  383. case AMR_STATUS:
  384. {
  385. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  386. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  387. if (unlikely(!dev))
  388. {
  389. struct thr_info * const master_thr = master_dev->thr[0];
  390. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Status", (unsigned long)module_id);
  391. inc_hw_errors_only(master_thr);
  392. break;
  393. }
  394. struct thr_info * const thr = dev->thr[0];
  395. struct avalonmm_module_state * const module = thr->cgpu_data;
  396. module->temp[0] = upk_u16be(buf, 0);
  397. module->temp[1] = upk_u16be(buf, 2);
  398. #if 0
  399. module->fan [0] = upk_u16be(buf, 4);
  400. module->fan [1] = upk_u16be(buf, 6);
  401. module->freq = upk_u32be(buf, 8);
  402. module->voltage = upk_u32be(buf, 0x0c);
  403. #endif
  404. dev->temp = max(module->temp[0], module->temp[1]);
  405. break;
  406. }
  407. case AMR_NONCE:
  408. {
  409. const int fixed_mm_xnonce2_bytes = (work2d_xnonce2sz >= 4) ? 0 : (4 - work2d_xnonce2sz);
  410. const uint8_t * const xnonce2 = &buf[8 + fixed_mm_xnonce2_bytes];
  411. const uint32_t nonce = upk_u32be(buf, 0x10) - AVALONMM_NONCE_OFFSET;
  412. const uint32_t jobid = upk_u32be(buf, 0x14);
  413. const uint32_t module_id = upk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4);
  414. struct cgpu_info * const dev = avalonmm_dev_for_module_id(master_dev, module_id);
  415. if (unlikely(!dev))
  416. {
  417. struct thr_info * const master_thr = master_dev->thr[0];
  418. applog(LOG_ERR, "%s: %s for unknown module id %lu", master_dev->dev_repr, "Nonce", (unsigned long)module_id);
  419. inc_hw_errors_only(master_thr);
  420. break;
  421. }
  422. struct thr_info * const thr = dev->thr[0];
  423. bool invalid_jobid = false;
  424. if (unlikely((uint32_t)(chain->next_jobid - AVALONMM_CACHED_JOBS) > chain->next_jobid))
  425. // Jobs wrap around
  426. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS && jobid >= chain->next_jobid);
  427. else
  428. invalid_jobid = (jobid < chain->next_jobid - AVALONMM_CACHED_JOBS || jobid >= chain->next_jobid);
  429. if (unlikely(invalid_jobid))
  430. {
  431. applog(LOG_ERR, "%s: Bad job id %08lx", dev->dev_repr, (unsigned long)jobid);
  432. inc_hw_errors_only(thr);
  433. break;
  434. }
  435. struct avalonmm_job * const mmjob = chain->jobs[jobid % AVALONMM_CACHED_JOBS];
  436. work2d_submit_nonce(thr, &mmjob->swork, &mmjob->tv_prepared, xnonce2, chain->xnonce1, nonce, mmjob->swork.ntime, NULL, 1.);
  437. break;
  438. }
  439. }
  440. return true;
  441. }
  442. static
  443. void avalonmm_poll(struct cgpu_info * const master_dev, int n)
  444. {
  445. while (n > 0)
  446. {
  447. if (avalonmm_poll_once(master_dev))
  448. --n;
  449. }
  450. }
  451. static
  452. void avalonmm_minerloop(struct thr_info * const master_thr)
  453. {
  454. struct cgpu_info * const master_dev = master_thr->cgpu;
  455. const int fd = master_dev->device_fd;
  456. uint8_t buf[AVALONMM_PKT_DATA_SIZE] = {0};
  457. while (likely(!master_dev->shutdown))
  458. {
  459. master_thr->work_restart = false;
  460. avalonmm_update_swork(master_dev);
  461. while (likely(!master_thr->work_restart))
  462. {
  463. struct cgpu_info *dev = NULL;
  464. int n = 0;
  465. for_each_managed_proc(proc, master_dev)
  466. {
  467. if (dev == proc->device)
  468. continue;
  469. dev = proc->device;
  470. struct thr_info * const thr = dev->thr[0];
  471. struct avalonmm_module_state * const module = thr->cgpu_data;
  472. pk_u32be(buf, AVALONMM_PKT_DATA_SIZE - 4, module->module_id);
  473. avalonmm_write_cmd(fd, AMC_POLL, buf, AVALONMM_PKT_DATA_SIZE);
  474. ++n;
  475. }
  476. avalonmm_poll(master_dev, n);
  477. cgsleep_ms(100);
  478. }
  479. }
  480. }
  481. struct device_drv avalonmm_drv = {
  482. .dname = "avalonmm",
  483. .name = "AVM",
  484. .lowl_probe = avalonmm_lowl_probe,
  485. .thread_init = avalonmm_init,
  486. .minerloop = avalonmm_minerloop,
  487. };