/* * Copyright 2012-2013 Luke Dashjr * Copyright 2012 Xiangfu * Copyright 2012 Andrew Smith * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ /* * Those code should be works fine with V2 and V3 bitstream of Icarus. * Operation: * No detection implement. * Input: 64B = 32B midstate + 20B fill bytes + last 12 bytes of block head. * Return: send back 32bits immediately when Icarus found a valid nonce. * no query protocol implemented here, if no data send back in ~11.3 * seconds (full cover time on 32bit nonce range by 380MH/s speed) * just send another work. * Notice: * 1. Icarus will start calculate when you push a work to them, even they * are busy. * 2. The 2 FPGAs on Icarus will distribute the job, one will calculate the * 0 ~ 7FFFFFFF, another one will cover the 80000000 ~ FFFFFFFF. * 3. It's possible for 2 FPGAs both find valid nonce in the meantime, the 2 * valid nonce will all be send back. * 4. Icarus will stop work when: a valid nonce has been found or 32 bits * nonce range is completely calculated. */ #include "config.h" #include "miner.h" #include #include #include #include #include #include #include #include #include #ifndef WIN32 #include #include #include #ifndef O_CLOEXEC #define O_CLOEXEC 0 #endif #else #include #include #endif #ifdef HAVE_SYS_EPOLL_H #include #define HAVE_EPOLL #endif #include "compat.h" #include "dynclock.h" #include "icarus-common.h" #include "lowl-vcom.h" // The serial I/O speed - Linux uses a define 'B115200' in bits/termios.h #define ICARUS_IO_SPEED 115200 // The number of bytes in a nonce (always 4) // This is NOT the read-size for the Icarus driver // That is defined in ICARUS_INFO->read_size #define ICARUS_NONCE_SIZE 4 #define ASSERT1(condition) __maybe_unused static char sizeof_uint32_t_must_be_4[(condition)?1:-1] ASSERT1(sizeof(uint32_t) == 4); #define ICARUS_READ_TIME(baud, read_size) ((double)read_size * (double)8.0 / (double)(baud)) // Defined in deciseconds // There's no need to have this bigger, since the overhead/latency of extra work // is pretty small once you get beyond a 10s nonce range time and 10s also // means that nothing slower than 429MH/s can go idle so most icarus devices // will always mine without idling #define ICARUS_READ_COUNT_LIMIT_MAX 100 // In timing mode: Default starting value until an estimate can be obtained // 5 seconds allows for up to a ~840MH/s device #define ICARUS_READ_COUNT_TIMING (5 * TIME_FACTOR) // For a standard Icarus REV3 #define ICARUS_REV3_HASH_TIME 0.00000000264083 // Icarus Rev3 doesn't send a completion message when it finishes // the full nonce range, so to avoid being idle we must abort the // work (by starting a new work) shortly before it finishes // // Thus we need to estimate 2 things: // 1) How many hashes were done if the work was aborted // 2) How high can the timeout be before the Icarus is idle, // to minimise the number of work started // We set 2) to 'the calculated estimate' - 1 // to ensure the estimate ends before idle // // The simple calculation used is: // Tn = Total time in seconds to calculate n hashes // Hs = seconds per hash // Xn = number of hashes // W = code overhead per work // // Rough but reasonable estimate: // Tn = Hs * Xn + W (of the form y = mx + b) // // Thus: // Line of best fit (using least squares) // // Hs = (n*Sum(XiTi)-Sum(Xi)*Sum(Ti))/(n*Sum(Xi^2)-Sum(Xi)^2) // W = Sum(Ti)/n - (Hs*Sum(Xi))/n // // N.B. W is less when aborting work since we aren't waiting for the reply // to be transferred back (ICARUS_READ_TIME) // Calculating the hashes aborted at n seconds is thus just n/Hs // (though this is still a slight overestimate due to code delays) // // Both below must be exceeded to complete a set of data // Minimum how long after the first, the last data point must be #define HISTORY_SEC 60 // Minimum how many points a single ICARUS_HISTORY should have #define MIN_DATA_COUNT 5 // The value above used is doubled each history until it exceeds: #define MAX_MIN_DATA_COUNT 100 #if (TIME_FACTOR != 10) #error TIME_FACTOR must be 10 #endif static struct timeval history_sec = { HISTORY_SEC, 0 }; static const char *MODE_DEFAULT_STR = "default"; static const char *MODE_SHORT_STR = "short"; static const char *MODE_SHORT_STREQ = "short="; static const char *MODE_LONG_STR = "long"; static const char *MODE_LONG_STREQ = "long="; static const char *MODE_VALUE_STR = "value"; static const char *MODE_UNKNOWN_STR = "unknown"; #define END_CONDITION 0x0000ffff #define DEFAULT_DETECT_THRESHOLD 1 // Looking for options in --icarus-timing and --icarus-options: // // Code increments this each time we start to look at a device // However, this means that if other devices are checked by // the Icarus code (e.g. BFL) they will count in the option offset // // This, however, is deterministic so that's OK // // If we were to increment after successfully finding an Icarus // that would be random since an Icarus may fail and thus we'd // not be able to predict the option order // // This also assumes that serial_detect() checks them sequentially // and in the order specified on the command line // static int option_offset = -1; BFG_REGISTER_DRIVER(icarus_drv) extern void convert_icarus_to_cairnsmore(struct cgpu_info *); static void rev(unsigned char *s, size_t l) { size_t i, j; unsigned char t; for (i = 0, j = l - 1; i < j; i++, j--) { t = s[i]; s[i] = s[j]; s[j] = t; } } #define icarus_open2(devpath, baud, purge) serial_open(devpath, baud, ICARUS_READ_FAULT_DECISECONDS, purge) #define icarus_open(devpath, baud) icarus_open2(devpath, baud, false) int icarus_gets(unsigned char *buf, int fd, struct timeval *tv_finish, struct thr_info *thr, int read_count, int read_size) { ssize_t ret = 0; int rc = 0; int epollfd = -1; int epoll_timeout = ICARUS_READ_FAULT_DECISECONDS * 100; int read_amount = read_size; bool first = true; #ifdef HAVE_EPOLL struct epoll_event ev = { .events = EPOLLIN, .data.fd = fd, }; struct epoll_event evr[2]; if (thr && thr->work_restart_notifier[1] != -1) { epollfd = epoll_create(2); if (epollfd != -1) { if (-1 == epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &ev)) { close(epollfd); epollfd = -1; } { ev.data.fd = thr->work_restart_notifier[0]; if (-1 == epoll_ctl(epollfd, EPOLL_CTL_ADD, thr->work_restart_notifier[0], &ev)) applog(LOG_ERR, "Icarus: Error adding work restart fd to epoll"); else { epoll_timeout *= read_count; read_count = 1; } } } else applog(LOG_ERR, "Icarus: Error creating epoll"); } #endif // Read reply 1 byte at a time to get earliest tv_finish while (true) { #ifdef HAVE_EPOLL if (epollfd != -1 && (ret = epoll_wait(epollfd, evr, 2, epoll_timeout)) != -1) { if (ret == 1 && evr[0].data.fd == fd) ret = read(fd, buf, 1); else { if (ret) notifier_read(thr->work_restart_notifier); ret = 0; } } else #endif ret = read(fd, buf, 1); if (ret < 0) return ICA_GETS_ERROR; if (first) cgtime(tv_finish); if (ret >= read_amount) { if (epollfd != -1) close(epollfd); return ICA_GETS_OK; } if (ret > 0) { buf += ret; read_amount -= ret; first = false; continue; } if (thr && thr->work_restart) { if (epollfd != -1) close(epollfd); applog(LOG_DEBUG, "Icarus Read: Interrupted by work restart"); return ICA_GETS_RESTART; } rc++; if (rc >= read_count) { if (epollfd != -1) close(epollfd); applog(LOG_DEBUG, "Icarus Read: No data in %.2f seconds", (float)rc * epoll_timeout / 1000.); return ICA_GETS_TIMEOUT; } } } int icarus_write(int fd, const void *buf, size_t bufLen) { size_t ret; if (unlikely(fd == -1)) return 1; ret = write(fd, buf, bufLen); if (unlikely(ret != bufLen)) return 1; return 0; } #define icarus_close(fd) serial_close(fd) static void do_icarus_close(struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; const int fd = icarus->device_fd; if (fd == -1) return; icarus_close(fd); icarus->device_fd = -1; } static const char *timing_mode_str(enum timing_mode timing_mode) { switch(timing_mode) { case MODE_DEFAULT: return MODE_DEFAULT_STR; case MODE_SHORT: return MODE_SHORT_STR; case MODE_LONG: return MODE_LONG_STR; case MODE_VALUE: return MODE_VALUE_STR; default: return MODE_UNKNOWN_STR; } } static void set_timing_mode(int this_option_offset, struct cgpu_info *icarus) { struct ICARUS_INFO *info = icarus->device_data; double Hs; char buf[BUFSIZ+1]; char *ptr, *comma, *eq; size_t max; int i; if (opt_icarus_timing == NULL) buf[0] = '\0'; else { ptr = opt_icarus_timing; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } info->read_count = 0; info->read_count_limit = 0; // 0 = no limit if (strcasecmp(buf, MODE_SHORT_STR) == 0) { // short info->read_count = ICARUS_READ_COUNT_TIMING; info->timing_mode = MODE_SHORT; info->do_icarus_timing = true; } else if (strncasecmp(buf, MODE_SHORT_STREQ, strlen(MODE_SHORT_STREQ)) == 0) { // short=limit info->read_count = ICARUS_READ_COUNT_TIMING; info->timing_mode = MODE_SHORT; info->do_icarus_timing = true; info->read_count_limit = atoi(&buf[strlen(MODE_SHORT_STREQ)]); if (info->read_count_limit < 0) info->read_count_limit = 0; if (info->read_count_limit > ICARUS_READ_COUNT_LIMIT_MAX) info->read_count_limit = ICARUS_READ_COUNT_LIMIT_MAX; } else if (strcasecmp(buf, MODE_LONG_STR) == 0) { // long info->read_count = ICARUS_READ_COUNT_TIMING; info->timing_mode = MODE_LONG; info->do_icarus_timing = true; } else if (strncasecmp(buf, MODE_LONG_STREQ, strlen(MODE_LONG_STREQ)) == 0) { // long=limit info->read_count = ICARUS_READ_COUNT_TIMING; info->timing_mode = MODE_LONG; info->do_icarus_timing = true; info->read_count_limit = atoi(&buf[strlen(MODE_LONG_STREQ)]); if (info->read_count_limit < 0) info->read_count_limit = 0; if (info->read_count_limit > ICARUS_READ_COUNT_LIMIT_MAX) info->read_count_limit = ICARUS_READ_COUNT_LIMIT_MAX; } else if ((Hs = atof(buf)) != 0) { // ns[=read_count] info->Hs = Hs / NANOSEC; info->fullnonce = info->Hs * (((double)0xffffffff) + 1); if ((eq = strchr(buf, '=')) != NULL) info->read_count = atoi(eq+1); if (info->read_count < 1) info->read_count = (int)(info->fullnonce * TIME_FACTOR) - 1; if (unlikely(info->read_count < 1)) info->read_count = 1; info->timing_mode = MODE_VALUE; info->do_icarus_timing = false; } else { // Anything else in buf just uses DEFAULT mode info->fullnonce = info->Hs * (((double)0xffffffff) + 1); if ((eq = strchr(buf, '=')) != NULL) info->read_count = atoi(eq+1); int def_read_count = ICARUS_READ_COUNT_TIMING; if (info->timing_mode == MODE_DEFAULT) { if (icarus->drv == &icarus_drv) { info->do_default_detection = 0x10; } else { def_read_count = (int)(info->fullnonce * TIME_FACTOR) - 1; } info->do_icarus_timing = false; } if (info->read_count < 1) info->read_count = def_read_count; } info->min_data_count = MIN_DATA_COUNT; applog(LOG_DEBUG, "%"PRIpreprv": Init: mode=%s read_count=%d limit=%dms Hs=%e", icarus->proc_repr, timing_mode_str(info->timing_mode), info->read_count, info->read_count_limit, info->Hs); } static uint32_t mask(int work_division) { uint32_t nonce_mask = 0x7fffffff; // yes we can calculate these, but this way it's easy to see what they are switch (work_division) { case 1: nonce_mask = 0xffffffff; break; case 2: nonce_mask = 0x7fffffff; break; case 4: nonce_mask = 0x3fffffff; break; case 8: nonce_mask = 0x1fffffff; break; default: quit(1, "Invalid2 icarus-options for work_division (%d) must be 1, 2, 4 or 8", work_division); } return nonce_mask; } static void get_options(int this_option_offset, struct ICARUS_INFO *info) { int *baud = &info->baud; int *work_division = &info->work_division; int *fpga_count = &info->fpga_count; char buf[BUFSIZ+1]; char *ptr, *comma, *colon, *colon2; size_t max; int i, tmp; if (opt_icarus_options == NULL) buf[0] = '\0'; else { ptr = opt_icarus_options; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } if (*buf) { colon = strchr(buf, ':'); if (colon) *(colon++) = '\0'; if (*buf) { tmp = atoi(buf); if (!valid_baud(*baud = tmp)) quit(1, "Invalid icarus-options for baud (%s)", buf); } if (colon && *colon) { colon2 = strchr(colon, ':'); if (colon2) *(colon2++) = '\0'; if (*colon) { info->user_set |= 1; tmp = atoi(colon); if (tmp == 1 || tmp == 2 || tmp == 4 || tmp == 8) { *work_division = tmp; *fpga_count = tmp; // default to the same } else { quit(1, "Invalid icarus-options for work_division (%s) must be 1, 2, 4 or 8", colon); } } if (colon2 && *colon2) { colon = strchr(colon2, ':'); if (colon) *(colon++) = '\0'; if (*colon2) { info->user_set |= 2; tmp = atoi(colon2); if (tmp > 0 && tmp <= *work_division) *fpga_count = tmp; else { quit(1, "Invalid icarus-options for fpga_count (%s) must be >0 and <=work_division (%d)", colon2, *work_division); } } if (colon && *colon) { colon2 = strchr(colon, '-') ?: ""; if (*colon2) *(colon2++) = '\0'; if (strchr(colon, 'r')) info->quirk_reopen = 2; if (strchr(colon2, 'r')) info->quirk_reopen = 0; } } } } } // Number of bytes remaining after reading a nonce from Icarus int icarus_excess_nonce_size(int fd, struct ICARUS_INFO *info) { // How big a buffer? int excess_size = info->read_size - ICARUS_NONCE_SIZE; // Try to read one more to ensure the device doesn't return // more than we want for this driver excess_size++; unsigned char excess_bin[excess_size]; // Read excess_size from Icarus struct timeval tv_now; timer_set_now(&tv_now); //icarus_gets(excess_bin, fd, &tv_now, NULL, 1, excess_size); int bytes_read = read(fd, excess_bin, excess_size); // Number of bytes that were still available return bytes_read; } bool icarus_detect_custom(const char *devpath, struct device_drv *api, struct ICARUS_INFO *info) { int this_option_offset = ++option_offset; struct timeval tv_start, tv_finish; int fd; // Block 171874 nonce = (0xa2870100) = 0x000187a2 // N.B. golden_ob MUST take less time to calculate // than the timeout set in icarus_open() // This one takes ~0.53ms on Rev3 Icarus const char golden_ob[] = "4679ba4ec99876bf4bfe086082b40025" "4df6c356451471139a3afa71e48f544a" "00000000000000000000000000000000" "0000000087320b1a1426674f2fa722ce"; /* NOTE: This gets sent to basically every port specified in --scan-serial, * even ones that aren't Icarus; be sure they can all handle it, when * this is changed... * BitForce: Ignores entirely * ModMiner: Starts (useless) work, gets back to clean state */ const char golden_nonce[] = "000187a2"; unsigned char ob_bin[64], nonce_bin[ICARUS_NONCE_SIZE]; char nonce_hex[(sizeof(nonce_bin) * 2) + 1]; get_options(this_option_offset, info); int baud = info->baud; int work_division = info->work_division; int fpga_count = info->fpga_count; applog(LOG_DEBUG, "Icarus Detect: Attempting to open %s", devpath); fd = icarus_open2(devpath, baud, true); if (unlikely(fd == -1)) { applog(LOG_DEBUG, "Icarus Detect: Failed to open %s", devpath); return false; } // Set a default so that individual drivers need not specify // e.g. Cairnsmore if (info->read_size == 0) info->read_size = ICARUS_DEFAULT_READ_SIZE; hex2bin(ob_bin, golden_ob, sizeof(ob_bin)); icarus_write(fd, ob_bin, sizeof(ob_bin)); cgtime(&tv_start); memset(nonce_bin, 0, sizeof(nonce_bin)); // Do not use info->read_size here, instead read exactly ICARUS_NONCE_SIZE // We will then compare the bytes left in fd with info->read_size to determine // if this is a valid device icarus_gets(nonce_bin, fd, &tv_finish, NULL, 1, ICARUS_NONCE_SIZE); // How many bytes were left after reading the above nonce int bytes_left = icarus_excess_nonce_size(fd, info); icarus_close(fd); bin2hex(nonce_hex, nonce_bin, sizeof(nonce_bin)); if (strncmp(nonce_hex, golden_nonce, 8)) { applog(LOG_DEBUG, "Icarus Detect: " "Test failed at %s: get %s, should: %s", devpath, nonce_hex, golden_nonce); return false; } if (info->read_size - ICARUS_NONCE_SIZE != bytes_left) { applog(LOG_DEBUG, "Icarus Detect: " "Test failed at %s: expected %d bytes, got %d", devpath, info->read_size, ICARUS_NONCE_SIZE + bytes_left); return false; } applog(LOG_DEBUG, "Icarus Detect: " "Test succeeded at %s: got %s", devpath, nonce_hex); if (serial_claim_v(devpath, api)) return false; /* We have a real Icarus! */ struct cgpu_info *icarus; icarus = calloc(1, sizeof(struct cgpu_info)); icarus->drv = api; icarus->device_path = strdup(devpath); icarus->device_fd = -1; icarus->threads = 1; add_cgpu(icarus); applog(LOG_INFO, "Found %"PRIpreprv" at %s", icarus->proc_repr, devpath); applog(LOG_DEBUG, "%"PRIpreprv": Init: baud=%d work_division=%d fpga_count=%d", icarus->proc_repr, baud, work_division, fpga_count); icarus->device_data = info; timersub(&tv_finish, &tv_start, &(info->golden_tv)); set_timing_mode(this_option_offset, icarus); return true; } static bool icarus_detect_one(const char *devpath) { struct ICARUS_INFO *info = calloc(1, sizeof(struct ICARUS_INFO)); if (unlikely(!info)) quit(1, "Failed to malloc ICARUS_INFO"); // TODO: try some higher speeds with the Icarus and BFL to see // if they support them and if setting them makes any difference // N.B. B3000000 doesn't work on Icarus info->baud = ICARUS_IO_SPEED; info->quirk_reopen = 1; info->Hs = ICARUS_REV3_HASH_TIME; info->timing_mode = MODE_DEFAULT; info->read_size = ICARUS_DEFAULT_READ_SIZE; if (!icarus_detect_custom(devpath, &icarus_drv, info)) { free(info); return false; } return true; } static bool icarus_lowl_probe(const struct lowlevel_device_info * const info) { return vcom_lowl_probe_wrapper(info, icarus_detect_one); } static bool icarus_prepare(struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; struct ICARUS_INFO *info = icarus->device_data; icarus->device_fd = -1; int fd = icarus_open2(icarus->device_path, info->baud, true); if (unlikely(-1 == fd)) { applog(LOG_ERR, "Failed to open Icarus on %s", icarus->device_path); return false; } icarus->device_fd = fd; applog(LOG_INFO, "Opened Icarus on %s", icarus->device_path); struct icarus_state *state; thr->cgpu_data = state = calloc(1, sizeof(*state)); state->firstrun = true; #ifdef HAVE_EPOLL int epollfd = epoll_create(2); if (epollfd != -1) { close(epollfd); notifier_init(thr->work_restart_notifier); } #endif icarus->status = LIFE_INIT2; return true; } static bool icarus_init(struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; struct ICARUS_INFO *info = icarus->device_data; int fd = icarus->device_fd; if (!info->work_division) { struct timeval tv_finish; // For reading the nonce from Icarus unsigned char res_bin[info->read_size]; // For storing the the 32-bit nonce uint32_t res; applog(LOG_DEBUG, "%"PRIpreprv": Work division not specified - autodetecting", icarus->proc_repr); // Special packet to probe work_division unsigned char pkt[64] = "\x2e\x4c\x8f\x91\xfd\x59\x5d\x2d\x7e\xa2\x0a\xaa\xcb\x64\xa2\xa0" "\x43\x82\x86\x02\x77\xcf\x26\xb6\xa1\xee\x04\xc5\x6a\x5b\x50\x4a" "BFGMiner Probe\0\0" "BFG\0\x64\x61\x01\x1a\xc9\x06\xa9\x51\xfb\x9b\x3c\x73"; icarus_write(fd, pkt, sizeof(pkt)); memset(res_bin, 0, sizeof(res_bin)); if (ICA_GETS_OK == icarus_gets(res_bin, fd, &tv_finish, NULL, info->read_count, info->read_size)) { memcpy(&res, res_bin, sizeof(res)); res = be32toh(res); } else res = 0; switch (res) { case 0x04C0FDB4: info->work_division = 1; break; case 0x82540E46: info->work_division = 2; break; case 0x417C0F36: info->work_division = 4; break; case 0x60C994D5: info->work_division = 8; break; default: applog(LOG_ERR, "%"PRIpreprv": Work division autodetection failed (assuming 2): got %08x", icarus->proc_repr, res); info->work_division = 2; } applog(LOG_DEBUG, "%"PRIpreprv": Work division autodetection got %08x (=%d)", icarus->proc_repr, res, info->work_division); } if (!info->fpga_count) info->fpga_count = info->work_division; info->nonce_mask = mask(info->work_division); return true; } static bool icarus_reopen(struct cgpu_info *icarus, struct icarus_state *state, int *fdp) { struct ICARUS_INFO *info = icarus->device_data; // Reopen the serial port to workaround a USB-host-chipset-specific issue with the Icarus's buggy USB-UART do_icarus_close(icarus->thr[0]); *fdp = icarus->device_fd = icarus_open(icarus->device_path, info->baud); if (unlikely(-1 == *fdp)) { applog(LOG_ERR, "%"PRIpreprv": Failed to reopen on %s", icarus->proc_repr, icarus->device_path); dev_error(icarus, REASON_DEV_COMMS_ERROR); state->firstrun = true; return false; } return true; } static bool icarus_job_prepare(struct thr_info *thr, struct work *work, __maybe_unused uint64_t max_nonce) { struct cgpu_info * const icarus = thr->cgpu; struct icarus_state * const state = thr->cgpu_data; uint8_t * const ob_bin = state->ob_bin; memcpy(ob_bin, work->midstate, 32); memcpy(ob_bin + 52, work->data + 64, 12); if (!(memcmp(&ob_bin[56], "\xff\xff\xff\xff", 4) || memcmp(&ob_bin, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 32))) { // This sequence is used on cairnsmore bitstreams for commands, NEVER send it otherwise applog(LOG_WARNING, "%"PRIpreprv": Received job attempting to send a command, corrupting it!", icarus->proc_repr); ob_bin[56] = 0; } rev(ob_bin, 32); rev(ob_bin + 52, 12); return true; } static bool icarus_job_start(struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; struct ICARUS_INFO *info = icarus->device_data; struct icarus_state *state = thr->cgpu_data; const uint8_t * const ob_bin = state->ob_bin; int fd = icarus->device_fd; int ret; // Handle dynamic clocking for "subclass" devices // This needs to run before sending next job, since it hashes the command too if (info->dclk.freqM && likely(!state->firstrun)) { dclk_preUpdate(&info->dclk); dclk_updateFreq(&info->dclk, info->dclk_change_clock_func, thr); } cgtime(&state->tv_workstart); ret = icarus_write(fd, ob_bin, 64); if (ret) { do_icarus_close(thr); applog(LOG_ERR, "%"PRIpreprv": Comms error (werr=%d)", icarus->proc_repr, ret); dev_error(icarus, REASON_DEV_COMMS_ERROR); return false; /* This should never happen */ } if (opt_debug) { char ob_hex[129]; bin2hex(ob_hex, ob_bin, 64); applog(LOG_DEBUG, "%"PRIpreprv" sent: %s", icarus->proc_repr, ob_hex); } return true; } static struct work *icarus_process_worknonce(struct icarus_state *state, uint32_t *nonce) { *nonce = be32toh(*nonce); if (test_nonce(state->last_work, *nonce, false)) return state->last_work; if (likely(state->last2_work && test_nonce(state->last2_work, *nonce, false))) return state->last2_work; return NULL; } static void handle_identify(struct thr_info * const thr, int ret, const bool was_first_run) { const struct cgpu_info * const icarus = thr->cgpu; const struct ICARUS_INFO * const info = icarus->device_data; struct icarus_state * const state = thr->cgpu_data; int fd = icarus->device_fd; struct timeval tv_now; double delapsed; // For reading the nonce from Icarus unsigned char nonce_bin[info->read_size]; // For storing the the 32-bit nonce uint32_t nonce; if (fd == -1) return; // If identify is requested (block erupters): // 1. Don't start the next job right away (above) // 2. Wait for the current job to complete 100% if (!was_first_run) { applog(LOG_DEBUG, "%"PRIpreprv": Identify: Waiting for current job to finish", icarus->proc_repr); while (true) { cgtime(&tv_now); delapsed = tdiff(&tv_now, &state->tv_workstart); if (delapsed + 0.1 > info->fullnonce) break; // Try to get more nonces (ignoring work restart) memset(nonce_bin, 0, sizeof(nonce_bin)); ret = icarus_gets(nonce_bin, fd, &tv_now, NULL, (info->fullnonce - delapsed) * 10, info->read_size); if (ret == ICA_GETS_OK) { memcpy(&nonce, nonce_bin, sizeof(nonce)); nonce = be32toh(nonce); submit_nonce(thr, state->last_work, nonce); } } } else applog(LOG_DEBUG, "%"PRIpreprv": Identify: Current job should already be finished", icarus->proc_repr); // 3. Delay 3 more seconds applog(LOG_DEBUG, "%"PRIpreprv": Identify: Leaving idle for 3 seconds", icarus->proc_repr); cgsleep_ms(3000); // Check for work restart in the meantime if (thr->work_restart) { applog(LOG_DEBUG, "%"PRIpreprv": Identify: Work restart requested during delay", icarus->proc_repr); goto no_job_start; } // 4. Start next job if (!state->firstrun) { applog(LOG_DEBUG, "%"PRIpreprv": Identify: Starting next job", icarus->proc_repr); if (!icarus_job_start(thr)) no_job_start: state->firstrun = true; } state->identify = false; } static void icarus_transition_work(struct icarus_state *state, struct work *work) { if (state->last2_work) free_work(state->last2_work); state->last2_work = state->last_work; state->last_work = copy_work(work); } static int64_t icarus_scanhash(struct thr_info *thr, struct work *work, __maybe_unused int64_t max_nonce) { struct cgpu_info *icarus; int fd; int ret; struct ICARUS_INFO *info; struct work *nonce_work; int64_t hash_count; struct timeval tv_start = {.tv_sec=0}, elapsed; struct timeval tv_history_start, tv_history_finish; double Ti, Xi; int i; bool was_hw_error = false; bool was_first_run; struct ICARUS_HISTORY *history0, *history; int count; double Hs, W, fullnonce; int read_count; bool limited; int64_t estimate_hashes; uint32_t values; int64_t hash_count_range; elapsed.tv_sec = elapsed.tv_usec = 0; icarus = thr->cgpu; struct icarus_state *state = thr->cgpu_data; was_first_run = state->firstrun; icarus_job_prepare(thr, work, max_nonce); // Wait for the previous run's result fd = icarus->device_fd; info = icarus->device_data; // For reading the nonce from Icarus unsigned char nonce_bin[info->read_size]; // For storing the the 32-bit nonce uint32_t nonce; if (unlikely(fd == -1) && !icarus_reopen(icarus, state, &fd)) return -1; if (!state->firstrun) { if (state->changework) { state->changework = false; ret = ICA_GETS_RESTART; } else { read_count = info->read_count; keepwaiting: /* Icarus will return info->read_size bytes nonces or nothing */ memset(nonce_bin, 0, sizeof(nonce_bin)); ret = icarus_gets(nonce_bin, fd, &state->tv_workfinish, thr, read_count, info->read_size); switch (ret) { case ICA_GETS_RESTART: // The prepared work is invalid, and the current work is abandoned // Go back to the main loop to get the next work, and stuff // Returning to the main loop will clear work_restart, so use a flag... state->changework = true; return 0; case ICA_GETS_ERROR: do_icarus_close(thr); applog(LOG_ERR, "%"PRIpreprv": Comms error (rerr)", icarus->proc_repr); dev_error(icarus, REASON_DEV_COMMS_ERROR); if (!icarus_reopen(icarus, state, &fd)) return -1; break; case ICA_GETS_TIMEOUT: if (info->quirk_reopen == 1 && !icarus_reopen(icarus, state, &fd)) return -1; case ICA_GETS_OK: break; } } tv_start = state->tv_workstart; timersub(&state->tv_workfinish, &tv_start, &elapsed); } else { if (fd == -1 && !icarus_reopen(icarus, state, &fd)) return -1; // First run; no nonce, no hashes done ret = ICA_GETS_ERROR; } #ifndef WIN32 tcflush(fd, TCOFLUSH); #endif if (ret == ICA_GETS_OK) { memcpy(&nonce, nonce_bin, sizeof(nonce)); nonce_work = icarus_process_worknonce(state, &nonce); if (likely(nonce_work)) { if (nonce_work == state->last2_work) { // nonce was for the last job; submit and keep processing the current one submit_nonce(thr, nonce_work, nonce); goto keepwaiting; } if (info->continue_search) { read_count = info->read_count - ((timer_elapsed_us(&state->tv_workstart, NULL) / (1000000 / TIME_FACTOR)) + 1); if (read_count) { submit_nonce(thr, nonce_work, nonce); goto keepwaiting; } } } else was_hw_error = true; } // Handle dynamic clocking for "subclass" devices // This needs to run before sending next job, since it hashes the command too if (info->dclk.freqM && likely(ret == ICA_GETS_OK || ret == ICA_GETS_TIMEOUT)) { int qsec = ((4 * elapsed.tv_sec) + (elapsed.tv_usec / 250000)) ?: 1; for (int n = qsec; n; --n) dclk_gotNonces(&info->dclk); if (was_hw_error) dclk_errorCount(&info->dclk, qsec); } // Force a USB close/reopen on any hw error if (was_hw_error && info->quirk_reopen != 2) { if (!icarus_reopen(icarus, state, &fd)) state->firstrun = true; } if (unlikely(state->identify)) { // Delay job start until later... } else if (unlikely(icarus->deven != DEV_ENABLED || !icarus_job_start(thr))) state->firstrun = true; if (info->quirk_reopen == 2 && !icarus_reopen(icarus, state, &fd)) state->firstrun = true; work->blk.nonce = 0xffffffff; if (ret == ICA_GETS_ERROR) { state->firstrun = false; icarus_transition_work(state, work); hash_count = 0; goto out; } // OK, done starting Icarus's next job... now process the last run's result! // aborted before becoming idle, get new work if (ret == ICA_GETS_TIMEOUT || ret == ICA_GETS_RESTART) { icarus_transition_work(state, work); // ONLY up to just when it aborted // We didn't read a reply so we don't subtract ICARUS_READ_TIME estimate_hashes = ((double)(elapsed.tv_sec) + ((double)(elapsed.tv_usec))/((double)1000000)) / info->Hs; // If some Serial-USB delay allowed the full nonce range to // complete it can't have done more than a full nonce if (unlikely(estimate_hashes > 0xffffffff)) estimate_hashes = 0xffffffff; applog(LOG_DEBUG, "%"PRIpreprv" no nonce = 0x%08"PRIx64" hashes (%"PRId64".%06lus)", icarus->proc_repr, (uint64_t)estimate_hashes, (int64_t)elapsed.tv_sec, (unsigned long)elapsed.tv_usec); hash_count = estimate_hashes; goto out; } // Only ICA_GETS_OK gets here if (likely(!was_hw_error)) submit_nonce(thr, nonce_work, nonce); else inc_hw_errors(thr, state->last_work, nonce); icarus_transition_work(state, work); hash_count = (nonce & info->nonce_mask); hash_count++; hash_count *= info->fpga_count; applog(LOG_DEBUG, "%"PRIpreprv" nonce = 0x%08x = 0x%08" PRIx64 " hashes (%"PRId64".%06lus)", icarus->proc_repr, nonce, (uint64_t)hash_count, (int64_t)elapsed.tv_sec, (unsigned long)elapsed.tv_usec); if (info->do_default_detection && elapsed.tv_sec >= DEFAULT_DETECT_THRESHOLD) { int MHs = (double)hash_count / ((double)elapsed.tv_sec * 1e6 + (double)elapsed.tv_usec); --info->do_default_detection; applog(LOG_DEBUG, "%"PRIpreprv": Autodetect device speed: %d MH/s", icarus->proc_repr, MHs); if (MHs <= 370 || MHs > 420) { // Not a real Icarus: enable short timing applog(LOG_WARNING, "%"PRIpreprv": Seems too %s to be an Icarus; calibrating with short timing", icarus->proc_repr, MHs>380?"fast":"slow"); info->timing_mode = MODE_SHORT; info->do_icarus_timing = true; info->do_default_detection = 0; } else if (MHs <= 380) { // Real Icarus? if (!info->do_default_detection) { applog(LOG_DEBUG, "%"PRIpreprv": Seems to be a real Icarus", icarus->proc_repr); info->read_count = (int)(info->fullnonce * TIME_FACTOR) - 1; } } else if (MHs <= 420) { // Enterpoint Cairnsmore1 size_t old_repr_len = strlen(icarus->proc_repr); char old_repr[old_repr_len + 1]; strcpy(old_repr, icarus->proc_repr); convert_icarus_to_cairnsmore(icarus); info->do_default_detection = 0; applog(LOG_WARNING, "%"PRIpreprv": Detected Cairnsmore1 device, upgrading driver to %"PRIpreprv, old_repr, icarus->proc_repr); } } // Ignore possible end condition values ... and hw errors // TODO: set limitations on calculated values depending on the device // to avoid crap values caused by CPU/Task Switching/Swapping/etc if (info->do_icarus_timing && !was_hw_error && ((nonce & info->nonce_mask) > END_CONDITION) && ((nonce & info->nonce_mask) < (info->nonce_mask & ~END_CONDITION))) { cgtime(&tv_history_start); history0 = &(info->history[0]); if (history0->values == 0) timeradd(&tv_start, &history_sec, &(history0->finish)); Ti = (double)(elapsed.tv_sec) + ((double)(elapsed.tv_usec))/((double)1000000) - ((double)ICARUS_READ_TIME(info->baud, info->read_size)); Xi = (double)hash_count; history0->sumXiTi += Xi * Ti; history0->sumXi += Xi; history0->sumTi += Ti; history0->sumXi2 += Xi * Xi; history0->values++; if (history0->hash_count_max < hash_count) history0->hash_count_max = hash_count; if (history0->hash_count_min > hash_count || history0->hash_count_min == 0) history0->hash_count_min = hash_count; if (history0->values >= info->min_data_count && timercmp(&tv_start, &(history0->finish), >)) { for (i = INFO_HISTORY; i > 0; i--) memcpy(&(info->history[i]), &(info->history[i-1]), sizeof(struct ICARUS_HISTORY)); // Initialise history0 to zero for summary calculation memset(history0, 0, sizeof(struct ICARUS_HISTORY)); // We just completed a history data set // So now recalc read_count based on the whole history thus we will // initially get more accurate until it completes INFO_HISTORY // total data sets count = 0; for (i = 1 ; i <= INFO_HISTORY; i++) { history = &(info->history[i]); if (history->values >= MIN_DATA_COUNT) { count++; history0->sumXiTi += history->sumXiTi; history0->sumXi += history->sumXi; history0->sumTi += history->sumTi; history0->sumXi2 += history->sumXi2; history0->values += history->values; if (history0->hash_count_max < history->hash_count_max) history0->hash_count_max = history->hash_count_max; if (history0->hash_count_min > history->hash_count_min || history0->hash_count_min == 0) history0->hash_count_min = history->hash_count_min; } } // All history data Hs = (history0->values*history0->sumXiTi - history0->sumXi*history0->sumTi) / (history0->values*history0->sumXi2 - history0->sumXi*history0->sumXi); W = history0->sumTi/history0->values - Hs*history0->sumXi/history0->values; hash_count_range = history0->hash_count_max - history0->hash_count_min; values = history0->values; // Initialise history0 to zero for next data set memset(history0, 0, sizeof(struct ICARUS_HISTORY)); fullnonce = W + Hs * (((double)0xffffffff) + 1); read_count = (int)(fullnonce * TIME_FACTOR) - 1; if (info->read_count_limit > 0 && read_count > info->read_count_limit) { read_count = info->read_count_limit; limited = true; } else limited = false; info->Hs = Hs; info->read_count = read_count; info->fullnonce = fullnonce; info->count = count; info->W = W; info->values = values; info->hash_count_range = hash_count_range; if (info->min_data_count < MAX_MIN_DATA_COUNT) info->min_data_count *= 2; else if (info->timing_mode == MODE_SHORT) info->do_icarus_timing = false; // applog(LOG_DEBUG, "%"PRIpreprv" Re-estimate: read_count=%d%s fullnonce=%fs history count=%d Hs=%e W=%e values=%d hash range=0x%08lx min data count=%u", icarus->proc_repr, read_count, limited ? " (limited)" : "", fullnonce, count, Hs, W, values, hash_count_range, info->min_data_count); applog(LOG_DEBUG, "%"PRIpreprv" Re-estimate: Hs=%e W=%e read_count=%d%s fullnonce=%.3fs", icarus->proc_repr, Hs, W, read_count, limited ? " (limited)" : "", fullnonce); } info->history_count++; cgtime(&tv_history_finish); timersub(&tv_history_finish, &tv_history_start, &tv_history_finish); timeradd(&tv_history_finish, &(info->history_time), &(info->history_time)); } out: if (unlikely(state->identify)) handle_identify(thr, ret, was_first_run); return hash_count; } static struct api_data *icarus_drv_stats(struct cgpu_info *cgpu) { struct api_data *root = NULL; struct ICARUS_INFO *info = cgpu->device_data; // Warning, access to these is not locked - but we don't really // care since hashing performance is way more important than // locking access to displaying API debug 'stats' // If locking becomes an issue for any of them, use copy_data=true also root = api_add_int(root, "read_count", &(info->read_count), false); root = api_add_int(root, "read_count_limit", &(info->read_count_limit), false); root = api_add_double(root, "fullnonce", &(info->fullnonce), false); root = api_add_int(root, "count", &(info->count), false); root = api_add_hs(root, "Hs", &(info->Hs), false); root = api_add_double(root, "W", &(info->W), false); root = api_add_uint(root, "total_values", &(info->values), false); root = api_add_uint64(root, "range", &(info->hash_count_range), false); root = api_add_uint64(root, "history_count", &(info->history_count), false); root = api_add_timeval(root, "history_time", &(info->history_time), false); root = api_add_uint(root, "min_data_count", &(info->min_data_count), false); root = api_add_uint(root, "timing_values", &(info->history[0].values), false); root = api_add_const(root, "timing_mode", timing_mode_str(info->timing_mode), false); root = api_add_bool(root, "is_timing", &(info->do_icarus_timing), false); root = api_add_int(root, "baud", &(info->baud), false); root = api_add_int(root, "work_division", &(info->work_division), false); root = api_add_int(root, "fpga_count", &(info->fpga_count), false); return root; } static void icarus_shutdown(struct thr_info *thr) { do_icarus_close(thr); free(thr->cgpu_data); } struct device_drv icarus_drv = { .dname = "icarus", .name = "ICA", .probe_priority = -120, .lowl_probe = icarus_lowl_probe, .get_api_stats = icarus_drv_stats, .thread_prepare = icarus_prepare, .thread_init = icarus_init, .scanhash = icarus_scanhash, .thread_disable = close_device_fd, .thread_shutdown = icarus_shutdown, };