driver-titan.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. /*
  2. * Copyright 2014 Vitalii Demianets
  3. * Copyright 2014 KnCMiner
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the Free
  7. * Software Foundation; either version 3 of the License, or (at your option)
  8. * any later version. See COPYING for more details.
  9. */
  10. #include <fcntl.h>
  11. #include <sys/ioctl.h>
  12. #include "deviceapi.h"
  13. #include "logging.h"
  14. #include "miner.h"
  15. #include "util.h"
  16. #include "titan-asic.h"
  17. #define KNC_TITAN_DEFAULT_FREQUENCY 275
  18. #define KNC_TITAN_HWERR_DISABLE_SECS 10
  19. #define KNC_POLL_INTERVAL_US 10000
  20. /* Work queue pre-fill level.
  21. * Must be high enough to supply all ASICs with works after a flush */
  22. #define WORK_QUEUE_PREFILL 10
  23. /* Specify here minimum number of leading zeroes in hash */
  24. #define DEFAULT_DIFF_FILTERING_ZEROES 24
  25. #define DEFAULT_DIFF_FILTERING_FLOAT (1. / ((double)(0x00000000FFFFFFFF >> DEFAULT_DIFF_FILTERING_ZEROES)))
  26. #define DEFAULT_DIFF_HASHES_PER_NONCE (1 << DEFAULT_DIFF_FILTERING_ZEROES)
  27. BFG_REGISTER_DRIVER(knc_titan_drv)
  28. /* 3 - default number of threads per core */
  29. static int opt_knc_threads_per_core = 3;
  30. static const struct bfg_set_device_definition knc_titan_set_device_funcs[];
  31. struct knc_titan_core {
  32. int asicno;
  33. int dieno; /* inside asic */
  34. int coreno; /* inside die */
  35. struct knc_titan_die *die;
  36. struct cgpu_info *proc;
  37. int hwerr_in_row;
  38. int hwerr_disable_time;
  39. struct timeval enable_at;
  40. struct timeval first_hwerr;
  41. struct nonce_report last_nonce;
  42. };
  43. struct knc_titan_die {
  44. int asicno;
  45. int dieno; /* inside asic */
  46. int cores;
  47. struct cgpu_info *first_proc;
  48. int freq;
  49. };
  50. struct knc_titan_info {
  51. void *ctx;
  52. struct cgpu_info *cgpu;
  53. int cores;
  54. struct knc_titan_die dies[KNC_TITAN_MAX_ASICS][KNC_TITAN_DIES_PER_ASIC];
  55. /* Per-ASIC data */
  56. bool need_flush[KNC_TITAN_MAX_ASICS];
  57. int next_slot[KNC_TITAN_MAX_ASICS];
  58. /* First slot after flush. If next_slot reaches this, then
  59. * we need to re-flush all the cores to avoid duplicating slot numbers
  60. * for different works */
  61. int first_slot[KNC_TITAN_MAX_ASICS];
  62. struct work *workqueue;
  63. int workqueue_size;
  64. int workqueue_max;
  65. int next_id;
  66. struct work *devicework;
  67. };
  68. static bool knc_titan_detect_one(const char *devpath)
  69. {
  70. static struct cgpu_info *prev_cgpu = NULL;
  71. struct cgpu_info *cgpu;
  72. void *ctx;
  73. struct knc_titan_info *knc;
  74. int cores = 0, asic, die;
  75. struct knc_die_info die_info;
  76. char repr[6];
  77. cgpu = malloc(sizeof(*cgpu));
  78. if (unlikely(!cgpu))
  79. quit(1, "Failed to alloc cgpu_info");
  80. if (!prev_cgpu) {
  81. if (NULL == (ctx = knc_trnsp_new(NULL))) {
  82. free(cgpu);
  83. return false;
  84. }
  85. knc = calloc(1, sizeof(*knc));
  86. if (unlikely(!knc))
  87. quit(1, "Failed to alloc knc_titan_info");
  88. knc->ctx = ctx;
  89. knc->cgpu = cgpu;
  90. knc->workqueue_max = WORK_QUEUE_PREFILL;
  91. } else {
  92. knc = prev_cgpu->device_data;
  93. ctx = knc->ctx;
  94. }
  95. snprintf(repr, sizeof(repr), "%s %s", knc_titan_drv.name, devpath);
  96. asic = atoi(devpath);
  97. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  98. die_info.cores = KNC_TITAN_CORES_PER_DIE; /* core hint */
  99. die_info.version = KNC_VERSION_TITAN;
  100. if (!knc_titan_get_info(repr, ctx, asic, die, &die_info))
  101. continue;
  102. if (0 < die_info.cores) {
  103. knc->dies[asic][die] = (struct knc_titan_die) {
  104. .asicno = asic,
  105. .dieno = die,
  106. .cores = die_info.cores,
  107. .first_proc = cgpu,
  108. .freq = KNC_TITAN_DEFAULT_FREQUENCY,
  109. };
  110. cores += die_info.cores;
  111. } else {
  112. knc->dies[asic][die] = (struct knc_titan_die) {
  113. .asicno = -INT_MAX,
  114. .dieno = -INT_MAX,
  115. .cores = 0,
  116. .first_proc = NULL,
  117. };
  118. }
  119. }
  120. if (0 == cores) {
  121. free(cgpu);
  122. if (!prev_cgpu) {
  123. free(knc);
  124. knc_trnsp_free(ctx);
  125. }
  126. return false;
  127. }
  128. applog(LOG_NOTICE, "%s: Found ASIC with %d cores", repr, cores);
  129. *cgpu = (struct cgpu_info) {
  130. .drv = &knc_titan_drv,
  131. .device_path = strdup(devpath),
  132. .set_device_funcs = knc_titan_set_device_funcs,
  133. .deven = DEV_ENABLED,
  134. .procs = cores,
  135. .threads = prev_cgpu ? 0 : 1,
  136. .device_data = knc,
  137. };
  138. const bool rv = add_cgpu_slave(cgpu, prev_cgpu);
  139. prev_cgpu = cgpu;
  140. return rv;
  141. }
  142. static int knc_titan_detect_auto(void)
  143. {
  144. const int first = 0, last = KNC_TITAN_MAX_ASICS - 1;
  145. char devpath[256];
  146. int found = 0, i;
  147. for (i = first; i <= last; ++i) {
  148. sprintf(devpath, "%d", i);
  149. if (knc_titan_detect_one(devpath))
  150. ++found;
  151. }
  152. return found;
  153. }
  154. static void knc_titan_detect(void)
  155. {
  156. generic_detect(&knc_titan_drv, knc_titan_detect_one, knc_titan_detect_auto, GDF_REQUIRE_DNAME | GDF_DEFAULT_NOAUTO);
  157. }
  158. static void knc_titan_clean_flush(const char *repr, void * const ctx, int asic, int die)
  159. {
  160. struct knc_report report;
  161. bool unused;
  162. knc_titan_set_work(repr, ctx, asic, die, 0xFFFF, 0, NULL, true, &unused, &report);
  163. }
  164. static bool knc_titan_init(struct thr_info * const thr)
  165. {
  166. const int max_cores = KNC_TITAN_CORES_PER_ASIC;
  167. struct thr_info *mythr;
  168. struct cgpu_info * const cgpu = thr->cgpu, *proc;
  169. struct knc_titan_core *knccore;
  170. struct knc_titan_info *knc;
  171. int i, asic, die, core_base;
  172. int total_cores = 0;
  173. int asic_cores[KNC_TITAN_MAX_ASICS] = {0};
  174. for (proc = cgpu; proc; ) {
  175. proc->min_nonce_diff = DEFAULT_DIFF_FILTERING_FLOAT;
  176. if (proc->device != proc) {
  177. applog(LOG_WARNING, "%"PRIpreprv": Extra processor?", proc->proc_repr);
  178. proc = proc->next_proc;
  179. continue;
  180. }
  181. asic = atoi(proc->device_path);
  182. knc = proc->device_data;
  183. die = 0;
  184. core_base = 0;
  185. for (i = 0; i < max_cores; ++i) {
  186. while (i >= (core_base + knc->dies[asic][die].cores)) {
  187. core_base += knc->dies[asic][die].cores;
  188. if (++die >= KNC_TITAN_DIES_PER_ASIC)
  189. break;
  190. }
  191. if (die >= KNC_TITAN_DIES_PER_ASIC)
  192. break;
  193. mythr = proc->thr[0];
  194. mythr->cgpu_data = knccore = malloc(sizeof(*knccore));
  195. if (unlikely(!knccore))
  196. quit(1, "Failed to alloc knc_titan_core");
  197. *knccore = (struct knc_titan_core) {
  198. .asicno = asic,
  199. .dieno = die,
  200. .coreno = i - core_base,
  201. .die = &(knc->dies[asic][die]),
  202. .proc = proc,
  203. .hwerr_in_row = 0,
  204. .hwerr_disable_time = KNC_TITAN_HWERR_DISABLE_SECS,
  205. };
  206. timer_set_now(&knccore->enable_at);
  207. proc->device_data = knc;
  208. ++total_cores;
  209. ++(asic_cores[asic]);
  210. applog(LOG_DEBUG, "%s Allocated core %d:%d:%d", proc->device->dev_repr, asic, die, (i - core_base));
  211. if (0 == knccore->coreno) {
  212. knc->dies[asic][die].first_proc = proc;
  213. knc_titan_clean_flush(proc->device->dev_repr, knc->ctx, knccore->asicno, knccore->dieno);
  214. }
  215. proc = proc->next_proc;
  216. if ((!proc) || proc->device == proc)
  217. break;
  218. }
  219. knc->cores = total_cores;
  220. }
  221. cgpu_set_defaults(cgpu);
  222. if (0 >= total_cores)
  223. return false;
  224. /* Init nonce ranges for cores */
  225. double nonce_step = 4294967296.0 / total_cores;
  226. double nonce_f = 0.0;
  227. struct titan_setup_core_params setup_params = {
  228. .bad_address_mask = {0, 0},
  229. .bad_address_match = {0x3FF, 0x3FF},
  230. .difficulty = DEFAULT_DIFF_FILTERING_ZEROES - 1,
  231. .thread_enable = 0xFF,
  232. .thread_base_address = {0, 1, 2, 3, 4, 5, 6, 7},
  233. .lookup_gap_mask = {0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7, 0x7},
  234. .N_mask = {0, 0, 0, 0, 0, 0, 0, 0},
  235. .N_shift = {0, 0, 0, 0, 0, 0, 0, 0},
  236. .nonce_bottom = 0,
  237. .nonce_top = 0xFFFFFFFF,
  238. };
  239. fill_in_thread_params(opt_knc_threads_per_core, &setup_params);
  240. int prev_asic = -1;
  241. for (proc = cgpu; proc; proc = proc->next_proc) {
  242. knc = proc->device_data;
  243. mythr = proc->thr[0];
  244. knccore = mythr->cgpu_data;
  245. if (knccore->asicno != prev_asic) {
  246. int numcores = asic_cores[knccore->asicno];
  247. if (numcores < 1)
  248. numcores = 1;
  249. prev_asic = knccore->asicno;
  250. nonce_f = 0.0;
  251. nonce_step = 4294967296.0 / numcores;
  252. setup_params.nonce_top = 0xFFFFFFFF;
  253. }
  254. nonce_f += nonce_step;
  255. setup_params.nonce_bottom = setup_params.nonce_top + 1;
  256. if (NULL != proc->next_proc)
  257. setup_params.nonce_top = nonce_f;
  258. else
  259. setup_params.nonce_top = 0xFFFFFFFF;
  260. applog(LOG_DEBUG, "%s Setup core %d:%d:%d, nonces 0x%08X - 0x%08X", proc->device->dev_repr, knccore->asicno, knccore->dieno, knccore->coreno, setup_params.nonce_bottom, setup_params.nonce_top);
  261. knc_titan_setup_core_local(proc->device->dev_repr, knc->ctx, knccore->asicno, knccore->dieno, knccore->coreno, &setup_params);
  262. }
  263. for (asic = 0; asic < KNC_TITAN_MAX_ASICS; ++asic) {
  264. knc->next_slot[asic] = KNC_TITAN_MIN_WORK_SLOT_NUM;
  265. knc->first_slot[asic] = KNC_TITAN_MIN_WORK_SLOT_NUM;
  266. knc->need_flush[asic] = true;
  267. }
  268. timer_set_now(&thr->tv_poll);
  269. return true;
  270. }
  271. static bool knc_titan_prepare_work(struct thr_info *thr, struct work *work)
  272. {
  273. struct cgpu_info * const cgpu = thr->cgpu;
  274. work->nonce_diff = cgpu->min_nonce_diff;
  275. return true;
  276. }
  277. static void knc_titan_set_queue_full(struct knc_titan_info * const knc)
  278. {
  279. const bool full = (knc->workqueue_size >= knc->workqueue_max);
  280. struct cgpu_info *proc;
  281. for (proc = knc->cgpu; proc; proc = proc->next_proc) {
  282. struct thr_info * const thr = proc->thr[0];
  283. thr->queue_full = full;
  284. }
  285. }
  286. static void knc_titan_remove_local_queue(struct knc_titan_info * const knc, struct work * const work)
  287. {
  288. DL_DELETE(knc->workqueue, work);
  289. free_work(work);
  290. --knc->workqueue_size;
  291. }
  292. static void knc_titan_prune_local_queue(struct thr_info *thr)
  293. {
  294. struct cgpu_info * const cgpu = thr->cgpu;
  295. struct knc_titan_info * const knc = cgpu->device_data;
  296. struct work *work, *tmp;
  297. DL_FOREACH_SAFE(knc->workqueue, work, tmp) {
  298. if (stale_work(work, false))
  299. knc_titan_remove_local_queue(knc, work);
  300. }
  301. knc_titan_set_queue_full(knc);
  302. }
  303. static bool knc_titan_queue_append(struct thr_info * const thr, struct work * const work)
  304. {
  305. struct cgpu_info * const cgpu = thr->cgpu;
  306. struct knc_titan_info * const knc = cgpu->device_data;
  307. if (knc->workqueue_size >= knc->workqueue_max) {
  308. knc_titan_prune_local_queue(thr);
  309. if (thr->queue_full)
  310. return false;
  311. }
  312. DL_APPEND(knc->workqueue, work);
  313. ++knc->workqueue_size;
  314. knc_titan_set_queue_full(knc);
  315. if (thr->queue_full)
  316. knc_titan_prune_local_queue(thr);
  317. return true;
  318. }
  319. #define HASH_LAST_ADDED(head, out) \
  320. (out = (head) ? (ELMT_FROM_HH((head)->hh.tbl, (head)->hh.tbl->tail)) : NULL)
  321. static void knc_titan_queue_flush(struct thr_info * const thr)
  322. {
  323. struct cgpu_info * const cgpu = thr->cgpu;
  324. struct knc_titan_info * const knc = cgpu->device_data;
  325. struct work *work, *tmp;
  326. if (knc->cgpu != cgpu)
  327. return;
  328. DL_FOREACH_SAFE(knc->workqueue, work, tmp){
  329. knc_titan_remove_local_queue(knc, work);
  330. }
  331. knc_titan_set_queue_full(knc);
  332. HASH_LAST_ADDED(knc->devicework, work);
  333. if (work && stale_work(work, true)) {
  334. int asic;
  335. for (asic = 0; asic < KNC_TITAN_MAX_ASICS; ++asic)
  336. knc->need_flush[asic] = true;
  337. timer_set_now(&thr->tv_poll);
  338. }
  339. }
  340. static void knc_titan_poll(struct thr_info * const thr)
  341. {
  342. struct thr_info *mythr;
  343. struct cgpu_info * const cgpu = thr->cgpu, *proc;
  344. struct knc_titan_info * const knc = cgpu->device_data;
  345. struct knc_titan_core *knccore, *core1;
  346. struct work *work, *tmp;
  347. int workaccept = 0;
  348. unsigned long delay_usecs = KNC_POLL_INTERVAL_US;
  349. struct knc_report report;
  350. struct knc_die_info die_info;
  351. int asic;
  352. int die;
  353. int i, tmp_int;
  354. knc_titan_prune_local_queue(thr);
  355. for (asic = 0; asic < KNC_TITAN_MAX_ASICS; ++asic) {
  356. DL_FOREACH_SAFE(knc->workqueue, work, tmp) {
  357. bool work_accepted = false;
  358. bool need_replace;
  359. if (knc->first_slot[asic] > KNC_TITAN_MIN_WORK_SLOT_NUM)
  360. need_replace = ((knc->next_slot[asic] + 1) == knc->first_slot[asic]);
  361. else
  362. need_replace = (knc->next_slot[asic] == KNC_TITAN_MAX_WORK_SLOT_NUM);
  363. knccore = NULL;
  364. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  365. if (0 >= knc->dies[asic][die].cores)
  366. continue;
  367. struct cgpu_info *first_proc = knc->dies[asic][die].first_proc;
  368. /* knccore is the core data of the first core in this asic */
  369. if (NULL == knccore)
  370. knccore = first_proc->thr[0]->cgpu_data;
  371. bool die_work_accepted = false;
  372. if (knc->need_flush[asic] || need_replace) {
  373. for (proc = first_proc; proc; proc = proc->next_proc) {
  374. mythr = proc->thr[0];
  375. core1 = mythr->cgpu_data;
  376. bool unused;
  377. if ((core1->dieno != die) || (core1->asicno != asic))
  378. break;
  379. if (knc_titan_set_work(proc->proc_repr, knc->ctx, asic, die, core1->coreno, knc->next_slot[asic], work, true, &unused, &report)) {
  380. core1->last_nonce.slot = report.nonce[0].slot;
  381. core1->last_nonce.nonce = report.nonce[0].nonce;
  382. die_work_accepted = true;
  383. }
  384. }
  385. } else {
  386. if (!knc_titan_set_work(first_proc->dev_repr, knc->ctx, asic, die, 0xFFFF, knc->next_slot[asic], work, false, &die_work_accepted, &report))
  387. die_work_accepted = false;
  388. }
  389. if (die_work_accepted)
  390. work_accepted = true;
  391. }
  392. if ((!work_accepted) || (NULL == knccore))
  393. break;
  394. bool was_flushed = false;
  395. if (knc->need_flush[asic] || need_replace) {
  396. struct work *work1, *tmp1;
  397. applog(LOG_NOTICE, "%s: Flushing stale works (%s)", knccore->proc->dev_repr,
  398. knc->need_flush[asic] ? "New work" : "Slot collision");
  399. knc->need_flush[asic] = false;
  400. knc->first_slot[asic] = knc->next_slot[asic];
  401. HASH_ITER(hh, knc->devicework, work1, tmp1) {
  402. if (asic == ((work1->device_id >> 8) & 0xFF)) {
  403. HASH_DEL(knc->devicework, work1);
  404. free_work(work1);
  405. }
  406. }
  407. delay_usecs = 0;
  408. was_flushed = true;
  409. }
  410. --knc->workqueue_size;
  411. DL_DELETE(knc->workqueue, work);
  412. work->device_id = (asic << 8) | knc->next_slot[asic];
  413. HASH_ADD(hh, knc->devicework, device_id, sizeof(work->device_id), work);
  414. if (++(knc->next_slot[asic]) > KNC_TITAN_MAX_WORK_SLOT_NUM)
  415. knc->next_slot[asic] = KNC_TITAN_MIN_WORK_SLOT_NUM;
  416. ++workaccept;
  417. /* If we know for sure that this work was urgent, then we don't need to hurry up
  418. * with filling next slot, we have plenty of time until current work completes.
  419. * So, better to proceed with other ASICs. */
  420. if (was_flushed)
  421. break;
  422. }
  423. }
  424. applog(LOG_DEBUG, "%s: %d jobs accepted to queue (max=%d)", knc_titan_drv.dname, workaccept, knc->workqueue_max);
  425. for (asic = 0; asic < KNC_TITAN_MAX_ASICS; ++asic) {
  426. for (die = 0; die < KNC_TITAN_DIES_PER_ASIC; ++die) {
  427. if (0 >= knc->dies[asic][die].cores)
  428. continue;
  429. die_info.cores = knc->dies[asic][die].cores; /* core hint */
  430. die_info.version = KNC_VERSION_TITAN;
  431. if (!knc_titan_get_info(cgpu->dev_repr, knc->ctx, asic, die, &die_info))
  432. continue;
  433. for (proc = knc->dies[asic][die].first_proc; proc; proc = proc->next_proc) {
  434. mythr = proc->thr[0];
  435. knccore = mythr->cgpu_data;
  436. if ((knccore->dieno != die) || (knccore->asicno != asic))
  437. break;
  438. if (!die_info.has_report[knccore->coreno])
  439. continue;
  440. if (!knc_titan_get_report(proc->proc_repr, knc->ctx, asic, die, knccore->coreno, &report))
  441. continue;
  442. for (i = 0; i < KNC_TITAN_NONCES_PER_REPORT; ++i) {
  443. if ((report.nonce[i].slot == knccore->last_nonce.slot) &&
  444. (report.nonce[i].nonce == knccore->last_nonce.nonce))
  445. break;
  446. tmp_int = (asic << 8) | report.nonce[i].slot;
  447. HASH_FIND_INT(knc->devicework, &tmp_int, work);
  448. if (!work) {
  449. applog(LOG_WARNING, "%"PRIpreprv": Got nonce for unknown work in slot %u (asic %d)", proc->proc_repr, (unsigned)report.nonce[i].slot, asic);
  450. continue;
  451. }
  452. if (submit_nonce(mythr, work, report.nonce[i].nonce)) {
  453. hashes_done2(mythr, DEFAULT_DIFF_HASHES_PER_NONCE, NULL);
  454. knccore->hwerr_in_row = 0;
  455. }
  456. }
  457. knccore->last_nonce.slot = report.nonce[0].slot;
  458. knccore->last_nonce.nonce = report.nonce[0].nonce;
  459. }
  460. }
  461. }
  462. if (workaccept) {
  463. if (workaccept >= knc->workqueue_max) {
  464. knc->workqueue_max = workaccept;
  465. delay_usecs = 0;
  466. }
  467. knc_titan_set_queue_full(knc);
  468. }
  469. timer_set_delay_from_now(&thr->tv_poll, delay_usecs);
  470. }
  471. /*
  472. * specify settings / options via RPC or command line
  473. */
  474. /* support for --set-device
  475. * must be set before probing the device
  476. */
  477. static void knc_titan_set_clock_freq(struct cgpu_info * const device, int const val)
  478. {
  479. }
  480. static const char *knc_titan_set_clock(struct cgpu_info * const device, const char * const option, const char * const setting, char * const replybuf, enum bfg_set_device_replytype * const success)
  481. {
  482. knc_titan_set_clock_freq(device, atoi(setting));
  483. return NULL;
  484. }
  485. static const struct bfg_set_device_definition knc_titan_set_device_funcs[] = {
  486. { "clock", knc_titan_set_clock, NULL },
  487. { NULL },
  488. };
  489. /*
  490. * specify settings / options via TUI
  491. */
  492. #ifdef HAVE_CURSES
  493. static void knc_titan_tui_wlogprint_choices(struct cgpu_info * const proc)
  494. {
  495. wlogprint("[C]lock speed ");
  496. }
  497. static const char *knc_titan_tui_handle_choice(struct cgpu_info * const proc, const int input)
  498. {
  499. static char buf[0x100]; /* Static for replies */
  500. switch (input)
  501. {
  502. case 'c': case 'C':
  503. {
  504. sprintf(buf, "Set clock speed");
  505. char * const setting = curses_input(buf);
  506. knc_titan_set_clock_freq(proc->device, atoi(setting));
  507. return "Clock speed changed\n";
  508. }
  509. }
  510. return NULL;
  511. }
  512. static void knc_titan_wlogprint_status(struct cgpu_info * const proc)
  513. {
  514. wlogprint("Clock speed: N/A\n");
  515. }
  516. #endif
  517. struct device_drv knc_titan_drv =
  518. {
  519. /* metadata */
  520. .dname = "titan",
  521. .name = "KNC",
  522. .supported_algos = POW_SCRYPT,
  523. .drv_detect = knc_titan_detect,
  524. .thread_init = knc_titan_init,
  525. /* specify mining type - queue */
  526. .minerloop = minerloop_queue,
  527. .queue_append = knc_titan_queue_append,
  528. .queue_flush = knc_titan_queue_flush,
  529. .poll = knc_titan_poll,
  530. .prepare_work = knc_titan_prepare_work,
  531. /* TUI support - e.g. setting clock via UI */
  532. #ifdef HAVE_CURSES
  533. .proc_wlogprint_status = knc_titan_wlogprint_status,
  534. .proc_tui_wlogprint_choices = knc_titan_tui_wlogprint_choices,
  535. .proc_tui_handle_choice = knc_titan_tui_handle_choice,
  536. #endif
  537. };