|
|
@@ -1,5 +1,5 @@
|
|
|
/*
|
|
|
-Copyright (c) 2003-2011, Troy D. Hanson http://uthash.sourceforge.net
|
|
|
+Copyright (c) 2003-2012, Troy D. Hanson http://uthash.sourceforge.net
|
|
|
All rights reserved.
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
@@ -22,7 +22,7 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
*/
|
|
|
|
|
|
#ifndef UTHASH_H
|
|
|
-#define UTHASH_H
|
|
|
+#define UTHASH_H
|
|
|
|
|
|
#include <string.h> /* memcmp,strlen */
|
|
|
#include <stddef.h> /* ptrdiff_t */
|
|
|
@@ -49,7 +49,7 @@ do {
|
|
|
char **_da_dst = (char**)(&(dst)); \
|
|
|
*_da_dst = (char*)(src); \
|
|
|
} while(0)
|
|
|
-#else
|
|
|
+#else
|
|
|
#define DECLTYPE_ASSIGN(dst,src) \
|
|
|
do { \
|
|
|
(dst) = DECLTYPE(dst)(src); \
|
|
|
@@ -64,14 +64,24 @@ typedef unsigned char uint8_t;
|
|
|
#include <inttypes.h> /* uint32_t */
|
|
|
#endif
|
|
|
|
|
|
-#define UTHASH_VERSION 1.9.4
|
|
|
+#define UTHASH_VERSION 1.9.6
|
|
|
|
|
|
+#ifndef uthash_fatal
|
|
|
#define uthash_fatal(msg) exit(-1) /* fatal error (out of memory,etc) */
|
|
|
+#endif
|
|
|
+#ifndef uthash_malloc
|
|
|
#define uthash_malloc(sz) malloc(sz) /* malloc fcn */
|
|
|
+#endif
|
|
|
+#ifndef uthash_free
|
|
|
#define uthash_free(ptr,sz) free(ptr) /* free fcn */
|
|
|
+#endif
|
|
|
|
|
|
+#ifndef uthash_noexpand_fyi
|
|
|
#define uthash_noexpand_fyi(tbl) /* can be defined to log noexpand */
|
|
|
+#endif
|
|
|
+#ifndef uthash_expand_fyi
|
|
|
#define uthash_expand_fyi(tbl) /* can be defined to log expands */
|
|
|
+#endif
|
|
|
|
|
|
/* initial number of buckets */
|
|
|
#define HASH_INITIAL_NUM_BUCKETS 32 /* initial number of buckets */
|
|
|
@@ -104,12 +114,12 @@ do {
|
|
|
if (!((tbl)->bloom_bv)) { uthash_fatal( "out of memory"); } \
|
|
|
memset((tbl)->bloom_bv, 0, HASH_BLOOM_BYTELEN); \
|
|
|
(tbl)->bloom_sig = HASH_BLOOM_SIGNATURE; \
|
|
|
-} while (0);
|
|
|
+} while (0)
|
|
|
|
|
|
#define HASH_BLOOM_FREE(tbl) \
|
|
|
do { \
|
|
|
uthash_free((tbl)->bloom_bv, HASH_BLOOM_BYTELEN); \
|
|
|
-} while (0);
|
|
|
+} while (0)
|
|
|
|
|
|
#define HASH_BLOOM_BITSET(bv,idx) (bv[(idx)/8] |= (1U << ((idx)%8)))
|
|
|
#define HASH_BLOOM_BITTEST(bv,idx) (bv[(idx)/8] & (1U << ((idx)%8)))
|
|
|
@@ -121,9 +131,9 @@ do {
|
|
|
HASH_BLOOM_BITTEST((tbl)->bloom_bv, (hashv & (uint32_t)((1ULL << (tbl)->bloom_nbits) - 1)))
|
|
|
|
|
|
#else
|
|
|
-#define HASH_BLOOM_MAKE(tbl)
|
|
|
-#define HASH_BLOOM_FREE(tbl)
|
|
|
-#define HASH_BLOOM_ADD(tbl,hashv)
|
|
|
+#define HASH_BLOOM_MAKE(tbl)
|
|
|
+#define HASH_BLOOM_FREE(tbl)
|
|
|
+#define HASH_BLOOM_ADD(tbl,hashv)
|
|
|
#define HASH_BLOOM_TEST(tbl,hashv) (1)
|
|
|
#endif
|
|
|
|
|
|
@@ -147,14 +157,14 @@ do {
|
|
|
} while(0)
|
|
|
|
|
|
#define HASH_ADD(hh,head,fieldname,keylen_in,add) \
|
|
|
- HASH_ADD_KEYPTR(hh,head,&add->fieldname,keylen_in,add)
|
|
|
-
|
|
|
+ HASH_ADD_KEYPTR(hh,head,&((add)->fieldname),keylen_in,add)
|
|
|
+
|
|
|
#define HASH_ADD_KEYPTR(hh,head,keyptr,keylen_in,add) \
|
|
|
do { \
|
|
|
unsigned _ha_bkt; \
|
|
|
(add)->hh.next = NULL; \
|
|
|
(add)->hh.key = (char*)keyptr; \
|
|
|
- (add)->hh.keylen = keylen_in; \
|
|
|
+ (add)->hh.keylen = (unsigned)keylen_in; \
|
|
|
if (!(head)) { \
|
|
|
head = (add); \
|
|
|
(head)->hh.prev = NULL; \
|
|
|
@@ -300,10 +310,10 @@ do {
|
|
|
} \
|
|
|
} while (0)
|
|
|
#else
|
|
|
-#define HASH_FSCK(hh,head)
|
|
|
+#define HASH_FSCK(hh,head)
|
|
|
#endif
|
|
|
|
|
|
-/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
|
|
|
+/* When compiled with -DHASH_EMIT_KEYS, length-prefixed keys are emitted to
|
|
|
* the descriptor to which this macro is defined for tuning the hash function.
|
|
|
* The app can #include <unistd.h> to get the prototype for write(2). */
|
|
|
#ifdef HASH_EMIT_KEYS
|
|
|
@@ -313,12 +323,12 @@ do {
|
|
|
write(HASH_EMIT_KEYS, &_klen, sizeof(_klen)); \
|
|
|
write(HASH_EMIT_KEYS, keyptr, fieldlen); \
|
|
|
} while (0)
|
|
|
-#else
|
|
|
-#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
|
|
|
+#else
|
|
|
+#define HASH_EMIT_KEY(hh,head,keyptr,fieldlen)
|
|
|
#endif
|
|
|
|
|
|
/* default to Jenkin's hash unless overridden e.g. DHASH_FUNCTION=HASH_SAX */
|
|
|
-#ifdef HASH_FUNCTION
|
|
|
+#ifdef HASH_FUNCTION
|
|
|
#define HASH_FCN HASH_FUNCTION
|
|
|
#else
|
|
|
#define HASH_FCN HASH_JEN
|
|
|
@@ -335,7 +345,7 @@ do {
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
-/* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at
|
|
|
+/* SAX/FNV/OAT/JEN hash functions are macro variants of those listed at
|
|
|
* http://eternallyconfuzzled.com/tuts/algorithms/jsw_tut_hashing.aspx */
|
|
|
#define HASH_SAX(key,keylen,num_bkts,hashv,bkt) \
|
|
|
do { \
|
|
|
@@ -355,8 +365,8 @@ do {
|
|
|
for(_fn_i=0; _fn_i < keylen; _fn_i++) \
|
|
|
hashv = (hashv * 16777619) ^ _hf_key[_fn_i]; \
|
|
|
bkt = hashv & (num_bkts-1); \
|
|
|
-} while(0);
|
|
|
-
|
|
|
+} while(0)
|
|
|
+
|
|
|
#define HASH_OAT(key,keylen,num_bkts,hashv,bkt) \
|
|
|
do { \
|
|
|
unsigned _ho_i; \
|
|
|
@@ -392,7 +402,7 @@ do {
|
|
|
char *_hj_key=(char*)(key); \
|
|
|
hashv = 0xfeedbeef; \
|
|
|
_hj_i = _hj_j = 0x9e3779b9; \
|
|
|
- _hj_k = keylen; \
|
|
|
+ _hj_k = (unsigned)keylen; \
|
|
|
while (_hj_k >= 12) { \
|
|
|
_hj_i += (_hj_key[0] + ( (unsigned)_hj_key[1] << 8 ) \
|
|
|
+ ( (unsigned)_hj_key[2] << 16 ) \
|
|
|
@@ -480,19 +490,19 @@ do {
|
|
|
hashv ^= hashv << 25; \
|
|
|
hashv += hashv >> 6; \
|
|
|
bkt = hashv & (num_bkts-1); \
|
|
|
-} while(0);
|
|
|
+} while(0)
|
|
|
|
|
|
#ifdef HASH_USING_NO_STRICT_ALIASING
|
|
|
/* The MurmurHash exploits some CPU's (x86,x86_64) tolerance for unaligned reads.
|
|
|
* For other types of CPU's (e.g. Sparc) an unaligned read causes a bus error.
|
|
|
- * MurmurHash uses the faster approach only on CPU's where we know it's safe.
|
|
|
+ * MurmurHash uses the faster approach only on CPU's where we know it's safe.
|
|
|
*
|
|
|
* Note the preprocessor built-in defines can be emitted using:
|
|
|
*
|
|
|
* gcc -m64 -dM -E - < /dev/null (on gcc)
|
|
|
* cc -## a.c (where a.c is a simple test file) (Sun Studio)
|
|
|
*/
|
|
|
-#if (defined(__i386__) || defined(__x86_64__))
|
|
|
+#if (defined(__i386__) || defined(__x86_64__))
|
|
|
#define MUR_GETBLOCK(p,i) p[i]
|
|
|
#else /* non intel */
|
|
|
#define MUR_PLUS0_ALIGNED(p) (((unsigned long)p & 0x3) == 0)
|
|
|
@@ -500,16 +510,14 @@ do {
|
|
|
#define MUR_PLUS2_ALIGNED(p) (((unsigned long)p & 0x3) == 2)
|
|
|
#define MUR_PLUS3_ALIGNED(p) (((unsigned long)p & 0x3) == 3)
|
|
|
#define WP(p) ((uint32_t*)((unsigned long)(p) & ~3UL))
|
|
|
-#if __BYTE_ORDER == __BIG_ENDIAN
|
|
|
+#if (defined(__BIG_ENDIAN__) || defined(SPARC) || defined(__ppc__) || defined(__ppc64__))
|
|
|
#define MUR_THREE_ONE(p) ((((*WP(p))&0x00ffffff) << 8) | (((*(WP(p)+1))&0xff000000) >> 24))
|
|
|
#define MUR_TWO_TWO(p) ((((*WP(p))&0x0000ffff) <<16) | (((*(WP(p)+1))&0xffff0000) >> 16))
|
|
|
#define MUR_ONE_THREE(p) ((((*WP(p))&0x000000ff) <<24) | (((*(WP(p)+1))&0xffffff00) >> 8))
|
|
|
-#elif __BYTE_ORDER == __LITTLE_ENDIAN
|
|
|
+#else /* assume little endian non-intel */
|
|
|
#define MUR_THREE_ONE(p) ((((*WP(p))&0xffffff00) >> 8) | (((*(WP(p)+1))&0x000000ff) << 24))
|
|
|
#define MUR_TWO_TWO(p) ((((*WP(p))&0xffff0000) >>16) | (((*(WP(p)+1))&0x0000ffff) << 16))
|
|
|
#define MUR_ONE_THREE(p) ((((*WP(p))&0xff000000) >>24) | (((*(WP(p)+1))&0x00ffffff) << 8))
|
|
|
-#else
|
|
|
-#error "Port me to your endian, please :)"
|
|
|
#endif
|
|
|
#define MUR_GETBLOCK(p,i) (MUR_PLUS0_ALIGNED(p) ? ((p)[i]) : \
|
|
|
(MUR_PLUS1_ALIGNED(p) ? MUR_THREE_ONE(p) : \
|
|
|
@@ -564,7 +572,7 @@ do { \
|
|
|
#endif /* HASH_USING_NO_STRICT_ALIASING */
|
|
|
|
|
|
/* key comparison function; return 0 if keys equal */
|
|
|
-#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
|
|
|
+#define HASH_KEYCMP(a,b,len) memcmp(a,b,len)
|
|
|
|
|
|
/* iterate over items in a known bucket to find desired item */
|
|
|
#define HASH_FIND_IN_BKT(tbl,hh,head,keyptr,keylen_in,out) \
|
|
|
@@ -572,10 +580,10 @@ do {
|
|
|
if (head.hh_head) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,head.hh_head)); \
|
|
|
else out=NULL; \
|
|
|
while (out) { \
|
|
|
- if (out->hh.keylen == keylen_in) { \
|
|
|
- if ((HASH_KEYCMP(out->hh.key,keyptr,keylen_in)) == 0) break; \
|
|
|
+ if ((out)->hh.keylen == keylen_in) { \
|
|
|
+ if ((HASH_KEYCMP((out)->hh.key,keyptr,keylen_in)) == 0) break; \
|
|
|
} \
|
|
|
- if (out->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,out->hh.hh_next)); \
|
|
|
+ if ((out)->hh.hh_next) DECLTYPE_ASSIGN(out,ELMT_FROM_HH(tbl,(out)->hh.hh_next)); \
|
|
|
else out = NULL; \
|
|
|
} \
|
|
|
} while(0)
|
|
|
@@ -605,36 +613,36 @@ do {
|
|
|
} \
|
|
|
if (hh_del->hh_next) { \
|
|
|
hh_del->hh_next->hh_prev = hh_del->hh_prev; \
|
|
|
- }
|
|
|
+ }
|
|
|
|
|
|
/* Bucket expansion has the effect of doubling the number of buckets
|
|
|
* and redistributing the items into the new buckets. Ideally the
|
|
|
* items will distribute more or less evenly into the new buckets
|
|
|
* (the extent to which this is true is a measure of the quality of
|
|
|
- * the hash function as it applies to the key domain).
|
|
|
- *
|
|
|
+ * the hash function as it applies to the key domain).
|
|
|
+ *
|
|
|
* With the items distributed into more buckets, the chain length
|
|
|
* (item count) in each bucket is reduced. Thus by expanding buckets
|
|
|
- * the hash keeps a bound on the chain length. This bounded chain
|
|
|
+ * the hash keeps a bound on the chain length. This bounded chain
|
|
|
* length is the essence of how a hash provides constant time lookup.
|
|
|
- *
|
|
|
+ *
|
|
|
* The calculation of tbl->ideal_chain_maxlen below deserves some
|
|
|
* explanation. First, keep in mind that we're calculating the ideal
|
|
|
* maximum chain length based on the *new* (doubled) bucket count.
|
|
|
* In fractions this is just n/b (n=number of items,b=new num buckets).
|
|
|
- * Since the ideal chain length is an integer, we want to calculate
|
|
|
+ * Since the ideal chain length is an integer, we want to calculate
|
|
|
* ceil(n/b). We don't depend on floating point arithmetic in this
|
|
|
* hash, so to calculate ceil(n/b) with integers we could write
|
|
|
- *
|
|
|
+ *
|
|
|
* ceil(n/b) = (n/b) + ((n%b)?1:0)
|
|
|
- *
|
|
|
+ *
|
|
|
* and in fact a previous version of this hash did just that.
|
|
|
* But now we have improved things a bit by recognizing that b is
|
|
|
* always a power of two. We keep its base 2 log handy (call it lb),
|
|
|
* so now we can write this with a bit shift and logical AND:
|
|
|
- *
|
|
|
+ *
|
|
|
* ceil(n/b) = (n>>lb) + ( (n & (b-1)) ? 1:0)
|
|
|
- *
|
|
|
+ *
|
|
|
*/
|
|
|
#define HASH_EXPAND_BUCKETS(tbl) \
|
|
|
do { \
|
|
|
@@ -686,7 +694,7 @@ do {
|
|
|
|
|
|
|
|
|
/* This is an adaptation of Simon Tatham's O(n log(n)) mergesort */
|
|
|
-/* Note that HASH_SORT assumes the hash handle name to be hh.
|
|
|
+/* Note that HASH_SORT assumes the hash handle name to be hh.
|
|
|
* HASH_SRT was added to allow the hash handle name to be passed in. */
|
|
|
#define HASH_SORT(head,cmpfcn) HASH_SRT(hh,head,cmpfcn)
|
|
|
#define HASH_SRT(hh,head,cmpfcn) \
|
|
|
@@ -768,10 +776,10 @@ do {
|
|
|
} \
|
|
|
} while (0)
|
|
|
|
|
|
-/* This function selects items from one hash into another hash.
|
|
|
- * The end result is that the selected items have dual presence
|
|
|
- * in both hashes. There is no copy of the items made; rather
|
|
|
- * they are added into the new hash through a secondary hash
|
|
|
+/* This function selects items from one hash into another hash.
|
|
|
+ * The end result is that the selected items have dual presence
|
|
|
+ * in both hashes. There is no copy of the items made; rather
|
|
|
+ * they are added into the new hash through a secondary hash
|
|
|
* hash handle that must be present in the structure. */
|
|
|
#define HASH_SELECT(hh_dst, dst, hh_src, src, cond) \
|
|
|
do { \
|
|
|
@@ -816,6 +824,7 @@ do {
|
|
|
if (head) { \
|
|
|
uthash_free((head)->hh.tbl->buckets, \
|
|
|
(head)->hh.tbl->num_buckets*sizeof(struct UT_hash_bucket)); \
|
|
|
+ HASH_BLOOM_FREE((head)->hh.tbl); \
|
|
|
uthash_free((head)->hh.tbl, sizeof(UT_hash_table)); \
|
|
|
(head)=NULL; \
|
|
|
} \
|
|
|
@@ -824,7 +833,7 @@ do {
|
|
|
#ifdef NO_DECLTYPE
|
|
|
#define HASH_ITER(hh,head,el,tmp) \
|
|
|
for((el)=(head), (*(char**)(&(tmp)))=(char*)((head)?(head)->hh.next:NULL); \
|
|
|
- el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL))
|
|
|
+ el; (el)=(tmp),(*(char**)(&(tmp)))=(char*)((tmp)?(tmp)->hh.next:NULL))
|
|
|
#else
|
|
|
#define HASH_ITER(hh,head,el,tmp) \
|
|
|
for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL); \
|
|
|
@@ -832,7 +841,7 @@ for((el)=(head),(tmp)=DECLTYPE(el)((head)?(head)->hh.next:NULL);
|
|
|
#endif
|
|
|
|
|
|
/* obtain a count of items in the hash */
|
|
|
-#define HASH_COUNT(head) HASH_CNT(hh,head)
|
|
|
+#define HASH_COUNT(head) HASH_CNT(hh,head)
|
|
|
#define HASH_CNT(hh,head) ((head)?((head)->hh.tbl->num_items):0)
|
|
|
|
|
|
typedef struct UT_hash_bucket {
|
|
|
@@ -841,7 +850,7 @@ typedef struct UT_hash_bucket {
|
|
|
|
|
|
/* expand_mult is normally set to 0. In this situation, the max chain length
|
|
|
* threshold is enforced at its default value, HASH_BKT_CAPACITY_THRESH. (If
|
|
|
- * the bucket's chain exceeds this length, bucket expansion is triggered).
|
|
|
+ * the bucket's chain exceeds this length, bucket expansion is triggered).
|
|
|
* However, setting expand_mult to a non-zero value delays bucket expansion
|
|
|
* (that would be triggered by additions to this particular bucket)
|
|
|
* until its chain length reaches a *multiple* of HASH_BKT_CAPACITY_THRESH.
|
|
|
@@ -849,7 +858,7 @@ typedef struct UT_hash_bucket {
|
|
|
* multiplier is to reduce bucket expansions, since they are expensive, in
|
|
|
* situations where we know that a particular bucket tends to be overused.
|
|
|
* It is better to let its chain length grow to a longer yet-still-bounded
|
|
|
- * value, than to do an O(n) bucket expansion too often.
|
|
|
+ * value, than to do an O(n) bucket expansion too often.
|
|
|
*/
|
|
|
unsigned expand_mult;
|
|
|
|
|
|
@@ -875,7 +884,7 @@ typedef struct UT_hash_table {
|
|
|
* hash distribution; reaching them in a chain traversal takes >ideal steps */
|
|
|
unsigned nonideal_items;
|
|
|
|
|
|
- /* ineffective expands occur when a bucket doubling was performed, but
|
|
|
+ /* ineffective expands occur when a bucket doubling was performed, but
|
|
|
* afterward, more than half the items in the hash had nonideal chain
|
|
|
* positions. If this happens on two consecutive expansions we inhibit any
|
|
|
* further expansion, as it's not helping; this happens when the hash
|