|
|
@@ -690,657 +690,649 @@ Vals[4]+=Vals[0];
|
|
|
Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
|
|
|
Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
|
|
|
|
|
|
-W[0]=Vals[0];
|
|
|
-W[0]+=state0;
|
|
|
+Vals[0]+=state0;
|
|
|
+
|
|
|
+Vals[7]+=state7;
|
|
|
+
|
|
|
+W[7]=0xF377ED68U;
|
|
|
+W[7]+=Vals[0];
|
|
|
+
|
|
|
+Vals[3]+=state3;
|
|
|
+
|
|
|
+W[3]=0xa54ff53aU;
|
|
|
+W[3]+=W[7];
|
|
|
+W[7]+=0x08909ae5U;
|
|
|
+
|
|
|
+Vals[6]+=state6;
|
|
|
+
|
|
|
+W[6]=0x90BB1E3CU;
|
|
|
+W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
|
|
|
+W[6]+=(0x9b05688cU^(W[3]&0xca0b3af3U));
|
|
|
+
|
|
|
+Vals[1]+=state1;
|
|
|
+W[6]+=Vals[1];
|
|
|
+
|
|
|
+Vals[2]+=state2;
|
|
|
+
|
|
|
+W[2]=0x3c6ef372U;
|
|
|
+W[2]+=W[6];
|
|
|
+W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
|
|
|
+W[6]+=Ma2(0xbb67ae85U,W[7],0x6a09e667U);
|
|
|
+
|
|
|
+Vals[5]+=state5;
|
|
|
+
|
|
|
+W[5]=0x50C6645BU;
|
|
|
+W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
|
|
|
+W[5]+=ch(W[2],W[3],0x510e527fU);
|
|
|
+W[5]+=Vals[2];
|
|
|
+
|
|
|
+W[1]=0xbb67ae85U;
|
|
|
+W[1]+=W[5];
|
|
|
+W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
|
|
|
+W[5]+=Ma2(0x6a09e667U,W[6],W[7]);
|
|
|
+
|
|
|
+Vals[4]+=state4;
|
|
|
+
|
|
|
+W[4]=0x3AC42E24U;
|
|
|
+W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
|
|
|
+W[4]+=ch(W[1],W[2],W[3]);
|
|
|
+W[4]+=Vals[3];
|
|
|
+
|
|
|
+W[0]=W[4];
|
|
|
+W[0]+=0x6a09e667U;
|
|
|
+
|
|
|
+W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
|
|
|
+W[4]+=Ma(W[7],W[5],W[6]);
|
|
|
+
|
|
|
+W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
|
|
|
+W[3]+=ch(W[0],W[1],W[2]);
|
|
|
+W[3]+=K[4];
|
|
|
+W[3]+=Vals[4];
|
|
|
+W[7]+=W[3];
|
|
|
+W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
|
|
|
+W[3]+=Ma(W[6],W[4],W[5]);
|
|
|
+
|
|
|
+W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
|
|
|
+W[2]+=ch(W[7],W[0],W[1]);
|
|
|
+W[2]+=K[5];
|
|
|
+W[2]+=Vals[5];
|
|
|
+W[6]+=W[2];
|
|
|
+W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
|
|
|
+W[2]+=Ma(W[5],W[3],W[4]);
|
|
|
+
|
|
|
+W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
|
|
|
+W[1]+=ch(W[6],W[7],W[0]);
|
|
|
+W[1]+=K[6];
|
|
|
+W[1]+=Vals[6];
|
|
|
+W[5]+=W[1];
|
|
|
+W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
|
|
|
+W[1]+=Ma(W[4],W[2],W[3]);
|
|
|
+
|
|
|
+W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
|
|
|
+W[0]+=ch(W[5],W[6],W[7]);
|
|
|
+W[0]+=K[7];
|
|
|
+W[0]+=Vals[7];
|
|
|
+W[4]+=W[0];
|
|
|
+W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
|
|
|
+W[0]+=Ma(W[3],W[1],W[2]);
|
|
|
+
|
|
|
+W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
|
|
|
+W[7]+=ch(W[4],W[5],W[6]);
|
|
|
+W[7]+=0x5807AA98U;
|
|
|
+W[3]+=W[7];
|
|
|
+W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
|
|
|
+W[7]+=Ma(W[2],W[0],W[1]);
|
|
|
+
|
|
|
+W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
|
|
|
+W[6]+=ch(W[3],W[4],W[5]);
|
|
|
+W[6]+=K[9];
|
|
|
+W[2]+=W[6];
|
|
|
+W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
|
|
|
+W[6]+=Ma(W[1],W[7],W[0]);
|
|
|
+
|
|
|
+W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
|
|
|
+W[5]+=ch(W[2],W[3],W[4]);
|
|
|
+W[5]+=K[10];
|
|
|
+W[1]+=W[5];
|
|
|
+W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
|
|
|
+W[5]+=Ma(W[0],W[6],W[7]);
|
|
|
+
|
|
|
+W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
|
|
|
+W[4]+=ch(W[1],W[2],W[3]);
|
|
|
+W[4]+=K[11];
|
|
|
+W[0]+=W[4];
|
|
|
+W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
|
|
|
+W[4]+=Ma(W[7],W[5],W[6]);
|
|
|
+
|
|
|
+W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
|
|
|
+W[3]+=ch(W[0],W[1],W[2]);
|
|
|
+W[3]+=K[12];
|
|
|
+W[7]+=W[3];
|
|
|
+W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
|
|
|
+W[3]+=Ma(W[6],W[4],W[5]);
|
|
|
+
|
|
|
+W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
|
|
|
+W[2]+=ch(W[7],W[0],W[1]);
|
|
|
+W[2]+=K[13];
|
|
|
+W[6]+=W[2];
|
|
|
+W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
|
|
|
+W[2]+=Ma(W[5],W[3],W[4]);
|
|
|
+
|
|
|
+W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
|
|
|
+W[1]+=ch(W[6],W[7],W[0]);
|
|
|
+W[1]+=K[14];
|
|
|
+W[5]+=W[1];
|
|
|
+W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
|
|
|
+W[1]+=Ma(W[4],W[2],W[3]);
|
|
|
+
|
|
|
+W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
|
|
|
+W[0]+=ch(W[5],W[6],W[7]);
|
|
|
+W[0]+=0xC19BF274U;
|
|
|
+W[4]+=W[0];
|
|
|
+W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
|
|
|
+W[0]+=Ma(W[3],W[1],W[2]);
|
|
|
+
|
|
|
+Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
|
|
|
+W[7]+=Vals[0];
|
|
|
+W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
|
|
|
+W[7]+=ch(W[4],W[5],W[6]);
|
|
|
+W[7]+=K[16];
|
|
|
+W[3]+=W[7];
|
|
|
+W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
|
|
|
+W[7]+=Ma(W[2],W[0],W[1]);
|
|
|
+
|
|
|
+Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
|
|
|
+Vals[1]+=0x00a00000U;
|
|
|
+W[6]+=Vals[1];
|
|
|
+W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
|
|
|
+W[6]+=ch(W[3],W[4],W[5]);
|
|
|
+W[6]+=K[17];
|
|
|
+W[2]+=W[6];
|
|
|
+W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
|
|
|
+W[6]+=Ma(W[1],W[7],W[0]);
|
|
|
+
|
|
|
+Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
|
|
|
+Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
|
|
|
+W[5]+=Vals[2];
|
|
|
+W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
|
|
|
+W[5]+=ch(W[2],W[3],W[4]);
|
|
|
+W[5]+=K[18];
|
|
|
+W[1]+=W[5];
|
|
|
+W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
|
|
|
+W[5]+=Ma(W[0],W[6],W[7]);
|
|
|
+
|
|
|
+Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
|
|
|
+Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
|
|
|
+W[4]+=Vals[3];
|
|
|
+W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
|
|
|
+W[4]+=ch(W[1],W[2],W[3]);
|
|
|
+W[4]+=K[19];
|
|
|
+W[0]+=W[4];
|
|
|
+W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
|
|
|
+W[4]+=Ma(W[7],W[5],W[6]);
|
|
|
+
|
|
|
+Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
|
|
|
+Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
|
|
|
+W[3]+=Vals[4];
|
|
|
+W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
|
|
|
+W[3]+=ch(W[0],W[1],W[2]);
|
|
|
+W[3]+=K[20];
|
|
|
+W[7]+=W[3];
|
|
|
+W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
|
|
|
+W[3]+=Ma(W[6],W[4],W[5]);
|
|
|
+
|
|
|
+Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
|
|
|
+Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
|
|
|
+W[2]+=Vals[5];
|
|
|
+W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
|
|
|
+W[2]+=ch(W[7],W[0],W[1]);
|
|
|
+W[2]+=K[21];
|
|
|
+W[6]+=W[2];
|
|
|
+W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
|
|
|
+W[2]+=Ma(W[5],W[3],W[4]);
|
|
|
+
|
|
|
+Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
|
|
|
+Vals[6]+=0x00000100U;
|
|
|
+Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
|
|
|
+W[1]+=Vals[6];
|
|
|
+W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
|
|
|
+W[1]+=ch(W[6],W[7],W[0]);
|
|
|
+W[1]+=K[22];
|
|
|
+W[5]+=W[1];
|
|
|
+W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
|
|
|
+W[1]+=Ma(W[4],W[2],W[3]);
|
|
|
+
|
|
|
+Vals[7]+=0x11002000U;
|
|
|
+Vals[7]+=Vals[0];
|
|
|
+Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
|
|
|
+W[0]+=Vals[7];
|
|
|
+W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
|
|
|
+W[0]+=ch(W[5],W[6],W[7]);
|
|
|
+W[0]+=K[23];
|
|
|
+W[4]+=W[0];
|
|
|
+W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
|
|
|
+W[0]+=Ma(W[3],W[1],W[2]);
|
|
|
|
|
|
-W[7]=state7;
|
|
|
-W[7]+=Vals[7];
|
|
|
-
|
|
|
-Vals[7]=0xF377ED68U;
|
|
|
-Vals[7]+=W[0];
|
|
|
-
|
|
|
-W[3]=state3;
|
|
|
-W[3]+=Vals[3];
|
|
|
-
|
|
|
-Vals[3]=0xa54ff53aU;
|
|
|
-Vals[3]+=Vals[7];
|
|
|
-Vals[7]+=0x08909ae5U;
|
|
|
-
|
|
|
-W[6]=state6;
|
|
|
-W[6]+=Vals[6];
|
|
|
-
|
|
|
-Vals[6]=0x90BB1E3CU;
|
|
|
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
|
|
|
-Vals[6]+=(0x9b05688cU^(Vals[3]&0xca0b3af3U));
|
|
|
-
|
|
|
-W[1]=Vals[1];
|
|
|
-W[1]+=state1;
|
|
|
-Vals[6]+=W[1];
|
|
|
-
|
|
|
-W[2]=state2;
|
|
|
-W[2]+=Vals[2];
|
|
|
-
|
|
|
-Vals[2]=0x3c6ef372U;
|
|
|
-Vals[2]+=Vals[6];
|
|
|
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
|
|
|
-Vals[6]+=Ma2(0xbb67ae85U,Vals[7],0x6a09e667U);
|
|
|
-
|
|
|
-W[5]=state5;
|
|
|
-W[5]+=Vals[5];
|
|
|
-
|
|
|
-Vals[5]=0x50C6645BU;
|
|
|
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
|
|
|
-Vals[5]+=ch(Vals[2],Vals[3],0x510e527fU);
|
|
|
-Vals[5]+=W[2];
|
|
|
-
|
|
|
-Vals[1]=0xbb67ae85U;
|
|
|
-Vals[1]+=Vals[5];
|
|
|
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
|
|
|
-Vals[5]+=Ma2(0x6a09e667U,Vals[6],Vals[7]);
|
|
|
-
|
|
|
-W[4]=state4;
|
|
|
-W[4]+=Vals[4];
|
|
|
-
|
|
|
-Vals[4]=0x3AC42E24U;
|
|
|
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
|
|
|
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
-Vals[4]+=W[3];
|
|
|
-
|
|
|
-Vals[0]=Vals[4];
|
|
|
-Vals[0]+=0x6a09e667U;
|
|
|
-
|
|
|
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
|
|
|
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
|
|
|
-
|
|
|
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
|
|
|
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
|
|
|
-Vals[3]+=K[4];
|
|
|
-Vals[3]+=W[4];
|
|
|
-Vals[7]+=Vals[3];
|
|
|
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
|
|
|
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
|
|
|
-
|
|
|
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
|
|
|
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
-Vals[2]+=K[5];
|
|
|
-Vals[2]+=W[5];
|
|
|
-Vals[6]+=Vals[2];
|
|
|
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
|
|
|
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
|
|
|
-
|
|
|
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
|
|
|
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
|
|
|
-Vals[1]+=K[6];
|
|
|
-Vals[1]+=W[6];
|
|
|
-Vals[5]+=Vals[1];
|
|
|
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
|
|
|
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
|
|
|
-
|
|
|
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
|
|
|
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
|
|
|
-Vals[0]+=K[7];
|
|
|
-Vals[0]+=W[7];
|
|
|
-Vals[4]+=Vals[0];
|
|
|
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
|
|
|
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
|
|
|
-
|
|
|
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
|
|
|
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
|
|
|
-Vals[7]+=0x5807AA98U;
|
|
|
-Vals[3]+=Vals[7];
|
|
|
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
|
|
|
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
|
|
|
-
|
|
|
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
|
|
|
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
|
|
|
-Vals[6]+=K[9];
|
|
|
-Vals[2]+=Vals[6];
|
|
|
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
|
|
|
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
|
|
|
-
|
|
|
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
|
|
|
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
|
|
|
-Vals[5]+=K[10];
|
|
|
-Vals[1]+=Vals[5];
|
|
|
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
|
|
|
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
|
|
|
-
|
|
|
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
|
|
|
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
-Vals[4]+=K[11];
|
|
|
-Vals[0]+=Vals[4];
|
|
|
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
|
|
|
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
|
|
|
-
|
|
|
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
|
|
|
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
|
|
|
-Vals[3]+=K[12];
|
|
|
-Vals[7]+=Vals[3];
|
|
|
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
|
|
|
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
|
|
|
-
|
|
|
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
|
|
|
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
-Vals[2]+=K[13];
|
|
|
-Vals[6]+=Vals[2];
|
|
|
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
|
|
|
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
|
|
|
-
|
|
|
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
|
|
|
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
|
|
|
-Vals[1]+=K[14];
|
|
|
-Vals[5]+=Vals[1];
|
|
|
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
|
|
|
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
|
|
|
-
|
|
|
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
|
|
|
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
|
|
|
-Vals[0]+=0xC19BF274U;
|
|
|
-Vals[4]+=Vals[0];
|
|
|
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
|
|
|
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
|
|
|
-
|
|
|
-W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
-Vals[7]+=W[0];
|
|
|
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
|
|
|
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
|
|
|
-Vals[7]+=K[16];
|
|
|
-Vals[3]+=Vals[7];
|
|
|
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
|
|
|
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
|
|
|
-
|
|
|
-W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
-W[1]+=0x00a00000U;
|
|
|
-Vals[6]+=W[1];
|
|
|
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
|
|
|
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
|
|
|
-Vals[6]+=K[17];
|
|
|
-Vals[2]+=Vals[6];
|
|
|
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
|
|
|
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
|
|
|
-
|
|
|
-W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
|
|
|
-Vals[5]+=W[2];
|
|
|
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
|
|
|
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
|
|
|
-Vals[5]+=K[18];
|
|
|
-Vals[1]+=Vals[5];
|
|
|
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
|
|
|
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
|
|
|
-
|
|
|
-W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
-W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
|
|
|
-Vals[4]+=W[3];
|
|
|
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
|
|
|
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
-Vals[4]+=K[19];
|
|
|
-Vals[0]+=Vals[4];
|
|
|
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
|
|
|
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
|
|
|
-
|
|
|
-W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
-Vals[3]+=W[4];
|
|
|
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
|
|
|
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
|
|
|
-Vals[3]+=K[20];
|
|
|
-Vals[7]+=Vals[3];
|
|
|
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
|
|
|
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
|
|
|
-
|
|
|
-W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
-W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
-Vals[2]+=W[5];
|
|
|
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
|
|
|
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
-Vals[2]+=K[21];
|
|
|
-Vals[6]+=Vals[2];
|
|
|
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
|
|
|
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
|
|
|
-
|
|
|
-W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
-W[6]+=0x00000100U;
|
|
|
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
-Vals[1]+=W[6];
|
|
|
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
|
|
|
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
|
|
|
-Vals[1]+=K[22];
|
|
|
-Vals[5]+=Vals[1];
|
|
|
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
|
|
|
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
|
|
|
-
|
|
|
-W[7]+=0x11002000U;
|
|
|
-W[7]+=W[0];
|
|
|
-W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
-Vals[0]+=W[7];
|
|
|
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
|
|
|
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
|
|
|
-Vals[0]+=K[23];
|
|
|
-Vals[4]+=Vals[0];
|
|
|
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
|
|
|
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
|
|
|
-
|
|
|
-W[8]=0x80000000U;
|
|
|
-W[8]+=W[1];
|
|
|
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
-Vals[7]+=W[8];
|
|
|
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
|
|
|
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
|
|
|
-Vals[7]+=K[24];
|
|
|
-Vals[3]+=Vals[7];
|
|
|
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
|
|
|
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
|
|
|
-
|
|
|
-W[9]=W[2];
|
|
|
-W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
-Vals[6]+=W[9];
|
|
|
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
|
|
|
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
|
|
|
-Vals[6]+=K[25];
|
|
|
-Vals[2]+=Vals[6];
|
|
|
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
|
|
|
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
|
|
|
-
|
|
|
-W[10]=W[3];
|
|
|
-W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
-Vals[5]+=W[10];
|
|
|
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
|
|
|
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
|
|
|
-Vals[5]+=K[26];
|
|
|
-Vals[1]+=Vals[5];
|
|
|
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
|
|
|
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
|
|
|
-
|
|
|
-W[11]=W[4];
|
|
|
-W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
-Vals[4]+=W[11];
|
|
|
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
|
|
|
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
-Vals[4]+=K[27];
|
|
|
-Vals[0]+=Vals[4];
|
|
|
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
|
|
|
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
|
|
|
-
|
|
|
-W[12]=W[5];
|
|
|
-W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
-Vals[3]+=W[12];
|
|
|
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
|
|
|
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
|
|
|
-Vals[3]+=K[28];
|
|
|
-Vals[7]+=Vals[3];
|
|
|
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
|
|
|
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
|
|
|
-
|
|
|
-W[13]=W[6];
|
|
|
-W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
|
|
|
-Vals[2]+=W[13];
|
|
|
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
|
|
|
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
-Vals[2]+=K[29];
|
|
|
-Vals[6]+=Vals[2];
|
|
|
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
|
|
|
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
|
|
|
-
|
|
|
-W[14]=0x00400022U;
|
|
|
-W[14]+=W[7];
|
|
|
-W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
|
|
|
-Vals[1]+=W[14];
|
|
|
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
|
|
|
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
|
|
|
-Vals[1]+=K[30];
|
|
|
-Vals[5]+=Vals[1];
|
|
|
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
|
|
|
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
|
|
|
-
|
|
|
-W[15]=0x00000100U;
|
|
|
-W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
-W[15]+=W[8];
|
|
|
-W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
|
|
|
-Vals[0]+=W[15];
|
|
|
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
|
|
|
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
|
|
|
-Vals[0]+=K[31];
|
|
|
-Vals[4]+=Vals[0];
|
|
|
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
|
|
|
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
|
|
|
-
|
|
|
-W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
-W[0]+=W[9];
|
|
|
-W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
|
|
|
-Vals[7]+=W[0];
|
|
|
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
|
|
|
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
|
|
|
-Vals[7]+=K[32];
|
|
|
-Vals[3]+=Vals[7];
|
|
|
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
|
|
|
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
|
|
|
-
|
|
|
-W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
-W[1]+=W[10];
|
|
|
-W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
|
|
|
-Vals[6]+=W[1];
|
|
|
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
|
|
|
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
|
|
|
-Vals[6]+=K[33];
|
|
|
-Vals[2]+=Vals[6];
|
|
|
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
|
|
|
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
|
|
|
-
|
|
|
-W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
-W[2]+=W[11];
|
|
|
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
|
|
|
-Vals[5]+=W[2];
|
|
|
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
|
|
|
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
|
|
|
-Vals[5]+=K[34];
|
|
|
-Vals[1]+=Vals[5];
|
|
|
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
|
|
|
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
|
|
|
-
|
|
|
-W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
+W[8]=0x80000000U;
|
|
|
+W[8]+=Vals[1];
|
|
|
+W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
|
|
|
+W[7]+=W[8];
|
|
|
+W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
|
|
|
+W[7]+=ch(W[4],W[5],W[6]);
|
|
|
+W[7]+=K[24];
|
|
|
+W[3]+=W[7];
|
|
|
+W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
|
|
|
+W[7]+=Ma(W[2],W[0],W[1]);
|
|
|
+
|
|
|
+W[9]=Vals[2];
|
|
|
+W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
|
|
|
+W[6]+=W[9];
|
|
|
+W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
|
|
|
+W[6]+=ch(W[3],W[4],W[5]);
|
|
|
+W[6]+=K[25];
|
|
|
+W[2]+=W[6];
|
|
|
+W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
|
|
|
+W[6]+=Ma(W[1],W[7],W[0]);
|
|
|
+
|
|
|
+W[10]=Vals[3];
|
|
|
+W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
+W[5]+=W[10];
|
|
|
+W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
|
|
|
+W[5]+=ch(W[2],W[3],W[4]);
|
|
|
+W[5]+=K[26];
|
|
|
+W[1]+=W[5];
|
|
|
+W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
|
|
|
+W[5]+=Ma(W[0],W[6],W[7]);
|
|
|
+
|
|
|
+W[11]=Vals[4];
|
|
|
+W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
+W[4]+=W[11];
|
|
|
+W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
|
|
|
+W[4]+=ch(W[1],W[2],W[3]);
|
|
|
+W[4]+=K[27];
|
|
|
+W[0]+=W[4];
|
|
|
+W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
|
|
|
+W[4]+=Ma(W[7],W[5],W[6]);
|
|
|
+
|
|
|
+W[12]=Vals[5];
|
|
|
+W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
W[3]+=W[12];
|
|
|
-W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
|
|
|
-Vals[4]+=W[3];
|
|
|
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
|
|
|
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
-Vals[4]+=K[35];
|
|
|
-Vals[0]+=Vals[4];
|
|
|
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
|
|
|
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
|
|
|
-
|
|
|
-W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
-W[4]+=W[13];
|
|
|
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
-Vals[3]+=W[4];
|
|
|
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
|
|
|
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
|
|
|
-Vals[3]+=K[36];
|
|
|
-Vals[7]+=Vals[3];
|
|
|
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
|
|
|
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
|
|
|
-
|
|
|
-W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
-W[5]+=W[14];
|
|
|
-W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
-Vals[2]+=W[5];
|
|
|
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
|
|
|
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
-Vals[2]+=K[37];
|
|
|
-Vals[6]+=Vals[2];
|
|
|
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
|
|
|
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
|
|
|
+W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
|
|
|
+W[3]+=ch(W[0],W[1],W[2]);
|
|
|
+W[3]+=K[28];
|
|
|
+W[7]+=W[3];
|
|
|
+W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
|
|
|
+W[3]+=Ma(W[6],W[4],W[5]);
|
|
|
+
|
|
|
+W[13]=Vals[6];
|
|
|
+W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
|
|
|
+W[2]+=W[13];
|
|
|
+W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
|
|
|
+W[2]+=ch(W[7],W[0],W[1]);
|
|
|
+W[2]+=K[29];
|
|
|
+W[6]+=W[2];
|
|
|
+W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
|
|
|
+W[2]+=Ma(W[5],W[3],W[4]);
|
|
|
|
|
|
-W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
-W[6]+=W[15];
|
|
|
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
-Vals[1]+=W[6];
|
|
|
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
|
|
|
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
|
|
|
-Vals[1]+=K[38];
|
|
|
-Vals[5]+=Vals[1];
|
|
|
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
|
|
|
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
|
|
|
+W[14]=0x00400022U;
|
|
|
+W[14]+=Vals[7];
|
|
|
+W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
|
|
|
+W[1]+=W[14];
|
|
|
+W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
|
|
|
+W[1]+=ch(W[6],W[7],W[0]);
|
|
|
+W[1]+=K[30];
|
|
|
+W[5]+=W[1];
|
|
|
+W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
|
|
|
+W[1]+=Ma(W[4],W[2],W[3]);
|
|
|
|
|
|
-W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
-W[7]+=W[0];
|
|
|
-W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
-Vals[0]+=W[7];
|
|
|
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
|
|
|
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
|
|
|
-Vals[0]+=K[39];
|
|
|
-Vals[4]+=Vals[0];
|
|
|
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
|
|
|
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
|
|
|
+W[15]=0x00000100U;
|
|
|
+W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U));
|
|
|
+W[15]+=W[8];
|
|
|
+W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
|
|
|
+W[0]+=W[15];
|
|
|
+W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
|
|
|
+W[0]+=ch(W[5],W[6],W[7]);
|
|
|
+W[0]+=K[31];
|
|
|
+W[4]+=W[0];
|
|
|
+W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
|
|
|
+W[0]+=Ma(W[3],W[1],W[2]);
|
|
|
+
|
|
|
+Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
|
|
|
+Vals[0]+=W[9];
|
|
|
+Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
|
|
|
+W[7]+=Vals[0];
|
|
|
+W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
|
|
|
+W[7]+=ch(W[4],W[5],W[6]);
|
|
|
+W[7]+=K[32];
|
|
|
+W[3]+=W[7];
|
|
|
+W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
|
|
|
+W[7]+=Ma(W[2],W[0],W[1]);
|
|
|
+
|
|
|
+Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
|
|
|
+Vals[1]+=W[10];
|
|
|
+Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
|
|
|
+W[6]+=Vals[1];
|
|
|
+W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
|
|
|
+W[6]+=ch(W[3],W[4],W[5]);
|
|
|
+W[6]+=K[33];
|
|
|
+W[2]+=W[6];
|
|
|
+W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
|
|
|
+W[6]+=Ma(W[1],W[7],W[0]);
|
|
|
+
|
|
|
+Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
|
|
|
+Vals[2]+=W[11];
|
|
|
+Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
|
|
|
+W[5]+=Vals[2];
|
|
|
+W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
|
|
|
+W[5]+=ch(W[2],W[3],W[4]);
|
|
|
+W[5]+=K[34];
|
|
|
+W[1]+=W[5];
|
|
|
+W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
|
|
|
+W[5]+=Ma(W[0],W[6],W[7]);
|
|
|
+
|
|
|
+Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
|
|
|
+Vals[3]+=W[12];
|
|
|
+Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
|
|
|
+W[4]+=Vals[3];
|
|
|
+W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
|
|
|
+W[4]+=ch(W[1],W[2],W[3]);
|
|
|
+W[4]+=K[35];
|
|
|
+W[0]+=W[4];
|
|
|
+W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
|
|
|
+W[4]+=Ma(W[7],W[5],W[6]);
|
|
|
+
|
|
|
+Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
|
|
|
+Vals[4]+=W[13];
|
|
|
+Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
|
|
|
+W[3]+=Vals[4];
|
|
|
+W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
|
|
|
+W[3]+=ch(W[0],W[1],W[2]);
|
|
|
+W[3]+=K[36];
|
|
|
+W[7]+=W[3];
|
|
|
+W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
|
|
|
+W[3]+=Ma(W[6],W[4],W[5]);
|
|
|
+
|
|
|
+Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
|
|
|
+Vals[5]+=W[14];
|
|
|
+Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
|
|
|
+W[2]+=Vals[5];
|
|
|
+W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
|
|
|
+W[2]+=ch(W[7],W[0],W[1]);
|
|
|
+W[2]+=K[37];
|
|
|
+W[6]+=W[2];
|
|
|
+W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
|
|
|
+W[2]+=Ma(W[5],W[3],W[4]);
|
|
|
+
|
|
|
+Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
|
|
|
+Vals[6]+=W[15];
|
|
|
+Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
|
|
|
+W[1]+=Vals[6];
|
|
|
+W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
|
|
|
+W[1]+=ch(W[6],W[7],W[0]);
|
|
|
+W[1]+=K[38];
|
|
|
+W[5]+=W[1];
|
|
|
+W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
|
|
|
+W[1]+=Ma(W[4],W[2],W[3]);
|
|
|
+
|
|
|
+Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
+Vals[7]+=Vals[0];
|
|
|
+Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
|
|
|
+W[0]+=Vals[7];
|
|
|
+W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
|
|
|
+W[0]+=ch(W[5],W[6],W[7]);
|
|
|
+W[0]+=K[39];
|
|
|
+W[4]+=W[0];
|
|
|
+W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
|
|
|
+W[0]+=Ma(W[3],W[1],W[2]);
|
|
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
-W[8]+=W[1];
|
|
|
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
-Vals[7]+=W[8];
|
|
|
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
|
|
|
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
|
|
|
-Vals[7]+=K[40];
|
|
|
-Vals[3]+=Vals[7];
|
|
|
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
|
|
|
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
|
|
|
+W[8]+=Vals[1];
|
|
|
+W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
|
|
|
+W[7]+=W[8];
|
|
|
+W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
|
|
|
+W[7]+=ch(W[4],W[5],W[6]);
|
|
|
+W[7]+=K[40];
|
|
|
+W[3]+=W[7];
|
|
|
+W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
|
|
|
+W[7]+=Ma(W[2],W[0],W[1]);
|
|
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
-W[9]+=W[2];
|
|
|
-W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
-Vals[6]+=W[9];
|
|
|
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
|
|
|
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
|
|
|
-Vals[6]+=K[41];
|
|
|
-Vals[2]+=Vals[6];
|
|
|
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
|
|
|
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
|
|
|
+W[9]+=Vals[2];
|
|
|
+W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
|
|
|
+W[6]+=W[9];
|
|
|
+W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
|
|
|
+W[6]+=ch(W[3],W[4],W[5]);
|
|
|
+W[6]+=K[41];
|
|
|
+W[2]+=W[6];
|
|
|
+W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
|
|
|
+W[6]+=Ma(W[1],W[7],W[0]);
|
|
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
-W[10]+=W[3];
|
|
|
+W[10]+=Vals[3];
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
-Vals[5]+=W[10];
|
|
|
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
|
|
|
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
|
|
|
-Vals[5]+=K[42];
|
|
|
-Vals[1]+=Vals[5];
|
|
|
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
|
|
|
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
|
|
|
+W[5]+=W[10];
|
|
|
+W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
|
|
|
+W[5]+=ch(W[2],W[3],W[4]);
|
|
|
+W[5]+=K[42];
|
|
|
+W[1]+=W[5];
|
|
|
+W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
|
|
|
+W[5]+=Ma(W[0],W[6],W[7]);
|
|
|
|
|
|
W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
-W[11]+=W[4];
|
|
|
+W[11]+=Vals[4];
|
|
|
W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
-Vals[4]+=W[11];
|
|
|
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
|
|
|
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
-Vals[4]+=K[43];
|
|
|
-Vals[0]+=Vals[4];
|
|
|
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
|
|
|
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
|
|
|
+W[4]+=W[11];
|
|
|
+W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
|
|
|
+W[4]+=ch(W[1],W[2],W[3]);
|
|
|
+W[4]+=K[43];
|
|
|
+W[0]+=W[4];
|
|
|
+W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
|
|
|
+W[4]+=Ma(W[7],W[5],W[6]);
|
|
|
|
|
|
W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
-W[12]+=W[5];
|
|
|
+W[12]+=Vals[5];
|
|
|
W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
-Vals[3]+=W[12];
|
|
|
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
|
|
|
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
|
|
|
-Vals[3]+=K[44];
|
|
|
-Vals[7]+=Vals[3];
|
|
|
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
|
|
|
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
|
|
|
+W[3]+=W[12];
|
|
|
+W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
|
|
|
+W[3]+=ch(W[0],W[1],W[2]);
|
|
|
+W[3]+=K[44];
|
|
|
+W[7]+=W[3];
|
|
|
+W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
|
|
|
+W[3]+=Ma(W[6],W[4],W[5]);
|
|
|
|
|
|
W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
|
|
|
-W[13]+=W[6];
|
|
|
+W[13]+=Vals[6];
|
|
|
W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
|
|
|
-Vals[2]+=W[13];
|
|
|
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
|
|
|
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
-Vals[2]+=K[45];
|
|
|
-Vals[6]+=Vals[2];
|
|
|
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
|
|
|
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
|
|
|
+W[2]+=W[13];
|
|
|
+W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
|
|
|
+W[2]+=ch(W[7],W[0],W[1]);
|
|
|
+W[2]+=K[45];
|
|
|
+W[6]+=W[2];
|
|
|
+W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
|
|
|
+W[2]+=Ma(W[5],W[3],W[4]);
|
|
|
|
|
|
W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
|
|
|
-W[14]+=W[7];
|
|
|
+W[14]+=Vals[7];
|
|
|
W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
|
|
|
-Vals[1]+=W[14];
|
|
|
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
|
|
|
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
|
|
|
-Vals[1]+=K[46];
|
|
|
-Vals[5]+=Vals[1];
|
|
|
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
|
|
|
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
|
|
|
-
|
|
|
-W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
|
|
|
+W[1]+=W[14];
|
|
|
+W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
|
|
|
+W[1]+=ch(W[6],W[7],W[0]);
|
|
|
+W[1]+=K[46];
|
|
|
+W[5]+=W[1];
|
|
|
+W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
|
|
|
+W[1]+=Ma(W[4],W[2],W[3]);
|
|
|
+
|
|
|
+W[15]+=(rotr(Vals[0],7)^rotr(Vals[0],18)^(Vals[0]>>3U));
|
|
|
W[15]+=W[8];
|
|
|
W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
|
|
|
-Vals[0]+=W[15];
|
|
|
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
|
|
|
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
|
|
|
-Vals[0]+=K[47];
|
|
|
-Vals[4]+=Vals[0];
|
|
|
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
|
|
|
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
|
|
|
-
|
|
|
-W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
|
|
|
-W[0]+=W[9];
|
|
|
-W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
|
|
|
-Vals[7]+=W[0];
|
|
|
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
|
|
|
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
|
|
|
-Vals[7]+=K[48];
|
|
|
-Vals[3]+=Vals[7];
|
|
|
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
|
|
|
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
|
|
|
-
|
|
|
-W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
|
|
|
-W[1]+=W[10];
|
|
|
-W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
|
|
|
-Vals[6]+=W[1];
|
|
|
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
|
|
|
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
|
|
|
-Vals[6]+=K[49];
|
|
|
-Vals[2]+=Vals[6];
|
|
|
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
|
|
|
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
|
|
|
-
|
|
|
-W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
|
|
|
-W[2]+=W[11];
|
|
|
-W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
|
|
|
-Vals[5]+=W[2];
|
|
|
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
|
|
|
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
|
|
|
-Vals[5]+=K[50];
|
|
|
-Vals[1]+=Vals[5];
|
|
|
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
|
|
|
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
|
|
|
-
|
|
|
-W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
|
|
|
-W[3]+=W[12];
|
|
|
-W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
|
|
|
-Vals[4]+=W[3];
|
|
|
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
|
|
|
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
|
|
|
-Vals[4]+=K[51];
|
|
|
-Vals[0]+=Vals[4];
|
|
|
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
|
|
|
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
|
|
|
-
|
|
|
-W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
|
|
|
-W[4]+=W[13];
|
|
|
-W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
|
|
|
-Vals[3]+=W[4];
|
|
|
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
|
|
|
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
|
|
|
-Vals[3]+=K[52];
|
|
|
-Vals[7]+=Vals[3];
|
|
|
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
|
|
|
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
|
|
|
-
|
|
|
-W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
|
|
|
-W[5]+=W[14];
|
|
|
-W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
|
|
|
-Vals[2]+=W[5];
|
|
|
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
|
|
|
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
|
|
|
-Vals[2]+=K[53];
|
|
|
-Vals[6]+=Vals[2];
|
|
|
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
|
|
|
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
|
|
|
-
|
|
|
-W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
|
|
|
-W[6]+=W[15];
|
|
|
-W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
|
|
|
-Vals[1]+=W[6];
|
|
|
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
|
|
|
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
|
|
|
-Vals[1]+=K[54];
|
|
|
-Vals[5]+=Vals[1];
|
|
|
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
|
|
|
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
|
|
|
-
|
|
|
-W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
-W[7]+=W[0];
|
|
|
-W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
|
|
|
-Vals[0]+=W[7];
|
|
|
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
|
|
|
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
|
|
|
-Vals[0]+=K[55];
|
|
|
-Vals[4]+=Vals[0];
|
|
|
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
|
|
|
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
|
|
|
+W[0]+=W[15];
|
|
|
+W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
|
|
|
+W[0]+=ch(W[5],W[6],W[7]);
|
|
|
+W[0]+=K[47];
|
|
|
+W[4]+=W[0];
|
|
|
+W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
|
|
|
+W[0]+=Ma(W[3],W[1],W[2]);
|
|
|
+
|
|
|
+Vals[0]+=(rotr(Vals[1],7)^rotr(Vals[1],18)^(Vals[1]>>3U));
|
|
|
+Vals[0]+=W[9];
|
|
|
+Vals[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
|
|
|
+W[7]+=Vals[0];
|
|
|
+W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
|
|
|
+W[7]+=ch(W[4],W[5],W[6]);
|
|
|
+W[7]+=K[48];
|
|
|
+W[3]+=W[7];
|
|
|
+W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
|
|
|
+W[7]+=Ma(W[2],W[0],W[1]);
|
|
|
+
|
|
|
+Vals[1]+=(rotr(Vals[2],7)^rotr(Vals[2],18)^(Vals[2]>>3U));
|
|
|
+Vals[1]+=W[10];
|
|
|
+Vals[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
|
|
|
+W[6]+=Vals[1];
|
|
|
+W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
|
|
|
+W[6]+=ch(W[3],W[4],W[5]);
|
|
|
+W[6]+=K[49];
|
|
|
+W[2]+=W[6];
|
|
|
+W[6]+=(rotr(W[7],2)^rotr(W[7],13)^rotr(W[7],22));
|
|
|
+W[6]+=Ma(W[1],W[7],W[0]);
|
|
|
+
|
|
|
+Vals[2]+=(rotr(Vals[3],7)^rotr(Vals[3],18)^(Vals[3]>>3U));
|
|
|
+Vals[2]+=W[11];
|
|
|
+Vals[2]+=(rotr(Vals[0],17)^rotr(Vals[0],19)^(Vals[0]>>10U));
|
|
|
+W[5]+=Vals[2];
|
|
|
+W[5]+=(rotr(W[2],6)^rotr(W[2],11)^rotr(W[2],25));
|
|
|
+W[5]+=ch(W[2],W[3],W[4]);
|
|
|
+W[5]+=K[50];
|
|
|
+W[1]+=W[5];
|
|
|
+W[5]+=(rotr(W[6],2)^rotr(W[6],13)^rotr(W[6],22));
|
|
|
+W[5]+=Ma(W[0],W[6],W[7]);
|
|
|
+
|
|
|
+Vals[3]+=(rotr(Vals[4],7)^rotr(Vals[4],18)^(Vals[4]>>3U));
|
|
|
+Vals[3]+=W[12];
|
|
|
+Vals[3]+=(rotr(Vals[1],17)^rotr(Vals[1],19)^(Vals[1]>>10U));
|
|
|
+W[4]+=Vals[3];
|
|
|
+W[4]+=(rotr(W[1],6)^rotr(W[1],11)^rotr(W[1],25));
|
|
|
+W[4]+=ch(W[1],W[2],W[3]);
|
|
|
+W[4]+=K[51];
|
|
|
+W[0]+=W[4];
|
|
|
+W[4]+=(rotr(W[5],2)^rotr(W[5],13)^rotr(W[5],22));
|
|
|
+W[4]+=Ma(W[7],W[5],W[6]);
|
|
|
+
|
|
|
+Vals[4]+=(rotr(Vals[5],7)^rotr(Vals[5],18)^(Vals[5]>>3U));
|
|
|
+Vals[4]+=W[13];
|
|
|
+Vals[4]+=(rotr(Vals[2],17)^rotr(Vals[2],19)^(Vals[2]>>10U));
|
|
|
+W[3]+=Vals[4];
|
|
|
+W[3]+=(rotr(W[0],6)^rotr(W[0],11)^rotr(W[0],25));
|
|
|
+W[3]+=ch(W[0],W[1],W[2]);
|
|
|
+W[3]+=K[52];
|
|
|
+W[7]+=W[3];
|
|
|
+W[3]+=(rotr(W[4],2)^rotr(W[4],13)^rotr(W[4],22));
|
|
|
+W[3]+=Ma(W[6],W[4],W[5]);
|
|
|
+
|
|
|
+Vals[5]+=(rotr(Vals[6],7)^rotr(Vals[6],18)^(Vals[6]>>3U));
|
|
|
+Vals[5]+=W[14];
|
|
|
+Vals[5]+=(rotr(Vals[3],17)^rotr(Vals[3],19)^(Vals[3]>>10U));
|
|
|
+W[2]+=Vals[5];
|
|
|
+W[2]+=(rotr(W[7],6)^rotr(W[7],11)^rotr(W[7],25));
|
|
|
+W[2]+=ch(W[7],W[0],W[1]);
|
|
|
+W[2]+=K[53];
|
|
|
+W[6]+=W[2];
|
|
|
+W[2]+=(rotr(W[3],2)^rotr(W[3],13)^rotr(W[3],22));
|
|
|
+W[2]+=Ma(W[5],W[3],W[4]);
|
|
|
+
|
|
|
+Vals[6]+=(rotr(Vals[7],7)^rotr(Vals[7],18)^(Vals[7]>>3U));
|
|
|
+Vals[6]+=W[15];
|
|
|
+Vals[6]+=(rotr(Vals[4],17)^rotr(Vals[4],19)^(Vals[4]>>10U));
|
|
|
+W[1]+=Vals[6];
|
|
|
+W[1]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
|
|
|
+W[1]+=ch(W[6],W[7],W[0]);
|
|
|
+W[1]+=K[54];
|
|
|
+W[5]+=W[1];
|
|
|
+W[1]+=(rotr(W[2],2)^rotr(W[2],13)^rotr(W[2],22));
|
|
|
+W[1]+=Ma(W[4],W[2],W[3]);
|
|
|
+
|
|
|
+Vals[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
|
|
|
+Vals[7]+=Vals[0];
|
|
|
+Vals[7]+=(rotr(Vals[5],17)^rotr(Vals[5],19)^(Vals[5]>>10U));
|
|
|
+W[0]+=Vals[7];
|
|
|
+W[0]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
|
|
|
+W[0]+=ch(W[5],W[6],W[7]);
|
|
|
+W[0]+=K[55];
|
|
|
+W[4]+=W[0];
|
|
|
+W[0]+=(rotr(W[1],2)^rotr(W[1],13)^rotr(W[1],22));
|
|
|
+W[0]+=Ma(W[3],W[1],W[2]);
|
|
|
|
|
|
W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
|
|
|
-W[8]+=W[1];
|
|
|
-W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
|
|
|
-Vals[7]+=W[8];
|
|
|
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
|
|
|
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
|
|
|
-Vals[7]+=K[56];
|
|
|
-Vals[3]+=Vals[7];
|
|
|
+W[8]+=Vals[1];
|
|
|
+W[8]+=(rotr(Vals[6],17)^rotr(Vals[6],19)^(Vals[6]>>10U));
|
|
|
+W[7]+=W[8];
|
|
|
+W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
|
|
|
+W[7]+=ch(W[4],W[5],W[6]);
|
|
|
+W[7]+=K[56];
|
|
|
+W[3]+=W[7];
|
|
|
|
|
|
W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
|
|
|
-W[9]+=W[2];
|
|
|
-W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
|
|
|
-Vals[6]+=W[9];
|
|
|
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
|
|
|
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
|
|
|
-Vals[6]+=K[57];
|
|
|
-Vals[6]+=Vals[2];
|
|
|
+W[9]+=Vals[2];
|
|
|
+W[9]+=(rotr(Vals[7],17)^rotr(Vals[7],19)^(Vals[7]>>10U));
|
|
|
+W[6]+=W[9];
|
|
|
+W[6]+=(rotr(W[3],6)^rotr(W[3],11)^rotr(W[3],25));
|
|
|
+W[6]+=ch(W[3],W[4],W[5]);
|
|
|
+W[6]+=K[57];
|
|
|
+W[6]+=W[2];
|
|
|
|
|
|
W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
|
|
|
-W[10]+=W[3];
|
|
|
+W[10]+=Vals[3];
|
|
|
W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
|
|
|
-Vals[5]+=W[10];
|
|
|
-Vals[5]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
|
|
|
-Vals[5]+=ch(Vals[6],Vals[3],Vals[4]);
|
|
|
-Vals[5]+=K[58];
|
|
|
-Vals[5]+=Vals[1];
|
|
|
-Vals[4]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
|
|
|
-Vals[4]+=ch(Vals[5],Vals[6],Vals[3]);
|
|
|
-Vals[4]+=W[11];
|
|
|
-Vals[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
-Vals[4]+=W[4];
|
|
|
-Vals[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
-Vals[4]+=K[59];
|
|
|
-Vals[4]+=Vals[0];
|
|
|
+W[5]+=W[10];
|
|
|
+W[5]+=(rotr(W[6],6)^rotr(W[6],11)^rotr(W[6],25));
|
|
|
+W[5]+=ch(W[6],W[3],W[4]);
|
|
|
+W[5]+=K[58];
|
|
|
+W[5]+=W[1];
|
|
|
+W[4]+=(rotr(W[5],6)^rotr(W[5],11)^rotr(W[5],25));
|
|
|
+W[4]+=ch(W[5],W[6],W[3]);
|
|
|
+W[4]+=W[11];
|
|
|
+W[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
|
|
|
+W[4]+=Vals[4];
|
|
|
+W[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
|
|
|
+W[4]+=K[59];
|
|
|
+W[4]+=W[0];
|
|
|
|
|
|
#define FOUND (0x80)
|
|
|
#define NFLAG (0x7F)
|
|
|
|
|
|
#if defined(VECTORS2) || defined(VECTORS4)
|
|
|
- Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
|
|
|
- Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
|
|
|
- Vals[7]+=W[12];
|
|
|
- Vals[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
- Vals[7]+=W[5];
|
|
|
- Vals[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
- Vals[7]+=Vals[3];
|
|
|
- Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
|
|
|
- Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
|
|
|
-
|
|
|
- if (any(Vals[7] == 0x136032edU)) {
|
|
|
- if (Vals[7].x == 0x136032edU)
|
|
|
+ W[7]+=Ma(W[2],W[0],W[1]);
|
|
|
+ W[7]+=(rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22));
|
|
|
+ W[7]+=W[12];
|
|
|
+ W[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
|
|
|
+ W[7]+=Vals[5];
|
|
|
+ W[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
|
|
|
+ W[7]+=W[3];
|
|
|
+ W[7]+=(rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25));
|
|
|
+ W[7]+=ch(W[4],W[5],W[6]);
|
|
|
+
|
|
|
+ if (any(W[7] == 0x136032edU)) {
|
|
|
+ if (W[7].x == 0x136032edU)
|
|
|
output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
|
|
|
- if (Vals[7].y == 0x136032edU)
|
|
|
+ if (W[7].y == 0x136032edU)
|
|
|
output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
|
|
|
#if defined(VECTORS4)
|
|
|
- if (Vals[7].z == 0x136032edU)
|
|
|
+ if (W[7].z == 0x136032edU)
|
|
|
output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
|
|
|
- if (Vals[7].w == 0x136032edU)
|
|
|
+ if (W[7].w == 0x136032edU)
|
|
|
output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
|
|
|
#endif
|
|
|
}
|
|
|
#else
|
|
|
- if ((Vals[7]+
|
|
|
- Ma(Vals[2],Vals[0],Vals[1])+
|
|
|
- (rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22))+
|
|
|
+ if ((W[7]+
|
|
|
+ Ma(W[2],W[0],W[1])+
|
|
|
+ (rotr(W[0],2)^rotr(W[0],13)^rotr(W[0],22))+
|
|
|
W[12]+
|
|
|
(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+
|
|
|
- W[5]+
|
|
|
+ Vals[5]+
|
|
|
(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+
|
|
|
- Vals[3]+
|
|
|
- (rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25))+
|
|
|
- ch(Vals[4],Vals[5],Vals[6])) == 0x136032edU)
|
|
|
+ W[3]+
|
|
|
+ (rotr(W[4],6)^rotr(W[4],11)^rotr(W[4],25))+
|
|
|
+ ch(W[4],W[5],W[6])) == 0x136032edU)
|
|
|
output[FOUND] = output[NFLAG & nonce] = nonce;
|
|
|
#endif
|
|
|
}
|