Browse Source

Microoptimise poclbm kernel by ordering Val variables according to usage frequency.

Con Kolivas 14 years ago
parent
commit
0a39a22c2d
1 changed files with 853 additions and 853 deletions
  1. 853 853
      poclbm120327.cl

+ 853 - 853
poclbm120327.cl

@@ -91,1262 +91,1262 @@ void search(const uint state0, const uint state1, const uint state2, const uint
 	const u nonce = base + (uint)(get_global_id(0));
 	const u nonce = base + (uint)(get_global_id(0));
 #endif
 #endif
 
 
-Vals[0]=Preval0;
-Vals[0]+=nonce;
+Vals[5]=Preval0;
+Vals[5]+=nonce;
 
 
-Vals[3]=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],b1,c1);
-Vals[3]+=D1A;
+Vals[0]=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],b1,c1);
+Vals[0]+=D1A;
 
 
-Vals[7]=Vals[3];
-Vals[7]+=h1;
+Vals[2]=Vals[0];
+Vals[2]+=h1;
 
 
-Vals[4]=PreVal4addT1;
-Vals[4]+=nonce;
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]=PreVal4addT1;
+Vals[1]+=nonce;
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
 
 
-Vals[2]=C1addK5;
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],b1);
+Vals[6]=C1addK5;
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],b1);
 
 
-Vals[6]=Vals[2];
-Vals[6]+=g1;
-Vals[3]+=Ma2(g1,Vals[4],f1);
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma2(f1,Vals[3],Vals[4]);
+Vals[3]=Vals[6];
+Vals[3]+=g1;
+Vals[0]+=Ma2(g1,Vals[1],f1);
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma2(f1,Vals[0],Vals[1]);
 
 
-Vals[1]=B1addK6;
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
+Vals[7]=B1addK6;
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
 
 
-Vals[5]=Vals[1];
-Vals[5]+=f1;
+Vals[4]=Vals[7];
+Vals[4]+=f1;
 
 
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[7];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
-
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[8];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
-
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[9];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
-
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[10];
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[7];
 Vals[1]+=Vals[5];
 Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[11];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[8];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[12];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
-
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[13];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
-
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[14];
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[9];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
+
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[10];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
+
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[11];
 Vals[5]+=Vals[1];
 Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=0xC19BF3F4U;
-Vals[4]+=Vals[0];
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[12];
+Vals[2]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
-
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=W16addK16;
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
-
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=W17addK17;
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
+
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[13];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
+
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[14];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
+
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=0xC19BF3F4U;
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
+
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=W16addK16;
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
+
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=W17addK17;
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
 W[2]=(rotr(nonce,7)^rotr(nonce,18)^(nonce>>3U));
 W[2]+=fw2;
 W[2]+=fw2;
-Vals[5]+=W[2];
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[18];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=W[2];
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[18];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[3]=nonce;
 W[3]=nonce;
 W[3]+=fw3;
 W[3]+=fw3;
-Vals[4]+=W[3];
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[19];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=W[3];
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[19];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 W[4]=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 W[4]+=0x80000000U;
 W[4]+=0x80000000U;
-Vals[3]+=W[4];
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[20];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=W[4];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[20];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 W[5]=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
-Vals[2]+=W[5];
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[21];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=W[5];
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[21];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 W[6]=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 W[6]+=0x00000280U;
 W[6]+=0x00000280U;
-Vals[1]+=W[6];
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[22];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=W[6];
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[22];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 W[7]=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 W[7]+=fw0;
 W[7]+=fw0;
-Vals[0]+=W[7];
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[23];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=W[7];
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[23];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 W[8]=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 W[8]+=fw1;
 W[8]+=fw1;
-Vals[7]+=W[8];
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[24];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=W[8];
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[24];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[9]=W[2];
 W[9]=W[2];
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
-Vals[6]+=W[9];
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[25];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=W[9];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[25];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[10]=W[3];
 W[10]=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-Vals[5]+=W[10];
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[26];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=W[10];
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[26];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[11]=W[4];
 W[11]=W[4];
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-Vals[4]+=W[11];
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[27];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=W[11];
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[27];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[12]=W[5];
 W[12]=W[5];
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-Vals[3]+=W[12];
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[28];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=W[12];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[28];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[13]=W[6];
 W[13]=W[6];
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
-Vals[2]+=W[13];
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[29];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=W[13];
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[29];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[14]=0x00a00055U;
 W[14]=0x00a00055U;
 W[14]+=W[7];
 W[14]+=W[7];
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
-Vals[1]+=W[14];
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[30];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=W[14];
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[30];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[15]=fw15;
 W[15]=fw15;
 W[15]+=W[8];
 W[15]+=W[8];
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
-Vals[0]+=W[15];
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[31];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=W[15];
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[31];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[0]=fw01r;
 W[0]=fw01r;
 W[0]+=W[9];
 W[0]+=W[9];
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
-Vals[7]+=W[0];
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[32];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=W[0];
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[32];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[1]=fw1;
 W[1]=fw1;
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=W[10];
 W[1]+=W[10];
 W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
 W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
-Vals[6]+=W[1];
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[33];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=W[1];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[33];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=W[11];
 W[2]+=W[11];
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[34];
-Vals[5]+=W[2];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[34];
+Vals[4]+=W[2];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=W[12];
 W[3]+=W[12];
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[35];
-Vals[4]+=W[3];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[35];
+Vals[1]+=W[3];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=W[13];
 W[4]+=W[13];
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[36];
-Vals[3]+=W[4];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[36];
+Vals[0]+=W[4];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=W[14];
 W[5]+=W[14];
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[37];
-Vals[2]+=W[5];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[37];
+Vals[6]+=W[5];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=W[15];
 W[6]+=W[15];
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[38];
-Vals[1]+=W[6];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[38];
+Vals[7]+=W[6];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=W[0];
 W[7]+=W[0];
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[39];
-Vals[0]+=W[7];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[39];
+Vals[5]+=W[7];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=W[1];
 W[8]+=W[1];
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[40];
-Vals[7]+=W[8];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[40];
+Vals[2]+=W[8];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=W[2];
 W[9]+=W[2];
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[41];
-Vals[6]+=W[9];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[41];
+Vals[3]+=W[9];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=W[3];
 W[10]+=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[42];
-Vals[5]+=W[10];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[42];
+Vals[4]+=W[10];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
 W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
 W[11]+=W[4];
 W[11]+=W[4];
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[43];
-Vals[4]+=W[11];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[43];
+Vals[1]+=W[11];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
 W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
 W[12]+=W[5];
 W[12]+=W[5];
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[44];
-Vals[3]+=W[12];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[44];
+Vals[0]+=W[12];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
 W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
 W[13]+=W[6];
 W[13]+=W[6];
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[45];
-Vals[2]+=W[13];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[45];
+Vals[6]+=W[13];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
 W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
 W[14]+=W[7];
 W[14]+=W[7];
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[46];
-Vals[1]+=W[14];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[46];
+Vals[7]+=W[14];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=W[8];
 W[15]+=W[8];
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[47];
-Vals[0]+=W[15];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[47];
+Vals[5]+=W[15];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
 W[0]+=W[9];
 W[0]+=W[9];
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[48];
-Vals[7]+=W[0];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[48];
+Vals[2]+=W[0];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=W[10];
 W[1]+=W[10];
 W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
 W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[49];
-Vals[6]+=W[1];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[49];
+Vals[3]+=W[1];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=W[11];
 W[2]+=W[11];
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[50];
-Vals[5]+=W[2];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[50];
+Vals[4]+=W[2];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=W[12];
 W[3]+=W[12];
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[51];
-Vals[4]+=W[3];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[51];
+Vals[1]+=W[3];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=W[13];
 W[4]+=W[13];
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[52];
-Vals[3]+=W[4];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[52];
+Vals[0]+=W[4];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=W[14];
 W[5]+=W[14];
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[53];
-Vals[2]+=W[5];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[53];
+Vals[6]+=W[5];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=W[15];
 W[6]+=W[15];
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[54];
-Vals[1]+=W[6];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[54];
+Vals[7]+=W[6];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=W[0];
 W[7]+=W[0];
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[55];
-Vals[0]+=W[7];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[55];
+Vals[5]+=W[7];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=W[1];
 W[8]+=W[1];
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[56];
-Vals[7]+=W[8];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[56];
+Vals[2]+=W[8];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=W[2];
 W[9]+=W[2];
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[57];
-Vals[6]+=W[9];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[57];
+Vals[3]+=W[9];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=W[3];
 W[10]+=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[58];
-Vals[5]+=W[10];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[58];
+Vals[4]+=W[10];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
 W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
 W[11]+=W[4];
 W[11]+=W[4];
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[59];
-Vals[4]+=W[11];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[59];
+Vals[1]+=W[11];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
 W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
 W[12]+=W[5];
 W[12]+=W[5];
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[60];
-Vals[3]+=W[12];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[60];
+Vals[0]+=W[12];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
 W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
 W[13]+=W[6];
 W[13]+=W[6];
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[61];
-Vals[2]+=W[13];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[61];
+Vals[6]+=W[13];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
 W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
 W[14]+=W[7];
 W[14]+=W[7];
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[62];
-Vals[1]+=W[14];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[62];
+Vals[7]+=W[14];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=W[8];
 W[15]+=W[8];
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[63];
-Vals[0]+=W[15];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[63];
+Vals[5]+=W[15];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
-W[0]=Vals[0];
+W[0]=Vals[5];
 W[0]+=state0;
 W[0]+=state0;
 
 
 W[7]=state7;
 W[7]=state7;
-W[7]+=Vals[7];
+W[7]+=Vals[2];
 
 
-Vals[7]=0xF377ED68U;
-Vals[7]+=W[0];
+Vals[2]=0xF377ED68U;
+Vals[2]+=W[0];
 
 
 W[3]=state3;
 W[3]=state3;
-W[3]+=Vals[3];
+W[3]+=Vals[0];
 
 
-Vals[3]=0xa54ff53aU;
-Vals[3]+=Vals[7];
-Vals[7]+=0x08909ae5U;
+Vals[0]=0xa54ff53aU;
+Vals[0]+=Vals[2];
+Vals[2]+=0x08909ae5U;
 
 
 W[6]=state6;
 W[6]=state6;
-W[6]+=Vals[6];
+W[6]+=Vals[3];
 
 
-Vals[6]=0x90BB1E3CU;
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=(0x9b05688cU^(Vals[3]&0xca0b3af3U));
+Vals[3]=0x90BB1E3CU;
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=(0x9b05688cU^(Vals[0]&0xca0b3af3U));
 
 
-W[1]=Vals[1];
+W[1]=Vals[7];
 W[1]+=state1;
 W[1]+=state1;
-Vals[6]+=W[1];
+Vals[3]+=W[1];
 
 
 W[2]=state2;
 W[2]=state2;
-W[2]+=Vals[2];
+W[2]+=Vals[6];
 
 
-Vals[2]=0x3c6ef372U;
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma2(0xbb67ae85U,Vals[7],0x6a09e667U);
+Vals[6]=0x3c6ef372U;
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma2(0xbb67ae85U,Vals[2],0x6a09e667U);
 
 
 W[5]=state5;
 W[5]=state5;
-W[5]+=Vals[5];
+W[5]+=Vals[4];
 
 
-Vals[5]=0x50C6645BU;
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],0x510e527fU);
-Vals[5]+=W[2];
+Vals[4]=0x50C6645BU;
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],0x510e527fU);
+Vals[4]+=W[2];
 
 
-Vals[1]=0xbb67ae85U;
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma2(0x6a09e667U,Vals[6],Vals[7]);
+Vals[7]=0xbb67ae85U;
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma2(0x6a09e667U,Vals[3],Vals[2]);
 
 
 W[4]=state4;
 W[4]=state4;
-W[4]+=Vals[4];
-
-Vals[4]=0x3AC42E24U;
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=W[3];
+W[4]+=Vals[1];
 
 
-Vals[0]=Vals[4];
-Vals[0]+=0x6a09e667U;
+Vals[1]=0x3AC42E24U;
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=W[3];
 
 
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[5]=Vals[1];
+Vals[5]+=0x6a09e667U;
 
 
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[4];
-Vals[3]+=W[4];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
-
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[5];
-Vals[2]+=W[5];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
-
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[6];
-Vals[1]+=W[6];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[7];
-Vals[0]+=W[7];
-Vals[4]+=Vals[0];
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[4];
+Vals[0]+=W[4];
+Vals[2]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
-
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=0x5807AA98U;
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
-
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[9];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
-
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[10];
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
+
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[5];
+Vals[6]+=W[5];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
+
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[6];
+Vals[7]+=W[6];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
+
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[7];
+Vals[5]+=W[7];
 Vals[1]+=Vals[5];
 Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[11];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=0x5807AA98U;
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
 Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[12];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
-
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[13];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
-
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[14];
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[9];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
+
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[10];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
+
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[11];
 Vals[5]+=Vals[1];
 Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
 Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=0xC19BF274U;
-Vals[4]+=Vals[0];
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[12];
+Vals[2]+=Vals[0];
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
 Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
+
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[13];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
+
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[14];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
+
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=0xC19BF274U;
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
-Vals[7]+=W[0];
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[16];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=W[0];
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[16];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=0x00a00000U;
 W[1]+=0x00a00000U;
-Vals[6]+=W[1];
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[17];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=W[1];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[17];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
-Vals[5]+=W[2];
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[18];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=W[2];
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[18];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
-Vals[4]+=W[3];
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[19];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=W[3];
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[19];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
-Vals[3]+=W[4];
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[20];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=W[4];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[20];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
-Vals[2]+=W[5];
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[21];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=W[5];
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[21];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=0x00000100U;
 W[6]+=0x00000100U;
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
-Vals[1]+=W[6];
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[22];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=W[6];
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[22];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[7]+=0x11002000U;
 W[7]+=0x11002000U;
 W[7]+=W[0];
 W[7]+=W[0];
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
-Vals[0]+=W[7];
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[23];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=W[7];
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[23];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[8]=0x80000000U;
 W[8]=0x80000000U;
 W[8]+=W[1];
 W[8]+=W[1];
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
-Vals[7]+=W[8];
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[24];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=W[8];
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[24];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[9]=W[2];
 W[9]=W[2];
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
-Vals[6]+=W[9];
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[25];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=W[9];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[25];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[10]=W[3];
 W[10]=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-Vals[5]+=W[10];
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[26];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=W[10];
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[26];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[11]=W[4];
 W[11]=W[4];
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-Vals[4]+=W[11];
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[27];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=W[11];
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[27];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[12]=W[5];
 W[12]=W[5];
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-Vals[3]+=W[12];
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[28];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=W[12];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[28];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[13]=W[6];
 W[13]=W[6];
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
-Vals[2]+=W[13];
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[29];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=W[13];
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[29];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[14]=0x00400022U;
 W[14]=0x00400022U;
 W[14]+=W[7];
 W[14]+=W[7];
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
-Vals[1]+=W[14];
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[30];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=W[14];
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[30];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[15]=0x00000100U;
 W[15]=0x00000100U;
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=W[8];
 W[15]+=W[8];
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
-Vals[0]+=W[15];
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[31];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=W[15];
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[31];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
 W[0]+=W[9];
 W[0]+=W[9];
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
-Vals[7]+=W[0];
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[32];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=W[0];
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[32];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=W[10];
 W[1]+=W[10];
 W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
 W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
-Vals[6]+=W[1];
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[33];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=W[1];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[33];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=W[11];
 W[2]+=W[11];
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
-Vals[5]+=W[2];
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[34];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=W[2];
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[34];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=W[12];
 W[3]+=W[12];
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
-Vals[4]+=W[3];
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[35];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=W[3];
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[35];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=W[13];
 W[4]+=W[13];
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
-Vals[3]+=W[4];
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[36];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=W[4];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[36];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=W[14];
 W[5]+=W[14];
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
-Vals[2]+=W[5];
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[37];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=W[5];
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[37];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=W[15];
 W[6]+=W[15];
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
-Vals[1]+=W[6];
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[38];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=W[6];
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[38];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=W[0];
 W[7]+=W[0];
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
-Vals[0]+=W[7];
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[39];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=W[7];
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[39];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=W[1];
 W[8]+=W[1];
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
-Vals[7]+=W[8];
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[40];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=W[8];
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[40];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=W[2];
 W[9]+=W[2];
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
-Vals[6]+=W[9];
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[41];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=W[9];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[41];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=W[3];
 W[10]+=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-Vals[5]+=W[10];
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[42];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=W[10];
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[42];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
 W[11]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
 W[11]+=W[4];
 W[11]+=W[4];
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
 W[11]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-Vals[4]+=W[11];
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[43];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=W[11];
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[43];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
 W[12]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
 W[12]+=W[5];
 W[12]+=W[5];
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
 W[12]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-Vals[3]+=W[12];
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[44];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=W[12];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[44];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
 W[13]+=(rotr(W[14],7)^rotr(W[14],18)^(W[14]>>3U));
 W[13]+=W[6];
 W[13]+=W[6];
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
 W[13]+=(rotr(W[11],17)^rotr(W[11],19)^(W[11]>>10U));
-Vals[2]+=W[13];
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[45];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=W[13];
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[45];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
 W[14]+=(rotr(W[15],7)^rotr(W[15],18)^(W[15]>>3U));
 W[14]+=W[7];
 W[14]+=W[7];
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
 W[14]+=(rotr(W[12],17)^rotr(W[12],19)^(W[12]>>10U));
-Vals[1]+=W[14];
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[46];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=W[14];
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[46];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=(rotr(W[0],7)^rotr(W[0],18)^(W[0]>>3U));
 W[15]+=W[8];
 W[15]+=W[8];
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
 W[15]+=(rotr(W[13],17)^rotr(W[13],19)^(W[13]>>10U));
-Vals[0]+=W[15];
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[47];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=W[15];
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[47];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
 W[0]+=(rotr(W[1],7)^rotr(W[1],18)^(W[1]>>3U));
 W[0]+=W[9];
 W[0]+=W[9];
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
 W[0]+=(rotr(W[14],17)^rotr(W[14],19)^(W[14]>>10U));
-Vals[7]+=W[0];
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[48];
-Vals[3]+=Vals[7];
-Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
+Vals[2]+=W[0];
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[48];
+Vals[0]+=Vals[2];
+Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
 
 
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=(rotr(W[2],7)^rotr(W[2],18)^(W[2]>>3U));
 W[1]+=W[10];
 W[1]+=W[10];
 W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
 W[1]+=(rotr(W[15],17)^rotr(W[15],19)^(W[15]>>10U));
-Vals[6]+=W[1];
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[49];
-Vals[2]+=Vals[6];
-Vals[6]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
-Vals[6]+=Ma(Vals[1],Vals[7],Vals[0]);
+Vals[3]+=W[1];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[49];
+Vals[6]+=Vals[3];
+Vals[3]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
+Vals[3]+=Ma(Vals[7],Vals[2],Vals[5]);
 
 
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=(rotr(W[3],7)^rotr(W[3],18)^(W[3]>>3U));
 W[2]+=W[11];
 W[2]+=W[11];
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
 W[2]+=(rotr(W[0],17)^rotr(W[0],19)^(W[0]>>10U));
-Vals[5]+=W[2];
-Vals[5]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
-Vals[5]+=ch(Vals[2],Vals[3],Vals[4]);
-Vals[5]+=K[50];
-Vals[1]+=Vals[5];
-Vals[5]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
-Vals[5]+=Ma(Vals[0],Vals[6],Vals[7]);
+Vals[4]+=W[2];
+Vals[4]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
+Vals[4]+=ch(Vals[6],Vals[0],Vals[1]);
+Vals[4]+=K[50];
+Vals[7]+=Vals[4];
+Vals[4]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
+Vals[4]+=Ma(Vals[5],Vals[3],Vals[2]);
 
 
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=(rotr(W[4],7)^rotr(W[4],18)^(W[4]>>3U));
 W[3]+=W[12];
 W[3]+=W[12];
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
 W[3]+=(rotr(W[1],17)^rotr(W[1],19)^(W[1]>>10U));
-Vals[4]+=W[3];
-Vals[4]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
-Vals[4]+=ch(Vals[1],Vals[2],Vals[3]);
-Vals[4]+=K[51];
-Vals[0]+=Vals[4];
-Vals[4]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
-Vals[4]+=Ma(Vals[7],Vals[5],Vals[6]);
+Vals[1]+=W[3];
+Vals[1]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
+Vals[1]+=ch(Vals[7],Vals[6],Vals[0]);
+Vals[1]+=K[51];
+Vals[5]+=Vals[1];
+Vals[1]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
+Vals[1]+=Ma(Vals[2],Vals[4],Vals[3]);
 
 
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=(rotr(W[5],7)^rotr(W[5],18)^(W[5]>>3U));
 W[4]+=W[13];
 W[4]+=W[13];
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
 W[4]+=(rotr(W[2],17)^rotr(W[2],19)^(W[2]>>10U));
-Vals[3]+=W[4];
-Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
-Vals[3]+=ch(Vals[0],Vals[1],Vals[2]);
-Vals[3]+=K[52];
-Vals[7]+=Vals[3];
-Vals[3]+=(rotr(Vals[4],2)^rotr(Vals[4],13)^rotr(Vals[4],22));
-Vals[3]+=Ma(Vals[6],Vals[4],Vals[5]);
+Vals[0]+=W[4];
+Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
+Vals[0]+=ch(Vals[5],Vals[7],Vals[6]);
+Vals[0]+=K[52];
+Vals[2]+=Vals[0];
+Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
+Vals[0]+=Ma(Vals[3],Vals[1],Vals[4]);
 
 
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=(rotr(W[6],7)^rotr(W[6],18)^(W[6]>>3U));
 W[5]+=W[14];
 W[5]+=W[14];
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
 W[5]+=(rotr(W[3],17)^rotr(W[3],19)^(W[3]>>10U));
-Vals[2]+=W[5];
-Vals[2]+=(rotr(Vals[7],6)^rotr(Vals[7],11)^rotr(Vals[7],25));
-Vals[2]+=ch(Vals[7],Vals[0],Vals[1]);
-Vals[2]+=K[53];
-Vals[6]+=Vals[2];
-Vals[2]+=(rotr(Vals[3],2)^rotr(Vals[3],13)^rotr(Vals[3],22));
-Vals[2]+=Ma(Vals[5],Vals[3],Vals[4]);
+Vals[6]+=W[5];
+Vals[6]+=(rotr(Vals[2],6)^rotr(Vals[2],11)^rotr(Vals[2],25));
+Vals[6]+=ch(Vals[2],Vals[5],Vals[7]);
+Vals[6]+=K[53];
+Vals[3]+=Vals[6];
+Vals[6]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
+Vals[6]+=Ma(Vals[4],Vals[0],Vals[1]);
 
 
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=(rotr(W[7],7)^rotr(W[7],18)^(W[7]>>3U));
 W[6]+=W[15];
 W[6]+=W[15];
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
 W[6]+=(rotr(W[4],17)^rotr(W[4],19)^(W[4]>>10U));
-Vals[1]+=W[6];
-Vals[1]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[1]+=ch(Vals[6],Vals[7],Vals[0]);
-Vals[1]+=K[54];
-Vals[5]+=Vals[1];
-Vals[1]+=(rotr(Vals[2],2)^rotr(Vals[2],13)^rotr(Vals[2],22));
-Vals[1]+=Ma(Vals[4],Vals[2],Vals[3]);
+Vals[7]+=W[6];
+Vals[7]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[7]+=ch(Vals[3],Vals[2],Vals[5]);
+Vals[7]+=K[54];
+Vals[4]+=Vals[7];
+Vals[7]+=(rotr(Vals[6],2)^rotr(Vals[6],13)^rotr(Vals[6],22));
+Vals[7]+=Ma(Vals[1],Vals[6],Vals[0]);
 
 
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=(rotr(W[8],7)^rotr(W[8],18)^(W[8]>>3U));
 W[7]+=W[0];
 W[7]+=W[0];
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
 W[7]+=(rotr(W[5],17)^rotr(W[5],19)^(W[5]>>10U));
-Vals[0]+=W[7];
-Vals[0]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[0]+=ch(Vals[5],Vals[6],Vals[7]);
-Vals[0]+=K[55];
-Vals[4]+=Vals[0];
-Vals[0]+=(rotr(Vals[1],2)^rotr(Vals[1],13)^rotr(Vals[1],22));
-Vals[0]+=Ma(Vals[3],Vals[1],Vals[2]);
+Vals[5]+=W[7];
+Vals[5]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[5]+=ch(Vals[4],Vals[3],Vals[2]);
+Vals[5]+=K[55];
+Vals[1]+=Vals[5];
+Vals[5]+=(rotr(Vals[7],2)^rotr(Vals[7],13)^rotr(Vals[7],22));
+Vals[5]+=Ma(Vals[0],Vals[7],Vals[6]);
 
 
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=(rotr(W[9],7)^rotr(W[9],18)^(W[9]>>3U));
 W[8]+=W[1];
 W[8]+=W[1];
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
 W[8]+=(rotr(W[6],17)^rotr(W[6],19)^(W[6]>>10U));
-Vals[7]+=W[8];
-Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-Vals[7]+=K[56];
-Vals[3]+=Vals[7];
+Vals[2]+=W[8];
+Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+Vals[2]+=K[56];
+Vals[0]+=Vals[2];
 
 
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=(rotr(W[10],7)^rotr(W[10],18)^(W[10]>>3U));
 W[9]+=W[2];
 W[9]+=W[2];
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
 W[9]+=(rotr(W[7],17)^rotr(W[7],19)^(W[7]>>10U));
-Vals[6]+=W[9];
-Vals[6]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
-Vals[6]+=ch(Vals[3],Vals[4],Vals[5]);
-Vals[6]+=K[57];
-Vals[6]+=Vals[2];
+Vals[3]+=W[9];
+Vals[3]+=(rotr(Vals[0],6)^rotr(Vals[0],11)^rotr(Vals[0],25));
+Vals[3]+=ch(Vals[0],Vals[1],Vals[4]);
+Vals[3]+=K[57];
+Vals[3]+=Vals[6];
 
 
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=(rotr(W[11],7)^rotr(W[11],18)^(W[11]>>3U));
 W[10]+=W[3];
 W[10]+=W[3];
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
 W[10]+=(rotr(W[8],17)^rotr(W[8],19)^(W[8]>>10U));
-Vals[5]+=W[10];
-Vals[5]+=(rotr(Vals[6],6)^rotr(Vals[6],11)^rotr(Vals[6],25));
-Vals[5]+=ch(Vals[6],Vals[3],Vals[4]);
-Vals[5]+=K[58];
-Vals[5]+=Vals[1];
-Vals[4]+=(rotr(Vals[5],6)^rotr(Vals[5],11)^rotr(Vals[5],25));
-Vals[4]+=ch(Vals[5],Vals[6],Vals[3]);
-Vals[4]+=W[11];
-Vals[4]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
-Vals[4]+=W[4];
-Vals[4]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
-Vals[4]+=K[59];
-Vals[4]+=Vals[0];
+Vals[4]+=W[10];
+Vals[4]+=(rotr(Vals[3],6)^rotr(Vals[3],11)^rotr(Vals[3],25));
+Vals[4]+=ch(Vals[3],Vals[0],Vals[1]);
+Vals[4]+=K[58];
+Vals[4]+=Vals[7];
+Vals[1]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
+Vals[1]+=ch(Vals[4],Vals[3],Vals[0]);
+Vals[1]+=W[11];
+Vals[1]+=(rotr(W[12],7)^rotr(W[12],18)^(W[12]>>3U));
+Vals[1]+=W[4];
+Vals[1]+=(rotr(W[9],17)^rotr(W[9],19)^(W[9]>>10U));
+Vals[1]+=K[59];
+Vals[1]+=Vals[5];
 
 
 #define FOUND (0x80)
 #define FOUND (0x80)
 #define NFLAG (0x7F)
 #define NFLAG (0x7F)
 
 
 #if defined(VECTORS2) || defined(VECTORS4)
 #if defined(VECTORS2) || defined(VECTORS4)
-	Vals[7]+=Ma(Vals[2],Vals[0],Vals[1]);
-	Vals[7]+=(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22));
-	Vals[7]+=W[12];
-	Vals[7]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
-	Vals[7]+=W[5];
-	Vals[7]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
-	Vals[7]+=Vals[3];
-	Vals[7]+=(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25));
-	Vals[7]+=ch(Vals[4],Vals[5],Vals[6]);
-
-	if (any(Vals[7] == 0x136032edU)) {
-		if (Vals[7].x == 0x136032edU)
+	Vals[2]+=Ma(Vals[6],Vals[5],Vals[7]);
+	Vals[2]+=(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22));
+	Vals[2]+=W[12];
+	Vals[2]+=(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U));
+	Vals[2]+=W[5];
+	Vals[2]+=(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U));
+	Vals[2]+=Vals[0];
+	Vals[2]+=(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25));
+	Vals[2]+=ch(Vals[1],Vals[4],Vals[3]);
+
+	if (any(Vals[2] == 0x136032edU)) {
+		if (Vals[2].x == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
 			output[FOUND] = output[NFLAG & nonce.x] = nonce.x;
-		if (Vals[7].y == 0x136032edU)
+		if (Vals[2].y == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
 			output[FOUND] = output[NFLAG & nonce.y] = nonce.y;
 #if defined(VECTORS4)
 #if defined(VECTORS4)
-		if (Vals[7].z == 0x136032edU)
+		if (Vals[2].z == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
 			output[FOUND] = output[NFLAG & nonce.z] = nonce.z;
-		if (Vals[7].w == 0x136032edU)
+		if (Vals[2].w == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
 			output[FOUND] = output[NFLAG & nonce.w] = nonce.w;
 #endif
 #endif
 	}
 	}
 #else
 #else
-	if ((Vals[7]+
-		Ma(Vals[2],Vals[0],Vals[1])+
-		(rotr(Vals[0],2)^rotr(Vals[0],13)^rotr(Vals[0],22))+
+	if ((Vals[2]+
+		Ma(Vals[6],Vals[5],Vals[7])+
+		(rotr(Vals[5],2)^rotr(Vals[5],13)^rotr(Vals[5],22))+
 		W[12]+
 		W[12]+
 		(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+
 		(rotr(W[13],7)^rotr(W[13],18)^(W[13]>>3U))+
 		W[5]+
 		W[5]+
 		(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+
 		(rotr(W[10],17)^rotr(W[10],19)^(W[10]>>10U))+
-		Vals[3]+
-		(rotr(Vals[4],6)^rotr(Vals[4],11)^rotr(Vals[4],25))+
-		ch(Vals[4],Vals[5],Vals[6])) == 0x136032edU)
+		Vals[0]+
+		(rotr(Vals[1],6)^rotr(Vals[1],11)^rotr(Vals[1],25))+
+		ch(Vals[1],Vals[4],Vals[3])) == 0x136032edU)
 			output[FOUND] = output[NFLAG & nonce] =  nonce;
 			output[FOUND] = output[NFLAG & nonce] =  nonce;
 #endif
 #endif
 }
 }