driver-hashfast.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. /*
  2. * Copyright 2013 Luke Dashjr
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 3 of the License, or (at your option)
  7. * any later version. See COPYING for more details.
  8. */
  9. #include "config.h"
  10. #include <stdbool.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <string.h>
  14. #include <unistd.h>
  15. #include <utlist.h>
  16. #include "deviceapi.h"
  17. #include "logging.h"
  18. #include "lowlevel.h"
  19. #include "lowl-vcom.h"
  20. #include "util.h"
  21. BFG_REGISTER_DRIVER(hashfast_ums_drv)
  22. #define HASHFAST_QUEUE_MEMORY 0x20
  23. #define HASHFAST_ALL_CHIPS 0xff
  24. #define HASHFAST_ALL_CORES 0xff
  25. #define HASHFAST_HEADER_SIZE 8
  26. #define HASHFAST_MAX_DATA 0x3fc
  27. #define HASHFAST_HASH_SIZE (0x20 + 0xc + 4 + 4 + 2 + 1 + 1)
  28. enum hashfast_opcode {
  29. HFOP_NULL = 0,
  30. HFOP_ROOT = 1,
  31. HFOP_RESET = 2,
  32. HFOP_PLL_CONFIG = 3,
  33. HFOP_ADDRESS = 4,
  34. HFOP_READDRESS = 5,
  35. HFOP_HIGHEST = 6,
  36. HFOP_BAUD = 7,
  37. HFOP_UNROOT = 8,
  38. HFOP_HASH = 9,
  39. HFOP_NONCE = 0x0a,
  40. HFOP_ABORT = 0x0b,
  41. HFOP_STATUS = 0x0c,
  42. HFOP_GPIO = 0x0d,
  43. HFOP_CONFIG = 0x0e,
  44. HFOP_STATISTICS = 0x0f,
  45. HFOP_GROUP = 0x10,
  46. HFOP_CLOCKGATE = 0x11,
  47. HFOP_USB_INIT = 0x80,
  48. HFOP_GET_TRACE = 0x81,
  49. HFOP_LOOPBACK_USB = 0x82,
  50. HFOP_LOOPBACK_UART = 0x83,
  51. HFOP_DFU = 0x84,
  52. HFOP_USB_SHUTDOWN = 0x85,
  53. HFOP_DIE_STATUS = 0x86,
  54. HFOP_GWQ_STATUS = 0x87,
  55. HFOP_WORK_RESTART = 0x88,
  56. HFOP_USB_STATS1 = 0x89,
  57. HFOP_USB_GWQSTATS = 0x8a,
  58. HFOP_USB_NOTICE = 0x8b,
  59. HFOP_USB_DEBUG = 0xff,
  60. };
  61. typedef unsigned long hashfast_isn_t;
  62. static inline
  63. float hashfast_temperature_conv(const uint8_t * const data)
  64. {
  65. // Temperature is 12-bit fraction ranging between -61.5 C and ~178.5 C
  66. int32_t tempdata = ((uint32_t)data[1] << 8) | data[0];
  67. tempdata &= 0xfff;
  68. tempdata *= 240;
  69. tempdata -= 251904; // 61.5 * 4096
  70. float temp = tempdata;
  71. temp /= 4096.;
  72. return temp;
  73. }
  74. struct hashfast_parsed_msg {
  75. uint8_t opcode;
  76. uint8_t chipaddr;
  77. uint8_t coreaddr;
  78. uint16_t hdata;
  79. uint8_t data[HASHFAST_MAX_DATA];
  80. size_t datalen;
  81. };
  82. static
  83. ssize_t hashfast_write(const int fd, void * const buf, size_t bufsz)
  84. {
  85. const ssize_t rv = write(fd, buf, bufsz);
  86. if (opt_debug && opt_dev_protocol)
  87. {
  88. char hex[(bufsz * 2) + 1];
  89. bin2hex(hex, buf, bufsz);
  90. if (rv < 0)
  91. applog(LOG_DEBUG, "%s fd=%d: SEND (%s) => %d",
  92. "hashfast", fd, hex, (int)rv);
  93. else
  94. if (rv < bufsz)
  95. applog(LOG_DEBUG, "%s fd=%d: SEND %.*s(%s)",
  96. "hashfast", fd, rv * 2, hex, &hex[rv * 2]);
  97. else
  98. if (rv > bufsz)
  99. applog(LOG_DEBUG, "%s fd=%d: SEND %s => +%d",
  100. "hashfast", fd, hex, (int)(rv - bufsz));
  101. else
  102. applog(LOG_DEBUG, "%s fd=%d: SEND %s",
  103. "hashfast", fd, hex);
  104. }
  105. return rv;
  106. }
  107. static
  108. ssize_t hashfast_read(const int fd, void * const buf, size_t bufsz)
  109. {
  110. const ssize_t rv = serial_read(fd, buf, bufsz);
  111. if (opt_debug && opt_dev_protocol && rv)
  112. {
  113. char hex[(rv * 2) + 1];
  114. bin2hex(hex, buf, rv);
  115. applog(LOG_DEBUG, "%s fd=%d: RECV %s",
  116. "hashfast", fd, hex);
  117. }
  118. return rv;
  119. }
  120. static
  121. bool hashfast_prepare_msg(uint8_t * const buf, const uint8_t opcode, const uint8_t chipaddr, const uint8_t coreaddr, const uint16_t hdata, const size_t datalen)
  122. {
  123. buf[0] = '\xaa';
  124. buf[1] = opcode;
  125. buf[2] = chipaddr;
  126. buf[3] = coreaddr;
  127. buf[4] = hdata & 0xff;
  128. buf[5] = hdata >> 8;
  129. if (datalen > 1020 || datalen % 4)
  130. return false;
  131. buf[6] = datalen / 4;
  132. buf[7] = crc8ccitt(&buf[1], 6);
  133. return true;
  134. }
  135. static
  136. bool hashfast_send_msg(const int fd, uint8_t * const buf, const uint8_t opcode, const uint8_t chipaddr, const uint8_t coreaddr, const uint16_t hdata, const size_t datalen)
  137. {
  138. if (!hashfast_prepare_msg(buf, opcode, chipaddr, coreaddr, hdata, datalen))
  139. return false;
  140. const size_t buflen = HASHFAST_HEADER_SIZE + datalen;
  141. return (buflen == hashfast_write(fd, buf, buflen));
  142. }
  143. static
  144. bool hashfast_parse_msg(const int fd, struct hashfast_parsed_msg * const out_msg)
  145. {
  146. uint8_t buf[HASHFAST_HEADER_SIZE];
  147. startover:
  148. if (HASHFAST_HEADER_SIZE != hashfast_read(fd, buf, HASHFAST_HEADER_SIZE))
  149. return false;
  150. uint8_t *p = memchr(buf, '\xaa', HASHFAST_HEADER_SIZE);
  151. if (p != buf)
  152. {
  153. ignoresome:
  154. if (!p)
  155. goto startover;
  156. int moreneeded = p - buf;
  157. int alreadyhave = HASHFAST_HEADER_SIZE - moreneeded;
  158. memmove(buf, p, alreadyhave);
  159. if (moreneeded != hashfast_read(fd, &buf[alreadyhave], moreneeded))
  160. return false;
  161. }
  162. const uint8_t correct_crc8 = crc8ccitt(&buf[1], 6);
  163. if (buf[7] != correct_crc8)
  164. {
  165. p = memchr(&buf[1], '\xaa', HASHFAST_HEADER_SIZE - 1);
  166. goto ignoresome;
  167. }
  168. out_msg->opcode = buf[1];
  169. out_msg->chipaddr = buf[2];
  170. out_msg->coreaddr = buf[3];
  171. out_msg->hdata = (uint16_t)buf[4] | ((uint16_t)buf[5] << 8);
  172. out_msg->datalen = buf[6] * 4;
  173. return (out_msg->datalen == hashfast_read(fd, &out_msg->data[0], out_msg->datalen));
  174. }
  175. static
  176. bool hashfast_lowl_match(const struct lowlevel_device_info * const info)
  177. {
  178. if (!lowlevel_match_id(info, &lowl_vcom, 0, 0))
  179. return false;
  180. return (info->manufacturer && strstr(info->manufacturer, "HashFast"));
  181. }
  182. static
  183. bool hashfast_detect_one(const char * const devpath)
  184. {
  185. uint16_t clock = 550;
  186. uint8_t buf[HASHFAST_HEADER_SIZE];
  187. const int fd = serial_open(devpath, 0, 100, true);
  188. if (fd == -1)
  189. {
  190. applog(LOG_DEBUG, "%s: Failed to open %s", __func__, devpath);
  191. return false;
  192. }
  193. struct hashfast_parsed_msg * const pmsg = malloc(sizeof(*pmsg));
  194. hashfast_send_msg(fd, buf, HFOP_USB_INIT, 0, 0, clock, 0);
  195. do {
  196. if (!hashfast_parse_msg(fd, pmsg))
  197. {
  198. applog(LOG_DEBUG, "%s: Failed to parse response on %s",
  199. __func__, devpath);
  200. serial_close(fd);
  201. goto err;
  202. }
  203. } while (pmsg->opcode != HFOP_USB_INIT);
  204. serial_close(fd);
  205. const int expectlen = 0x20 + (pmsg->chipaddr * pmsg->coreaddr) / 8;
  206. if (pmsg->datalen < expectlen)
  207. {
  208. applog(LOG_DEBUG, "%s: USB_INIT response too short on %s (%d < %d)",
  209. __func__, devpath, (int)pmsg->datalen, expectlen);
  210. goto err;
  211. }
  212. if (pmsg->data[8] != 0)
  213. {
  214. applog(LOG_DEBUG, "%s: USB_INIT failed on %s (err=%d)",
  215. __func__, devpath, pmsg->data[8]);
  216. goto err;
  217. }
  218. struct cgpu_info * const cgpu = malloc(sizeof(*cgpu));
  219. *cgpu = (struct cgpu_info){
  220. .drv = &hashfast_ums_drv,
  221. .device_path = strdup(devpath),
  222. .deven = DEV_ENABLED,
  223. .procs = (pmsg->chipaddr * pmsg->coreaddr),
  224. .threads = 1,
  225. .device_data = pmsg,
  226. };
  227. return add_cgpu(cgpu);
  228. err:
  229. free(pmsg);
  230. return false;
  231. }
  232. static
  233. bool hashfast_lowl_probe(const struct lowlevel_device_info * const info)
  234. {
  235. return vcom_lowl_probe_wrapper(info, hashfast_detect_one);
  236. }
  237. struct hashfast_dev_state {
  238. uint8_t cores_per_chip;
  239. int fd;
  240. struct hashfast_chip_state *chipstates;
  241. };
  242. struct hashfast_chip_state {
  243. struct cgpu_info **coreprocs;
  244. hashfast_isn_t last_isn;
  245. };
  246. struct hashfast_core_state {
  247. uint8_t chipaddr;
  248. uint8_t coreaddr;
  249. int next_device_id;
  250. uint8_t last_seq;
  251. hashfast_isn_t last_isn;
  252. hashfast_isn_t last2_isn;
  253. bool has_pending;
  254. unsigned queued;
  255. };
  256. static
  257. bool hashfast_init(struct thr_info * const master_thr)
  258. {
  259. struct cgpu_info * const dev = master_thr->cgpu, *proc;
  260. struct hashfast_parsed_msg * const pmsg = dev->device_data;
  261. struct hashfast_dev_state * const devstate = malloc(sizeof(*devstate));
  262. struct hashfast_chip_state * const chipstates = malloc(sizeof(*chipstates) * pmsg->chipaddr), *chipstate;
  263. struct hashfast_core_state * const corestates = malloc(sizeof(*corestates) * dev->procs), *cs;
  264. int i;
  265. *devstate = (struct hashfast_dev_state){
  266. .chipstates = chipstates,
  267. .cores_per_chip = pmsg->coreaddr,
  268. .fd = serial_open(dev->device_path, 0, 1, true),
  269. };
  270. for (i = 0; i < pmsg->chipaddr; ++i)
  271. {
  272. chipstate = &chipstates[i];
  273. *chipstate = (struct hashfast_chip_state){
  274. .coreprocs = malloc(sizeof(struct cgpu_info *) * pmsg->coreaddr),
  275. };
  276. }
  277. for ((i = 0), (proc = dev); proc; ++i, (proc = proc->next_proc))
  278. {
  279. struct thr_info * const thr = proc->thr[0];
  280. const bool core_is_working = pmsg->data[0x20 + (i / 8)] & (1 << (i % 8));
  281. if (!core_is_working)
  282. proc->deven = DEV_RECOVER_DRV;
  283. proc->device_data = devstate;
  284. thr->cgpu_data = cs = &corestates[i];
  285. *cs = (struct hashfast_core_state){
  286. .chipaddr = i / pmsg->coreaddr,
  287. .coreaddr = i % pmsg->coreaddr,
  288. };
  289. chipstates[cs->chipaddr].coreprocs[cs->coreaddr] = proc;
  290. }
  291. free(pmsg);
  292. // TODO: actual clock = [12,13]
  293. timer_set_now(&master_thr->tv_poll);
  294. return true;
  295. }
  296. static
  297. bool hashfast_queue_append(struct thr_info * const thr, struct work * const work)
  298. {
  299. struct cgpu_info * const proc = thr->cgpu;
  300. struct hashfast_dev_state * const devstate = proc->device_data;
  301. const int fd = devstate->fd;
  302. struct hashfast_core_state * const cs = thr->cgpu_data;
  303. struct hashfast_chip_state * const chipstate = &devstate->chipstates[cs->chipaddr];
  304. const size_t cmdlen = HASHFAST_HEADER_SIZE + HASHFAST_HASH_SIZE;
  305. uint8_t cmd[cmdlen];
  306. uint8_t * const hashdata = &cmd[HASHFAST_HEADER_SIZE];
  307. hashfast_isn_t isn;
  308. uint8_t seq;
  309. if (cs->has_pending)
  310. {
  311. thr->queue_full = true;
  312. return false;
  313. }
  314. isn = ++chipstate->last_isn;
  315. seq = ++cs->last_seq;
  316. work->device_id = seq;
  317. cs->last2_isn = cs->last_isn;
  318. cs->last_isn = isn;
  319. hashfast_prepare_msg(cmd, HFOP_HASH, cs->chipaddr, cs->coreaddr, (cs->coreaddr << 8) | seq, 56);
  320. memcpy(&hashdata[ 0], work->midstate, 0x20);
  321. memcpy(&hashdata[0x20], &work->data[64], 0xc);
  322. memset(&hashdata[0x2c], '\0', 0xa); // starting_nonce, nonce_loops, ntime_loops
  323. hashdata[0x36] = 32; // search target (number of zero bits)
  324. hashdata[0x37] = 0;
  325. cs->has_pending = true;
  326. if (cmdlen != hashfast_write(fd, cmd, cmdlen))
  327. return false;
  328. DL_APPEND(thr->work, work);
  329. if (cs->queued > HASHFAST_QUEUE_MEMORY)
  330. {
  331. struct work * const old_work = thr->work;
  332. DL_DELETE(thr->work, old_work);
  333. free_work(old_work);
  334. }
  335. else
  336. ++cs->queued;
  337. return true;
  338. }
  339. static
  340. void hashfast_queue_flush(struct thr_info * const thr)
  341. {
  342. struct cgpu_info * const proc = thr->cgpu;
  343. struct hashfast_dev_state * const devstate = proc->device_data;
  344. const int fd = devstate->fd;
  345. struct hashfast_core_state * const cs = thr->cgpu_data;
  346. uint8_t cmd[HASHFAST_HEADER_SIZE];
  347. uint16_t hdata = 2;
  348. if ((!thr->work) || stale_work(thr->work->prev, true))
  349. {
  350. applog(LOG_DEBUG, "%"PRIpreprv": Flushing both active and pending work",
  351. proc->proc_repr);
  352. hdata |= 1;
  353. }
  354. else
  355. applog(LOG_DEBUG, "%"PRIpreprv": Flushing pending work",
  356. proc->proc_repr);
  357. hashfast_send_msg(fd, cmd, HFOP_ABORT, cs->chipaddr, cs->coreaddr, hdata, 0);
  358. }
  359. static
  360. struct cgpu_info *hashfast_find_proc(struct thr_info * const master_thr, int chipaddr, int coreaddr)
  361. {
  362. struct cgpu_info *proc = master_thr->cgpu;
  363. struct hashfast_dev_state * const devstate = proc->device_data;
  364. if (coreaddr >= devstate->cores_per_chip)
  365. return NULL;
  366. const unsigned chip_count = proc->procs / devstate->cores_per_chip;
  367. if (chipaddr >= chip_count)
  368. return NULL;
  369. struct hashfast_chip_state * const chipstate = &devstate->chipstates[chipaddr];
  370. return chipstate->coreprocs[coreaddr];
  371. }
  372. static
  373. hashfast_isn_t hashfast_get_isn(struct hashfast_chip_state * const chipstate, uint16_t hfseq)
  374. {
  375. const uint8_t coreaddr = hfseq >> 8;
  376. const uint8_t seq = hfseq & 0xff;
  377. struct cgpu_info * const proc = chipstate->coreprocs[coreaddr];
  378. struct thr_info * const thr = proc->thr[0];
  379. struct hashfast_core_state * const cs = thr->cgpu_data;
  380. if (cs->last_seq == seq)
  381. return cs->last_isn;
  382. if (cs->last_seq == (uint8_t)(seq + 1))
  383. return cs->last2_isn;
  384. return 0;
  385. }
  386. static
  387. void hashfast_submit_nonce(struct thr_info * const thr, struct work * const work, const uint32_t nonce, const bool searched)
  388. {
  389. struct cgpu_info * const proc = thr->cgpu;
  390. struct hashfast_core_state * const cs = thr->cgpu_data;
  391. applog(LOG_DEBUG, "%"PRIpreprv": Found nonce for seq %02x (last=%02x): %08lx%s",
  392. proc->proc_repr, (unsigned)work->device_id, (unsigned)cs->last_seq,
  393. (unsigned long)nonce, searched ? " (searched)" : "");
  394. submit_nonce(thr, work, nonce);
  395. }
  396. static
  397. bool hashfast_poll_msg(struct thr_info * const master_thr)
  398. {
  399. struct cgpu_info * const dev = master_thr->cgpu;
  400. struct hashfast_dev_state * const devstate = dev->device_data;
  401. const int fd = devstate->fd;
  402. struct hashfast_parsed_msg msg;
  403. if (!hashfast_parse_msg(fd, &msg))
  404. return false;
  405. switch (msg.opcode)
  406. {
  407. case HFOP_NONCE:
  408. {
  409. const uint8_t *data = msg.data;
  410. for (int i = msg.datalen / 8; i; --i, (data = &data[8]))
  411. {
  412. const uint32_t nonce = (data[0] << 0)
  413. | (data[1] << 8)
  414. | (data[2] << 16)
  415. | (data[3] << 24);
  416. const uint8_t seq = data[4];
  417. const uint8_t coreaddr = data[5];
  418. // uint32_t ntime = data[6] | ((data[7] & 0xf) << 8);
  419. const bool search = data[7] & 0x10;
  420. struct cgpu_info * const proc = hashfast_find_proc(master_thr, msg.chipaddr, coreaddr);
  421. if (unlikely(!proc))
  422. {
  423. applog(LOG_ERR, "%s: Unknown chip/core address %u/%u",
  424. dev->dev_repr, (unsigned)msg.chipaddr, (unsigned)coreaddr);
  425. inc_hw_errors_only(master_thr);
  426. continue;
  427. }
  428. struct thr_info * const thr = proc->thr[0];
  429. struct hashfast_core_state * const cs = thr->cgpu_data;
  430. struct work *work;
  431. DL_SEARCH_SCALAR(thr->work, work, device_id, seq);
  432. if (unlikely(!work))
  433. {
  434. applog(LOG_WARNING, "%"PRIpreprv": Unknown seq %02x (last=%02x)",
  435. proc->proc_repr, (unsigned)seq, (unsigned)cs->last_seq);
  436. inc_hw_errors2(thr, NULL, &nonce);
  437. continue;
  438. }
  439. unsigned nonces_found = 1;
  440. hashfast_submit_nonce(thr, work, nonce, false);
  441. if (search)
  442. {
  443. for (int noffset = 1; noffset <= 0x80; ++noffset)
  444. {
  445. const uint32_t nonce2 = nonce + noffset;
  446. if (test_nonce(work, nonce2, false))
  447. {
  448. hashfast_submit_nonce(thr, work, nonce2, true);
  449. ++nonces_found;
  450. }
  451. }
  452. if (!nonces_found)
  453. {
  454. inc_hw_errors_only(thr);
  455. applog(LOG_WARNING, "%"PRIpreprv": search=1, but failed to turn up any additional solutions",
  456. proc->proc_repr);
  457. }
  458. }
  459. hashes_done2(thr, 0x100000000 * nonces_found, NULL);
  460. }
  461. break;
  462. }
  463. case HFOP_STATUS:
  464. {
  465. const uint8_t *data = &msg.data[8];
  466. struct cgpu_info *proc = hashfast_find_proc(master_thr, msg.chipaddr, 0);
  467. if (unlikely(!proc))
  468. {
  469. applog(LOG_ERR, "%s: Unknown chip address %u",
  470. dev->dev_repr, (unsigned)msg.chipaddr);
  471. inc_hw_errors_only(master_thr);
  472. break;
  473. }
  474. struct hashfast_chip_state * const chipstate = &devstate->chipstates[msg.chipaddr];
  475. hashfast_isn_t isn = hashfast_get_isn(chipstate, msg.hdata);
  476. const float temp = hashfast_temperature_conv(&msg.data[0]);
  477. int cores_uptodate, cores_active, cores_pending, cores_transitioned;
  478. cores_uptodate = cores_active = cores_pending = cores_transitioned = 0;
  479. for (int i = 0; i < devstate->cores_per_chip; ++i, (proc = proc->next_proc))
  480. {
  481. struct thr_info * const thr = proc->thr[0];
  482. struct hashfast_core_state * const cs = thr->cgpu_data;
  483. const uint8_t bits = data[i / 4] >> (2 * (i % 4));
  484. const bool has_active = bits & 1;
  485. const bool has_pending = bits & 2;
  486. bool try_transition = true;
  487. proc->temp = temp;
  488. if (cs->last_isn <= isn)
  489. ++cores_uptodate;
  490. else
  491. try_transition = false;
  492. if (has_active)
  493. ++cores_active;
  494. if (has_pending)
  495. ++cores_pending;
  496. else
  497. if (try_transition)
  498. {
  499. ++cores_transitioned;
  500. cs->has_pending = false;
  501. thr->queue_full = false;
  502. }
  503. }
  504. applog(LOG_DEBUG, "%s: STATUS from chipaddr=0x%02x with hdata=0x%04x (isn=0x%lx): total=%d uptodate=%d active=%d pending=%d transitioned=%d",
  505. dev->dev_repr, (unsigned)msg.chipaddr, (unsigned)msg.hdata, isn,
  506. devstate->cores_per_chip, cores_uptodate,
  507. cores_active, cores_pending, cores_transitioned);
  508. break;
  509. }
  510. }
  511. return true;
  512. }
  513. static
  514. void hashfast_poll(struct thr_info * const master_thr)
  515. {
  516. struct cgpu_info * const dev = master_thr->cgpu;
  517. struct timeval tv_timeout;
  518. timer_set_delay_from_now(&tv_timeout, 10000);
  519. while (true)
  520. {
  521. if (!hashfast_poll_msg(master_thr))
  522. {
  523. applog(LOG_DEBUG, "%s poll: No more messages", dev->dev_repr);
  524. break;
  525. }
  526. if (timer_passed(&tv_timeout, NULL))
  527. {
  528. applog(LOG_DEBUG, "%s poll: 10ms timeout met", dev->dev_repr);
  529. break;
  530. }
  531. }
  532. timer_set_delay_from_now(&master_thr->tv_poll, 100000);
  533. }
  534. struct device_drv hashfast_ums_drv = {
  535. .dname = "hashfast_ums",
  536. .name = "HFA",
  537. .lowl_match = hashfast_lowl_match,
  538. .lowl_probe = hashfast_lowl_probe,
  539. .thread_init = hashfast_init,
  540. .minerloop = minerloop_queue,
  541. .queue_append = hashfast_queue_append,
  542. .queue_flush = hashfast_queue_flush,
  543. .poll = hashfast_poll,
  544. };