Browse Source

Revert the crossover of variables from Vals to W in poclbm kernel now that Vals are the first declared variables so they're used more frequently.

Con Kolivas 14 years ago
parent
commit
fb881eac62
1 changed files with 621 additions and 638 deletions
  1. 621 638
      poclbm120327.cl

+ 621 - 638
poclbm120327.cl

@@ -101,12 +101,10 @@ Vals[3]+=D1A;
 Vals[7]=Vals[3];
 Vals[7]+=h1;
 
-
 Vals[4]=PreVal4addT1;
 Vals[4]+=nonce;
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 
-
 Vals[2]=C1addK5;
 Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
 Vals[2]+=ch(Vals[7],Vals[0],b1);
@@ -117,7 +115,6 @@ Vals[3]+=Ma2(g1,Vals[4],f1);
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
 Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
 
-
 Vals[1]=B1addK6;
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
@@ -205,7 +202,6 @@ Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
 Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 
-
 W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
 W[2]+=fw2;
 Vals[5]+=W[2];
@@ -216,7 +212,6 @@ Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
 
-
 W[3]=nonce;
 W[3]+=fw3;
 Vals[4]+=W[3];
@@ -227,9 +222,8 @@ Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
 Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 
-
-W[4]=0x80000000U;
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
+W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
+W[4]+=0x80000000U;
 Vals[3]+=W[4];
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
@@ -238,7 +232,6 @@ Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
 
-
 W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 Vals[2]+=W[5];
 Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
@@ -248,9 +241,8 @@ Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
 Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 
-
-W[6]=0x00000280U;
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
+W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
+W[6]+=0x00000280U;
 Vals[1]+=W[6];
 Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
 Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
@@ -259,9 +251,8 @@ Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
 
-
-W[7]=fw0;
-W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+W[7]+=fw0;
 Vals[0]+=W[7];
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
@@ -270,9 +261,8 @@ Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
 Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 
-
-W[8]=fw1;
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
+W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
+W[8]+=fw1;
 Vals[7]+=W[8];
 Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
 Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
@@ -281,7 +271,6 @@ Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
 
-
 W[9]=W[2];
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 Vals[6]+=W[9];
@@ -292,7 +281,6 @@ Vals[2]+=Vals[6];
 Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
 Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
 
-
 W[10]=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 Vals[5]+=W[10];
@@ -303,7 +291,6 @@ Vals[1]+=Vals[5];
 Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
 Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
 
-
 W[11]=W[4];
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 Vals[4]+=W[11];
@@ -314,7 +301,6 @@ Vals[0]+=Vals[4];
 Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
 Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 
-
 W[12]=W[5];
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 Vals[3]+=W[12];
@@ -325,7 +311,6 @@ Vals[7]+=Vals[3];
 Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
 Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
 
-
 W[13]=W[6];
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 Vals[2]+=W[13];
@@ -336,7 +321,6 @@ Vals[6]+=Vals[2];
 Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
 Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 
-
 W[14]=0x00a00055U;
 W[14]+=W[7];
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
@@ -348,7 +332,6 @@ Vals[5]+=Vals[1];
 Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
 Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
 
-
 W[15]=fw15;
 W[15]+=W[8];
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
@@ -360,7 +343,6 @@ Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
 Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 
-
 W[0]=fw01r;
 W[0]+=W[9];
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
@@ -372,7 +354,6 @@ Vals[3]+=Vals[7];
 Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
 Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
 
-
 W[1]=fw1;
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=W[10];
@@ -714,656 +695,658 @@ Vals[0]+=W[15];
 Vals[4]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
 Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
-Vals[0]+=state0;
-
-W[7]=Vals[0];
-W[7]+=0xF377ED68U;
-
-
-W[3]=0xa54ff53aU;
-W[3]+=W[7];
-W[7]+=0x08909ae5U;
-
-Vals[1]+=state1;
-
-W[6]=Vals[1];
-W[6]+=0x90BB1E3CU;
-W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
-W[6]+=(0x9b05688cU^(W[3]&0xca0b3af3U));
-
-
-W[2]=0x3c6ef372U;
-W[2]+=W[6];
-W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
-W[6]+=Ma2(0xbb67ae85U,W[7],0x6a09e667U);
-
-Vals[2]+=state2;
-
-W[5]=Vals[2];
-W[5]+=0x50C6645BU;
-W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
-W[5]+=ch(W[2],W[3],0x510e527fU);
-
-
-W[1]=0xbb67ae85U;
-W[1]+=W[5];
-W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
-W[5]+=Ma2(0x6a09e667U,W[6],W[7]);
-
-Vals[3]+=state3;
-
-W[4]=Vals[3];
-W[4]+=0x3AC42E24U;
-W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
-W[4]+=ch(W[1],W[2],W[3]);
-
-
-W[0]=0x6a09e667U;
-W[0]+=W[4];
-W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
-W[4]+=Ma(W[7],W[5],W[6]);
-
-Vals[4]+=state4;
-W[3]+=Vals[4];
-W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
-W[3]+=ch(W[0],W[1],W[2]);
-W[3]+=K[4];
-W[7]+=W[3];
-W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
-W[3]+=Ma(W[6],W[4],W[5]);
-
-Vals[5]+=state5;
-W[2]+=Vals[5];
-W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
-W[2]+=ch(W[7],W[0],W[1]);
-W[2]+=K[5];
-W[6]+=W[2];
-W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
-W[2]+=Ma(W[5],W[3],W[4]);
-
-Vals[6]+=state6;
-W[1]+=Vals[6];
-W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
-W[1]+=ch(W[6],W[7],W[0]);
-W[1]+=K[6];
-W[5]+=W[1];
-W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
-W[1]+=Ma(W[4],W[2],W[3]);
-
-Vals[7]+=state7;
-W[0]+=Vals[7];
-W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
-W[0]+=ch(W[5],W[6],W[7]);
-W[0]+=K[7];
-W[4]+=W[0];
-W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
-W[0]+=Ma(W[3],W[1],W[2]);
-
-W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
-W[7]+=ch(W[4],W[5],W[6]);
-W[7]+=0x5807AA98U;
-W[3]+=W[7];
-W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
-W[7]+=Ma(W[2],W[0],W[1]);
-
-W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
-W[6]+=ch(W[3],W[4],W[5]);
-W[6]+=K[9];
-W[2]+=W[6];
-W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
-W[6]+=Ma(W[1],W[7],W[0]);
-
-W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
-W[5]+=ch(W[2],W[3],W[4]);
-W[5]+=K[10];
-W[1]+=W[5];
-W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
-W[5]+=Ma(W[0],W[6],W[7]);
-
-W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
-W[4]+=ch(W[1],W[2],W[3]);
-W[4]+=K[11];
-W[0]+=W[4];
-W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
-W[4]+=Ma(W[7],W[5],W[6]);
-
-W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
-W[3]+=ch(W[0],W[1],W[2]);
-W[3]+=K[12];
-W[7]+=W[3];
-W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
-W[3]+=Ma(W[6],W[4],W[5]);
-
-W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
-W[2]+=ch(W[7],W[0],W[1]);
-W[2]+=K[13];
-W[6]+=W[2];
-W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
-W[2]+=Ma(W[5],W[3],W[4]);
-
-W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
-W[1]+=ch(W[6],W[7],W[0]);
-W[1]+=K[14];
-W[5]+=W[1];
-W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
-W[1]+=Ma(W[4],W[2],W[3]);
-
-W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
-W[0]+=ch(W[5],W[6],W[7]);
-W[0]+=0xC19BF274U;
-W[4]+=W[0];
-W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
-W[0]+=Ma(W[3],W[1],W[2]);
-
-Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
-W[7]+=Vals[0];
-W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
-W[7]+=ch(W[4],W[5],W[6]);
-W[7]+=K[16];
-W[3]+=W[7];
-W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
-W[7]+=Ma(W[2],W[0],W[1]);
-
-Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
-Vals[1]+=0x00a00000U;
-W[6]+=Vals[1];
-W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
-W[6]+=ch(W[3],W[4],W[5]);
-W[6]+=K[17];
-W[2]+=W[6];
-W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
-W[6]+=Ma(W[1],W[7],W[0]);
-
-Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
-Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
-W[5]+=Vals[2];
-W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
-W[5]+=ch(W[2],W[3],W[4]);
-W[5]+=K[18];
-W[1]+=W[5];
-W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
-W[5]+=Ma(W[0],W[6],W[7]);
-
-Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
-Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
-W[4]+=Vals[3];
-W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
-W[4]+=ch(W[1],W[2],W[3]);
-W[4]+=K[19];
-W[0]+=W[4];
-W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
-W[4]+=Ma(W[7],W[5],W[6]);
-
-Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
-Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
-W[3]+=Vals[4];
-W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
-W[3]+=ch(W[0],W[1],W[2]);
-W[3]+=K[20];
-W[7]+=W[3];
-W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
-W[3]+=Ma(W[6],W[4],W[5]);
-
-Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
-Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
-W[2]+=Vals[5];
-W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
-W[2]+=ch(W[7],W[0],W[1]);
-W[2]+=K[21];
-W[6]+=W[2];
-W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
-W[2]+=Ma(W[5],W[3],W[4]);
-
-Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
-Vals[6]+=0x00000100U;
-Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
-W[1]+=Vals[6];
-W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
-W[1]+=ch(W[6],W[7],W[0]);
-W[1]+=K[22];
-W[5]+=W[1];
-W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
-W[1]+=Ma(W[4],W[2],W[3]);
-
-Vals[7]+=0x11002000U;
-Vals[7]+=Vals[0];
-Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
-W[0]+=Vals[7];
-W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
-W[0]+=ch(W[5],W[6],W[7]);
-W[0]+=K[23];
-W[4]+=W[0];
-W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
-W[0]+=Ma(W[3],W[1],W[2]);
 
+W[0]=Vals[0];
+W[0]+=state0;
 
-W[8]=0x80000000U;
-W[8]+=Vals[1];
-W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
-W[7]+=W[8];
-W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
-W[7]+=ch(W[4],W[5],W[6]);
-W[7]+=K[24];
-W[3]+=W[7];
-W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
-W[7]+=Ma(W[2],W[0],W[1]);
-
-
-W[9]=Vals[2];
-W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
-W[6]+=W[9];
-W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
-W[6]+=ch(W[3],W[4],W[5]);
-W[6]+=K[25];
-W[2]+=W[6];
-W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
-W[6]+=Ma(W[1],W[7],W[0]);
-
-
-W[10]=Vals[3];
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-W[5]+=W[10];
-W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
-W[5]+=ch(W[2],W[3],W[4]);
-W[5]+=K[26];
-W[1]+=W[5];
-W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
-W[5]+=Ma(W[0],W[6],W[7]);
+W[7]=state7;
+W[7]+=Vals[7];
 
+Vals[7]=0xF377ED68U;
+Vals[7]+=W[0];
 
-W[11]=Vals[4];
-W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-W[4]+=W[11];
-W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
-W[4]+=ch(W[1],W[2],W[3]);
-W[4]+=K[27];
-W[0]+=W[4];
-W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
-W[4]+=Ma(W[7],W[5],W[6]);
+W[3]=state3;
+W[3]+=Vals[3];
 
+Vals[3]=0xa54ff53aU;
+Vals[3]+=Vals[7];
+Vals[7]+=0x08909ae5U;
 
-W[12]=Vals[5];
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-W[3]+=W[12];
-W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
-W[3]+=ch(W[0],W[1],W[2]);
-W[3]+=K[28];
-W[7]+=W[3];
-W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
-W[3]+=Ma(W[6],W[4],W[5]);
+W[6]=state6;
+W[6]+=Vals[6];
 
+Vals[6]=0x90BB1E3CU;
+Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[6]+=(0x9b05688cU^(Vals[3]&0xca0b3af3U));
 
-W[13]=Vals[6];
-W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
-W[2]+=W[13];
-W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
-W[2]+=ch(W[7],W[0],W[1]);
-W[2]+=K[29];
-W[6]+=W[2];
-W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
-W[2]+=Ma(W[5],W[3],W[4]);
+W[1]=Vals[1];
+W[1]+=state1;
+Vals[6]+=W[1];
 
+W[2]=state2;
+W[2]+=Vals[2];
 
-W[14]=0x00400022U;
-W[14]+=Vals[7];
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
-W[1]+=W[14];
-W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
-W[1]+=ch(W[6],W[7],W[0]);
-W[1]+=K[30];
-W[5]+=W[1];
-W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
-W[1]+=Ma(W[4],W[2],W[3]);
+Vals[2]=0x3c6ef372U;
+Vals[2]+=Vals[6];
+Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma2(0xbb67ae85U,Vals[7],0x6a09e667U);
 
+W[5]=state5;
+W[5]+=Vals[5];
 
-W[15]=0x00000100U;
-W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U));
-W[15]+=W[8];
-W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
-W[0]+=W[15];
-W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
-W[0]+=ch(W[5],W[6],W[7]);
-W[0]+=K[31];
-W[4]+=W[0];
-W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
-W[0]+=Ma(W[3],W[1],W[2]);
-
-Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
-Vals[0]+=W[9];
-Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
-W[7]+=Vals[0];
-W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
-W[7]+=ch(W[4],W[5],W[6]);
-W[7]+=K[32];
-W[3]+=W[7];
-W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
-W[7]+=Ma(W[2],W[0],W[1]);
-
-Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
-Vals[1]+=W[10];
-Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
-W[6]+=Vals[1];
-W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
-W[6]+=ch(W[3],W[4],W[5]);
-W[6]+=K[33];
-W[2]+=W[6];
-W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
-W[6]+=Ma(W[1],W[7],W[0]);
-
-Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
-Vals[2]+=W[11];
-Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
-W[5]+=Vals[2];
-W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
-W[5]+=ch(W[2],W[3],W[4]);
-W[5]+=K[34];
-W[1]+=W[5];
-W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
-W[5]+=Ma(W[0],W[6],W[7]);
-
-Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
-Vals[3]+=W[12];
-Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
-W[4]+=Vals[3];
-W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
-W[4]+=ch(W[1],W[2],W[3]);
-W[4]+=K[35];
-W[0]+=W[4];
-W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
-W[4]+=Ma(W[7],W[5],W[6]);
-
-Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
-Vals[4]+=W[13];
-Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
-W[3]+=Vals[4];
-W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
-W[3]+=ch(W[0],W[1],W[2]);
-W[3]+=K[36];
-W[7]+=W[3];
-W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
-W[3]+=Ma(W[6],W[4],W[5]);
-
-Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
-Vals[5]+=W[14];
-Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
-W[2]+=Vals[5];
-W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
-W[2]+=ch(W[7],W[0],W[1]);
-W[2]+=K[37];
-W[6]+=W[2];
-W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
-W[2]+=Ma(W[5],W[3],W[4]);
-
-Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
-Vals[6]+=W[15];
-Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
-W[1]+=Vals[6];
-W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
-W[1]+=ch(W[6],W[7],W[0]);
-W[1]+=K[38];
-W[5]+=W[1];
-W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
-W[1]+=Ma(W[4],W[2],W[3]);
-
-Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
-Vals[7]+=Vals[0];
-Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
-W[0]+=Vals[7];
-W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
-W[0]+=ch(W[5],W[6],W[7]);
-W[0]+=K[39];
-W[4]+=W[0];
-W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
-W[0]+=Ma(W[3],W[1],W[2]);
+Vals[5]=0x50C6645BU;
+Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[5]+=ch(Vals[2],Vals[3],0x510e527fU);
+Vals[5]+=W[2];
 
-W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
-W[8]+=Vals[1];
-W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
-W[7]+=W[8];
-W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
-W[7]+=ch(W[4],W[5],W[6]);
-W[7]+=K[40];
-W[3]+=W[7];
-W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
-W[7]+=Ma(W[2],W[0],W[1]);
+Vals[1]=0xbb67ae85U;
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[5]+=Ma2(0x6a09e667U,Vals[6],Vals[7]);
 
-W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
-W[9]+=Vals[2];
-W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
-W[6]+=W[9];
-W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
-W[6]+=ch(W[3],W[4],W[5]);
-W[6]+=K[41];
-W[2]+=W[6];
-W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
-W[6]+=Ma(W[1],W[7],W[0]);
+W[4]=state4;
+W[4]+=Vals[4];
 
-W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
-W[10]+=Vals[3];
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-W[5]+=W[10];
-W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
-W[5]+=ch(W[2],W[3],W[4]);
-W[5]+=K[42];
-W[1]+=W[5];
-W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
-W[5]+=Ma(W[0],W[6],W[7]);
+Vals[4]=0x3AC42E24U;
+Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
+Vals[4]+=W[3];
 
-W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
-W[11]+=Vals[4];
-W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-W[4]+=W[11];
-W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
-W[4]+=ch(W[1],W[2],W[3]);
-W[4]+=K[43];
-W[0]+=W[4];
-W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
-W[4]+=Ma(W[7],W[5],W[6]);
+Vals[0]=Vals[4];
+Vals[0]+=0x6a09e667U;
 
-W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
-W[12]+=Vals[5];
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-W[3]+=W[12];
-W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
-W[3]+=ch(W[0],W[1],W[2]);
-W[3]+=K[44];
-W[7]+=W[3];
-W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
-W[3]+=Ma(W[6],W[4],W[5]);
+Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
 
-W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
-W[13]+=Vals[6];
-W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
-W[2]+=W[13];
-W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
-W[2]+=ch(W[7],W[0],W[1]);
-W[2]+=K[45];
-W[6]+=W[2];
-W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
-W[2]+=Ma(W[5],W[3],W[4]);
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
+Vals[3]+=K[4];
+Vals[3]+=W[4];
+Vals[7]+=Vals[3];
+Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
 
-W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
-W[14]+=Vals[7];
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
-W[1]+=W[14];
-W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
-W[1]+=ch(W[6],W[7],W[0]);
-W[1]+=K[46];
-W[5]+=W[1];
-W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
-W[1]+=Ma(W[4],W[2],W[3]);
-
-W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U));
-W[15]+=W[8];
-W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
-W[0]+=W[15];
-W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
-W[0]+=ch(W[5],W[6],W[7]);
-W[0]+=K[47];
-W[4]+=W[0];
-W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
-W[0]+=Ma(W[3],W[1],W[2]);
-
-Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
-Vals[0]+=W[9];
-Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
-W[7]+=Vals[0];
-W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
-W[7]+=ch(W[4],W[5],W[6]);
-W[7]+=K[48];
-W[3]+=W[7];
-W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
-W[7]+=Ma(W[2],W[0],W[1]);
-
-Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
-Vals[1]+=W[10];
-Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
-W[6]+=Vals[1];
-W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
-W[6]+=ch(W[3],W[4],W[5]);
-W[6]+=K[49];
-W[2]+=W[6];
-W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
-W[6]+=Ma(W[1],W[7],W[0]);
-
-Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
-Vals[2]+=W[11];
-Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
-W[5]+=Vals[2];
-W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
-W[5]+=ch(W[2],W[3],W[4]);
-W[5]+=K[50];
-W[1]+=W[5];
-W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
-W[5]+=Ma(W[0],W[6],W[7]);
-
-Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
-Vals[3]+=W[12];
-Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
-W[4]+=Vals[3];
-W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
-W[4]+=ch(W[1],W[2],W[3]);
-W[4]+=K[51];
-W[0]+=W[4];
-W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
-W[4]+=Ma(W[7],W[5],W[6]);
-
-Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
-Vals[4]+=W[13];
-Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
-W[3]+=Vals[4];
-W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
-W[3]+=ch(W[0],W[1],W[2]);
-W[3]+=K[52];
-W[7]+=W[3];
-W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
-W[3]+=Ma(W[6],W[4],W[5]);
-
-Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
-Vals[5]+=W[14];
-Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
-W[2]+=Vals[5];
-W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
-W[2]+=ch(W[7],W[0],W[1]);
-W[2]+=K[53];
-W[6]+=W[2];
-W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
-W[2]+=Ma(W[5],W[3],W[4]);
-
-Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
-Vals[6]+=W[15];
-Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
-W[1]+=Vals[6];
-W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
-W[1]+=ch(W[6],W[7],W[0]);
-W[1]+=K[54];
-W[5]+=W[1];
-W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
-W[1]+=Ma(W[4],W[2],W[3]);
-
-Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
-Vals[7]+=Vals[0];
-Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
-W[0]+=Vals[7];
-W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
-W[0]+=ch(W[5],W[6],W[7]);
-W[0]+=K[55];
-W[4]+=W[0];
-W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
-W[0]+=Ma(W[3],W[1],W[2]);
+Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
+Vals[2]+=K[5];
+Vals[2]+=W[5];
+Vals[6]+=Vals[2];
+Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
 
-W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
-W[8]+=Vals[1];
-W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
-W[7]+=W[8];
-W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
-W[7]+=ch(W[4],W[5],W[6]);
-W[7]+=K[56];
-W[3]+=W[7];
+Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
+Vals[1]+=K[6];
+Vals[1]+=W[6];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
 
-W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
-W[9]+=Vals[2];
-W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
-W[6]+=W[9];
-W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
-W[6]+=ch(W[3],W[4],W[5]);
-W[6]+=K[57];
-W[6]+=W[2];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
+Vals[0]+=K[7];
+Vals[0]+=W[7];
+Vals[4]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
 
-W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
-W[10]+=Vals[3];
+Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
+Vals[7]+=0x5807AA98U;
+Vals[3]+=Vals[7];
+Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
+Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
+Vals[6]+=K[9];
+Vals[2]+=Vals[6];
+Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
+Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
+Vals[5]+=K[10];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
+Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
+Vals[4]+=K[11];
+Vals[0]+=Vals[4];
+Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
+Vals[3]+=K[12];
+Vals[7]+=Vals[3];
+Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
+Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
+Vals[2]+=K[13];
+Vals[6]+=Vals[2];
+Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
+Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
+Vals[1]+=K[14];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
+Vals[0]+=0xC19BF274U;
+Vals[4]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
+W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
+Vals[7]+=W[0];
+Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
+Vals[7]+=K[16];
+Vals[3]+=Vals[7];
+Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
+W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
+W[1]+=0x00a00000U;
+Vals[6]+=W[1];
+Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
+Vals[6]+=K[17];
+Vals[2]+=Vals[6];
+Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
+W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
+Vals[5]+=W[2];
+Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
+Vals[5]+=K[18];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
+W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
+W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
+Vals[4]+=W[3];
+Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
+Vals[4]+=K[19];
+Vals[0]+=Vals[4];
+Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
+W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
+Vals[3]+=W[4];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
+Vals[3]+=K[20];
+Vals[7]+=Vals[3];
+Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
+W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
+W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+Vals[2]+=W[5];
+Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
+Vals[2]+=K[21];
+Vals[6]+=Vals[2];
+Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
+W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
+W[6]+=0x00000100U;
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
+Vals[1]+=W[6];
+Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
+Vals[1]+=K[22];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
+W[7]+=0x11002000U;
+W[7]+=W[0];
+W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+Vals[0]+=W[7];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
+Vals[0]+=K[23];
+Vals[4]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
+W[8]=0x80000000U;
+W[8]+=W[1];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
+Vals[7]+=W[8];
+Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
+Vals[7]+=K[24];
+Vals[3]+=Vals[7];
+Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
+W[9]=W[2];
+W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
+Vals[6]+=W[9];
+Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
+Vals[6]+=K[25];
+Vals[2]+=Vals[6];
+Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
+W[10]=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-W[5]+=W[10];
-W[5]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
-W[5]+=ch(W[6],W[3],W[4]);
-W[5]+=K[58];
-W[5]+=W[1];
-W[4]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
-W[4]+=ch(W[5],W[6],W[3]);
-W[4]+=W[11];
-W[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
-W[4]+=Vals[4];
-W[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-W[4]+=K[59];
-W[4]+=W[0];
+Vals[5]+=W[10];
+Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
+Vals[5]+=K[26];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
+W[11]=W[4];
+W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
+Vals[4]+=W[11];
+Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
+Vals[4]+=K[27];
+Vals[0]+=Vals[4];
+Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
+W[12]=W[5];
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
+Vals[3]+=W[12];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
+Vals[3]+=K[28];
+Vals[7]+=Vals[3];
+Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
+W[13]=W[6];
+W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
+Vals[2]+=W[13];
+Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
+Vals[2]+=K[29];
+Vals[6]+=Vals[2];
+Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
+W[14]=0x00400022U;
+W[14]+=W[7];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
+Vals[1]+=W[14];
+Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
+Vals[1]+=K[30];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
+W[15]=0x00000100U;
+W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
+W[15]+=W[8];
+W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
+Vals[0]+=W[15];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
+Vals[0]+=K[31];
+Vals[4]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
+W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
+W[0]+=W[9];
+W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
+Vals[7]+=W[0];
+Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
+Vals[7]+=K[32];
+Vals[3]+=Vals[7];
+Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
+W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
+W[1]+=W[10];
+W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
+Vals[6]+=W[1];
+Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
+Vals[6]+=K[33];
+Vals[2]+=Vals[6];
+Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
+W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
+W[2]+=W[11];
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
+Vals[5]+=W[2];
+Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
+Vals[5]+=K[34];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
+W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
+W[3]+=W[12];
+W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
+Vals[4]+=W[3];
+Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
+Vals[4]+=K[35];
+Vals[0]+=Vals[4];
+Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
+W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
+W[4]+=W[13];
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
+Vals[3]+=W[4];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
+Vals[3]+=K[36];
+Vals[7]+=Vals[3];
+Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
+W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
+W[5]+=W[14];
+W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+Vals[2]+=W[5];
+Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
+Vals[2]+=K[37];
+Vals[6]+=Vals[2];
+Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
+W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
+W[6]+=W[15];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
+Vals[1]+=W[6];
+Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
+Vals[1]+=K[38];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
+W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
+W[7]+=W[0];
+W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+Vals[0]+=W[7];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
+Vals[0]+=K[39];
+Vals[4]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
+W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
+W[8]+=W[1];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
+Vals[7]+=W[8];
+Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
+Vals[7]+=K[40];
+Vals[3]+=Vals[7];
+Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
+W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
+W[9]+=W[2];
+W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
+Vals[6]+=W[9];
+Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
+Vals[6]+=K[41];
+Vals[2]+=Vals[6];
+Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
+W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
+W[10]+=W[3];
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
+Vals[5]+=W[10];
+Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
+Vals[5]+=K[42];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
+W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
+W[11]+=W[4];
+W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
+Vals[4]+=W[11];
+Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
+Vals[4]+=K[43];
+Vals[0]+=Vals[4];
+Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
+W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
+W[12]+=W[5];
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
+Vals[3]+=W[12];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
+Vals[3]+=K[44];
+Vals[7]+=Vals[3];
+Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
+W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
+W[13]+=W[6];
+W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
+Vals[2]+=W[13];
+Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
+Vals[2]+=K[45];
+Vals[6]+=Vals[2];
+Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
+W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
+W[14]+=W[7];
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
+Vals[1]+=W[14];
+Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
+Vals[1]+=K[46];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
+W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
+W[15]+=W[8];
+W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
+Vals[0]+=W[15];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
+Vals[0]+=K[47];
+Vals[4]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
+W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
+W[0]+=W[9];
+W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
+Vals[7]+=W[0];
+Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
+Vals[7]+=K[48];
+Vals[3]+=Vals[7];
+Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+
+W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
+W[1]+=W[10];
+W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
+Vals[6]+=W[1];
+Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
+Vals[6]+=K[49];
+Vals[2]+=Vals[6];
+Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+
+W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
+W[2]+=W[11];
+W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
+Vals[5]+=W[2];
+Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
+Vals[5]+=K[50];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+
+W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
+W[3]+=W[12];
+W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
+Vals[4]+=W[3];
+Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
+Vals[4]+=K[51];
+Vals[0]+=Vals[4];
+Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+
+W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
+W[4]+=W[13];
+W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
+Vals[3]+=W[4];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
+Vals[3]+=K[52];
+Vals[7]+=Vals[3];
+Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+
+W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
+W[5]+=W[14];
+W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
+Vals[2]+=W[5];
+Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
+Vals[2]+=K[53];
+Vals[6]+=Vals[2];
+Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+
+W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
+W[6]+=W[15];
+W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
+Vals[1]+=W[6];
+Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
+Vals[1]+=K[54];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+
+W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
+W[7]+=W[0];
+W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
+Vals[0]+=W[7];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
+Vals[0]+=K[55];
+Vals[4]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+
+W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
+W[8]+=W[1];
+W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
+Vals[7]+=W[8];
+Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
+Vals[7]+=K[56];
+Vals[3]+=Vals[7];
+
+W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
+W[9]+=W[2];
+W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
+Vals[6]+=W[9];
+Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
+Vals[6]+=K[57];
+Vals[6]+=Vals[2];
+
+W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
+W[10]+=W[3];
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
+Vals[5]+=W[10];
+Vals[5]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[5]+=ch(Vals[6],Vals[3],Vals[4]);
+Vals[5]+=K[58];
+Vals[5]+=Vals[1];
+Vals[4]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[4]+=ch(Vals[5],Vals[6],Vals[3]);
+Vals[4]+=W[11];
+Vals[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
+Vals[4]+=W[4];
+Vals[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
+Vals[4]+=K[59];
+Vals[4]+=Vals[0];
 
 #define FOUND (0x80)
 #define NFLAG (0x7F)
 
 #if defined(VECTORS2) || defined(VECTORS4)
-	W[7]+=Ma(W[2],W[0],W[1]);
-	W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
-	W[7]+=W[12];
-	W[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
-	W[7]+=Vals[5];
-	W[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-	W[7]+=W[3];
-	W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
-	W[7]+=ch(W[4],W[5],W[6]);
-
-	if (any(W[7] == 0x136032edU)) {
-		if (W[7].x == 0x136032edU)
+	Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+	Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+	Vals[7]+=W[12];
+	Vals[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
+	Vals[7]+=W[5];
+	Vals[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
+	Vals[7]+=Vals[3];
+	Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+	Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
+
+	if (any(Vals[7] == 0x136032edU)) {
+		if (Vals[7].x == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
-		if (W[7].y == 0x136032edU)
+		if (Vals[7].y == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
 #if defined(VECTORS4)
-		if (W[7].z == 0x136032edU)
+		if (Vals[7].z == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
-		if (W[7].w == 0x136032edU)
+		if (Vals[7].w == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
 #endif
 	}
 #else
-	if ((W[7]+
-		Ma(W[2],W[0],W[1])+
-		(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22))+
+	if ((Vals[7]+
+		Ma(Vals[2],Vals[0],Vals[1])+
+		(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22))+
 		W[12]+
 		(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+
-		Vals[5]+
+		W[5]+
 		(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+
-		W[3]+
-		(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25))+
-		ch(W[4],W[5],W[6])) == 0x136032edU)
+		Vals[3]+
+		(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25))+
+		ch(Vals[4],Vals[5],Vals[6])) == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce] =  nonce;
 #endif
 }